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NECA alleviates inflammatory
responses in diabetic retinopathy
through dendritic cell toll-like
receptor signaling pathway
Lanjiao Li, Jichun Chen, Zhenyan Wang, Yan Xu, Hao Yao,
Wulong Lei, Xiyuan Zhou*† and Minming Zheng*†

The Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of
Ophthalmology, Chongqing, China
Introduction: This study examined the impact of 5’-(N- ethylcarboxamido)

adenosine (NECA) in the peripheral blood of healthy individuals, those with

diabetes mellitus, diabetic retinopathy (DR), and C57BL/6 mice, both in vivo

and in vitro.

Methods: Enzyme-linked immunosorbent assay (ELISA) and flow cytometry

(FCM) were used to evaluate the effects of NECA on dendritic cells (DCs) and

mouse bone marrow-derived dendritic cells (BMDCs) and the effects of NECA-

treated DCs on Treg and Th17 cells. The effect of NECA on the Toll-like receptor

(TLR) pathway in DCs was evaluated using polymerase chain reaction (PCR) and

western blotting (WB).

Results: FCM and ELISA showed that NECA inhibited the expression of surface

markers of DCs and BMDCs, increased anti-inflammatory cytokines and

decreased proinflammatory cytokines. PCR and WB showed that NCEA

decreased mRNA transcription and protein expression in the TLR-4-MyD88-

NF-kb pathway in DCs and BMDCs. The DR severity in streptozocin (STZ) induced

diabetic mice was alleviated. NECA-treated DCs and BMDCs were co-cultivated

with CD4+T cells, resulting in modulation of Treg and Th17 differentiation, along

with cytokine secretion alterations.

Conclusion: NECA could impair DCs’ ability to present antigens and mitigate the

inflammatory response, thereby alleviating the severity of DR.
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1 Introduction

As societal living standards enhance, there is a corresponding

rise in diabetes incidence (1–3). DR, a significant complication of

diabetes mellitus, is becoming increasingly prevalent. Data from the

International Diabetes Federation indicates that in 2021, there were

537 million adults aged 20 to 79 years with diabetes. Projections

suggest this number will escalate to 783 million by 2045 (4). It is

anticipated that DR cases will surge to 160.5 million by the year

2045 (5). Although the underlying mechanisms of DR are complex,

numerous studies have indicated a strong correlation between the

pathogenesis of DR and inflammatory processes (6, 7). Genome-

wide association studies found that inflammatory genes are closely

related to DR (8).

DCs stand as vital antigen-presenting cells within the body.

These cells excel in capturing, processing, and presenting antigens,

effectively activating and proliferating naive T cells. They hold a

central role in initiating, modulating, and sustaining specific

immune responses. Toll-like receptors (TLRs) are a class of

transmembrane proteins mainly expressed in antigen-presenting

cells like DCs and macrophages (9). TLRs expressed on DC can

bind to their corresponding ligands and cause DC activation (10,

11), which are vital in the host immune system’s defense

against pathogens.

Over the past few years, more and more studies have

highlighted the significance of gut bacteria and the compounds

they produce in maintaining immune balance and controlling

inflammation. In our preceding research, we noted a distinctive

fecal adenosine composition in DR patients compared to healthy

individuals (12). Adenosine is a metabolic intermediate involved in

the adenosine triphosphate (ATP) catabolic pathway. Moreover,

adenosine is an endogenous nucleoside widely distributed in

mammals that regulates various important physiological functions

by binding to its receptors (13–15). Under physiological and

non-stress conditions, extracellular adenosine concentration is

maintained at a low level due to rapid metabolism and uptake,

and its level rises substantially in response to increasing metabolic

demand, hypoxia, tissue damage, and inflammation to regulate the

immune response (16). A variety of immune cells are known to

express adenosine receptors, showing diverse responses to

adenosine and its agonists (17, 18). Research by Deaglio et al.

revealed that T regulatory cells (Tregs) transform extracellular ATP

into adenosine through the CD39/CD73 enzymatic pathway. This

process activates adenosine-2A (A2A) receptors on T effector cells,

resulting in the inhibition of their function and the suppression of

pro-inflammatory mediator release (16, 19). With the activation of

TLRs on macrophages, nuclear factor kappa B (NF-kB) and

hypoxia-inducible factor-1-mediated expression of A2A and A2B

receptors increased, making these cells most sensitive to

extracellular adenosine. Upon activation, these receptors induce a

shift in macrophages, transitioning them from the production of

pro-inflammatory agents such as TNF, interleukin (IL)-12, and

CXC motif chemokine ligands 1 and 2, towards anti-inflammatory

factors, particularly IL-10, and promoting a change to the M2

phenotype (20–23).
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While the role of adenosine and TLRs in DC has been

extensively explored, their study in the context of DR patients

remains limited. Elucidating the interplay between DR and

inflammatory mediators could pave the way for innovative

approaches in the diagnosis, prevention, and management of DR.

Although adenosine acts as a local regulator with cellular protective

functions, extracellular adenosine is usually rapidly taken up by

neighboring cells and rapidly disappears. Hence, our study focused

on examining the impact of NECA, a potent and non-selective

adenosine receptor agonist, on the DCs in individuals with DR,

particularly investigating its interactions with the TLRs pathway. In

this study, we aimed to develop new therapeutic approaches for DR.
2 Materials and methods

2.1 Patients

From August 2021 to August 2022, a study was undertaken at the

Second Affiliated Hospital of Chongqing Medical University,

Chongqing, China, involving 60 subjects. This group included 20

patients with DR (12 males, 8 females), 20 patients with DM (11

females, 9 males), and 20 individuals as healthy controls (10 females, 10

males), with a close age match across groups (average ages: 60.34 ±

7.09, 59.13 ± 7.68, 60.43 ± 5.98 years, respectively). Patients with DM

were diagnosed following the 2018 ADA guidelines, with DR exclusion

verified through fundus microscopy and optical coherence

tomography. For DR inclusion, criteria entailed diagnosis following

the 2018 ADA guidelines and via prior slit-lamp biomicroscopy, direct

fundus, and fluorescein angiography, excluding other ocular or

systemic diseases with ocular impacts. Participants were excluded for

history of autoimmune diseases (like arthritis, lupus, dermatomyositis,

ankylosing spondylitis, uveitis), type 1 diabetes or unidentified diabetes

etiology, high blood pressure, malignant tumors, or prior organ

transplants. Controls were selected for their lack of systemic diseases.

The study, adhering to the Declaration of Helsinki principles, received

approval from the Ethics Committee of the Second Affiliated Hospital

of Chongqing Medical University [2019(012)], with informed consent

from all participants.
2.2 Preparation of NECA and Cell Counting
Kit-8 assay

NECA, acquired from MedChemExpress (USA), was prepared

as a 1 mM stock solution in DMSO for use. In order to determine

the NECA concentration in subsequent experiments, different

concentrations of NECA were added to DCs and BMDCs for 48

h and incubated with CCK-8 (Beyotime, China) for 4 h, so as to

observe the effects of different concentrations of NECA on cell

viability. The measurement of optical density at 450 nm was carried

out utilizing an ELISA reader from Bio-Rad Laboratories, located in

Hercules, CA, USA. Finally, the dose of NECA used for our

experiments in vitro was 10 µM in DC and BMDC, which was

based on CCK-8 assay (Figure 1) and previous studies by others.
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2.3 Cell isolation and culture

The generation of mouse BMDCs was carried out in accordance

with the method outlined in a previously established protocol (24).

In short, after the C57BL/6 mice were killed by cervical dislocation,

their femurs were removed from the ultra-clean experimental table,

sterilized, and repeatedly rinsed with sterilized PBS. The bone end

was cut off with scissors, the cells were flushed with a 1 mL syringe

needle, and the bone marrow suspension was collected in the

culture dish. Post-centrifugation, cells were resuspended in RPMI

1640 with additives and treated with GM-CSF and IL-4 for DC

maturation. Following incubation at 37°C and 5% CO2, LPS and

NECA or vehicle were added on day 10. Cells and medium were

harvested after 24 hours for analysis.

The culture of human peripheral blood DC was carried out

according to the previous protocol (25–27). Upon receiving

informed consent, peripheral blood was collected from patients

with DR and DM, as well as from healthy volunteers, into tubes

containing EDTA-K2. These blood samples were then diluted with

an equivalent volume of sterile PBS in a contamination-free

environment and transferred to transparent glass tubes filled

with a human lymphocyte separation medium. The samples

underwent gradient centrifugation to isolate a layer of white

turbid cells, identified as human PBMCs, from the interface of

the separation medium and plasma. Following centrifugation, the

supernatant was removed, and the PBMCs were isolated. To

extract CD14+ monocytes from these PBMCs, human CD14

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) were

employed. After sterilization and centrifugation, the supernatant

was discarded, and the cells were resuspended in RPMI 1640

medium, enhanced with 10% fetal bovine serum and 1% double

antibiotic (penicillin/streptomycin). To promote the development

and maturi ty of DCs, GM-CSF (human, 100 ng/mL;

AcroBiosystems, Newark, NJ, USA) and IL-4 (human, 50 ng/

mL; AcroBiosystems) were added. On the 7th day, 1 mg/mL LPS

(Sigma, St. Louis, MO, USA) along with either vehicle or NECA
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was introduced, and the culture was continued for another 24

hours for subsequent collection of cells and culture medium for

further analysis.

Splenocyte collection of mice was performed in line with the

procedure outlined in a prior study (28). This established method

was also applied for the separation of human peripheral blood and

mouse CD4+ T cells of splenic cell suspension using specific CD4

microbeads from Miltenyi Biotec, Bergisch Gladbach, Germany.

Following this, DCs or BMDCs treated with NECA (or a vehicle)

were co-cultured with either human or mouse CD4+ T cells at a

ratio of 1:10 for a duration of five days.
2.4 Establishment of diabetic retinopathy
mouse model

Chongqing Medical University’s Experimental Animal Center

provided 4–5-week-old female C57BL/6 mice for establishing a DR

mouse model. These mice underwent a period of acclimatization for

one week, followed by a 16-hour fast prior to the induction of the

model. Body weights were recorded during the fasting period, and

blood glucose levels were measured from the caudal vein. A single

intraperitoneal injection of streptozotocin (STZ) at a dosage of 60 mg/

kg was administered. Blood glucose levels were then monitored at

intervals of 72, 96, and 120 hours. The establishment of type 2 diabetes

mellitus was confirmed when blood sugar levels exceeded 16.7 mmol/L

on three consecutive measurements, accompanied by symptoms such

as polydipsia, polyuria, and weight loss. In this study, the experimental

protocol involved administering NECA at a dose of 60 mg/kg by

gavage per day to the designated mice in the experimental group, as

referenced in (29). This treatment continued for a period of 12 weeks.

In contrast, the control group received a daily intake of a saline solution

in a volume equal to that of the NECA dosage. The implementation of

these animal experiments was carried out in strict compliance with the

ethical guidelines sanctioned by the Animal Experiment Committee at

Chongqing Medical University.Then, BMDCs were obtained, cultured
FIGURE 1

Effects of different concentrations of NECA on DCs and BDMCs cell viability.
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and differentiated according to the above method (2.3), LPS was added

on day 10. Cells andmediumwere harvested after 24 hours for analysis.
2.5 Flow cytometry

In the NECA and control groups, BMDCs or dendritic cells (DCs)

were harvested for analysis. These cells underwent staining with several

markers: CD40 (fluorescein isothiocyanate [FITC]-conjugated, from

Biolegend), CD80 (phycoerythrin [PE]-conjugated, sourced from

eBioscience), CD86 (FITC-conjugated from eBioscience, PE-cy7-

conjugated from Biolegend), and major histocompatibility complex

class II (MHCII) molecules (PE-conjugated, eBioscience). Additionally,

human-specific markers were used, including CD40 (FITC-conjugated,

Biolegend), CD80 (PE-conjugated, Biolegend), CD86 (PE-cy7-

conjugated, Biolegend), and human leukocyte antigen-DR (HLA-DR;

PE-cy5.5-conjugated, Biolegend). After a 30-minute incubation at 4°C,

the cells were washed, centrifuged, resuspended, and then subjected to

flow cytometric analysis.

CD4+ T cells, after being co-cultured with DCs or BMDCs, were

subjected to a staining process. This process involved the use of

several antibodies: for human cells, anti-CD4, anti-CD25, anti-

FoxP3, and anti-IL-17 antibodies, all sourced from BioLegend

(with anti-CD4 and anti-CD25 labeled with allophycocyanin

[APC]) and from eBioscience (with anti-FoxP3 and anti-IL-17

labeled with PE-cy7 and PE, respectively). Similarly, for mouse

cells, antibodies against CD4 and CD25 (APC-conjugated) and

against FoxP3 and IL-17 (PE-cy7 and PE-conjugated, respectively),

all obtained from BioLegend and eBioscience, were used.
2.7 Enzyme-linked immunosorbent assay

The levels of IL-6, IL-10, TNF-a, IL-17, and TGF-b in the

supernatant of DCs, BMDCs, and co-culture with CD4 were

measured by human and mouse multi-set enzymic immunosorbent

assay kit (R&D Systems). The levels of IL-12 p70 was measured

using mouse IL-12 p70 multi-set enzymic immunosorbent assay kit

(R&D Systems) and human IL-12 p70 high-sensitivity ELISA

kit (eBioscience).
Frontiers in Immunology 04
2.8 Hematoxylin and eosin staining

The removed whole eyeballs were embedded after modeling 3

months in paraffin and dehydrated to make 4–6 mm sections.

These sections were subsequently stained with H&E using a

standard protocol.
2.9 Western blotting assay

Following the extraction of proteins from DCs or BMDCs

according to established protocols, these proteins were separated

using SDS-PAGE and then transferred onto a PVDFmembrane. This

membrane underwent a blocking process for 2 hours, followed by an

overnight incubation at 4°C with the primary antibody. Subsequently,

it was subjected to another blocking stage for 1 hour before being

incubated with the secondary antibody at ambient temperature. The

final step involved the visualization of the membrane through the

application of a chemiluminescent reagent.
2.10 Real-time qPCR

RNA extraction was carried out using TRIzol reagent from

Invitrogen (Carlsbad, CA, USA). The reverse transcription process

utilized RT Master Mix for qPCRII and SYBR Green qPCR Master

Mix provided by MedChemExpress (USA). Subsequent RT-qPCR

analyses were conducted on an ABI Prism 7500 system, a product of

Applied Biosystems (CA, USA). For statistical interpretation of the

data, the 2-△△Ct method was employed. Details of the primer

sequences used are listed in Table 1.
2.11 Statistical analysis

GraphPad Prism 8.0 enabled our data evaluation. Shapiro-Wilk

assessed normality. For paired data, the T-test assessed significance

between two groups when the pairing difference was normally

distributed, otherwise Wilcoxon was used. Significance was noted

with mean ± SEM, P < 0.05.
TABLE 1 Primers used for RT-PCR.

Gene Forward primer Reverse primer

Human-TLR4 5’-CCTCCCACTCCAGGTAAGT-3’ 5’-GCAGTTTCTGAGCAGTCGT-3’

Human-MYD88 5’-GTGTCCGCACGTTCAAG-3’ 5’-CGGTCTCCTCCACATCC-3’

Human-NF-kB 5’-CTGTCCCCATTCTCATCCT-3’ 5’-GCCCTTTTCGACTACGC-3’

human-b-actin 5’-GGGCACCGTCTTCTAATTC-3’ 5’-GCCTACCATCCTTTGCTG-3’

mice-TLR4 5’-AAGGTGAAAGCAGAAATGTGT-3’ 5’-GGGGAGGAAGAAAGGTCTAA-3’

mice-MYD88 5’-CACGAGCCCTTCTTTTCTT-3’ 5’-GGGGCATTTCACTGCTT-3’

mice-NF-kB 5’-GTCTCCTCCGCCTTCTG-3’ 5’-GGGGTATGCACCGTAACA-3’

mice-b-actin 5’-ATGCCACAGGATTCCATACC-3’ 5’-GTGCTATGTTGCTCTAGACTTCG-3’
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3 Results

3.1 Effect of NECA on DCs function in vitro

DCs are vital for immune responses (30, 31). Previous studies

have shown that adenosine and its receptor agonist NECA can

reduce inflammation in diabetic rats (32). A multitude of studies

have indicated the involvement of the immune system in DR

progression (33). Hence, to investigate the impact of NECA on

DCs in a laboratory setting, we examined both BMDCs and DCs
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from patients with DM and DR, as well as individuals without any

health conditions. FCM was used to assess surface markers, which

based on previous studies [27.28.29], such as CD80, CD86, CD40,

HLA-DR, or MHC-II, on DCs and BMDCs. NECA was observed to

significantly inhibit the presence of CD40, CD80, CD86, and HLA-

DR in DCs from healthy subjects (Figure 2A). It inhibited the

expression of surface markers CD40, CD80, and MHC-II in patients

with DM DCs (Figure 3A) and BMDCs (Figure 4A) but only

suppressed the presence of surface marker CD80 in patients with

DR DCs (Figure 5A). However, after adding A2B receptor
A

B

C D

FIGURE 2

NECA influenced the presence of DC surface markers, release of inflammatory cytokines and mRNA/protein expression in TLR pathway in healthy
individuals. (A) Histograms were overlapped to compare NECA treated DCs (n = 10) with controls (n = 10) from the representative experiment, and
the variation in MFI for surface markers of CD40, CD80, CD86, HLA-DR. (B) IL-6, IL-10, IL-12/p70 and TNF-2 were measured by ELISA in NECA-
treated DCs (n = 10) vs. vehicles (n = 10). (C, D) MRNA relative transcription level and protein expression level of TLR-4, MYD88, and NF-88 in DCs
of NECA treated (n = 10) vs. vehicles (n = 10) by PCR and WB. Statistical analysis involved the utilization of the paired samples t-test. (**P < 0.01,
***P < 0.001, ****P < 0.0001).
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antagonist MRS1754 (10 µM),the inhibitory effect of NECA on the

expression of CD80, CD86, and HLA-DR (Figure 6A), which are

surface markers of DCs in healthy individuals, was reduced.

In order to study the impact of NECA on the release of

cytokines by DCs and BMDCs, the levels of IL-6, IL-10, IL-12

p70, and TNF-a were assessed using ELISA. NECA increased the

IL-10 secretion in healthy individuals (Figure 2B), patients with DM

(Figure 3B) and DR (Figure 5B) while inhibiting the secretion of IL-

6, IL-12 p70, and TNF-a in healthy individuals (Figure 2B).

Furthermore, NECA suppressed TNF-a secretion in DCs of mice

(Figure 4B), patients with DM (Figure 3B) and DR (Figure 5B), but

only suppressed IL-12 p70 secretion in mice DCs (Figure 4B) and

IL-6 secretion in DCs of patients with DM (Figure 3B). The
Frontiers in Immunology 06
introduction of MRS1754 led to an increase in IL-12 p70 and

TNF-a production and a decrease in IL-10 levels in the DCs

supernatant from healthy individuals (Figure 6B).

Our results showed that NECA had a statistically significant

effect on the BMDCs and DCs of healthy individuals, patients with

DM and DR.
3.2 Effect of NECA on TLRs pathway in DCs
and BMDCs in vitro

A number of studies have reported that TLRs on the surface of DC

may influence inflammation through the adaptor protein MyD88 (11,
A

B

C D

FIGURE 3

NECA influenced the presence of DC surface markers, release of inflammatory cytokines and mRNA/protein expression in TLR pathway in patients with
DM. (A) Histograms were overlapped to compare NECA treated DCs (n = 10) with controls (n = 10) from the representative experiment, and the variation
in MFI for surface markers of CD40, CD80, CD86, HLA-DR. (B) IL-6, IL-10, IL-12/p70 and TNF-2 were measured by ELISA in NECA-treated DCs (n = 10)
vs. vehicles (n = 10). (C, D) MRNA relative transcription level and protein expression level of TLR-4, MYD88, and NF-88 in DCs of NECA treated (n = 10)
vs. vehicles (n = 10) by PCR and WB. Statistical analysis involved the utilization of the paired samples t-test. (ns: not significant, *P < 0.05, **P < 0.01,
***P < 0.001).
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34, 35). Therefore, we studied the effect of NECA on the TLR pathway

of DCs in healthy individuals, patients with DM and DR, and mice. In

this study, NECA inhibited the relative mRNA transcription level of

TLR4 andMYD88 and the expression of TLR4 andMYD88 proteins in

DCs of healthy individuals (Figures 2C, D), patients with DM

(Figures 3C, D) and DR (Figures 5C, D), and BMDCs (Figures 4C,

D). NECA inhibited the relative mRNA transcription level of NF-kB
and expression of NF-kB protein in DCs of healthy individuals

(Figures 2C, D), patients with DM (Figures 3C, D), and BMDCs

(Figures 4C, D). All the differences were statistically significant.
3.3 Effect of NECA on DCs function in vivo

In vivo experiments demonstrated that NECA reduced the

expression of CD40 and CD80 surface markers on DCs in
Frontiers in Immunology 07
STZ-induced EDR mice (Figure 7A). Moreover, NECA

decreased TNF-a secretion while increasing IL-10 secretion in

these mice (Figure 7B). Additionally, NECA downregulated both

mRNA transcription and protein expression levels of TLR4 and

MYD88 in the DCs of EDR mice (Figures 7C, D). The ganglion

cells layer (GCL) displayed obvious vacuolar degeneration

(Figure 8A), and cell density and thickness in the inner nuclear

layers (INL) and outer nuclear layers (ONL) was reduced in EDR

mice (Figure 8C). After NECA treatment, the structure of each

layer of retinal tissues was regular in EDR mice without ganglion

vacuolar degeneration (Figure 8B), without inner and outer

nuclear layers (Figure 8D) were reduced. The differences

between thickness of GCL/retina ration in NECA-treated EDR

mice and saline-treated EDR mice were statistically significant

(Figure 8E). The same statistical differences existed between

thickness of (INL+OPL)/retina ration in NECA-treated EDR
A

B

C D

FIGURE 4

NECA influenced the presence of BMDC surface markers, release of inflammatory cytokines and mRNA/protein expression in TLR pathway in mice.
(A) Histograms were overlapped to compare NECA treated BMDCs (n = 4) with controls (n = 4) from the representative experiment, and the
variation in MFI for surface markers of CD40, CD80, CD86, MHCII. (B) IL-6, IL-10, IL-12/p70 and TNF-2 were measured by ELISA in NECA-treated
BMDCs (n = 4) vs. vehicles (n = 4). (C, D) MRNA relative transcription level and protein expression level of TLR-4, MYD88, and NF-88 in BMDCs of
NECA-treated (n = 4) vs. vehicles (n = 4) by PCR and WB. Statistical analysis involved the utilization of the paired samples t-test and Wilcoxon. (ns:
not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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mice and saline-treated EDR mice (Figure 8F). Our results showed

that NECA alleviated changes of diabetic retinopathy in mice in

HE staining.
3.4 Effect of Th17 and Treg cells
differentiation co-cultured with NECA-
treated DCs and BMDCs in vitro

Thl7 and Treg cells are vital in inflammatory response (36–39).

DCs can significantly influence T-cell differentiation (40, 41).

Previous studies have revealed that Treg/Th17 cells affect the

inflammatory response of diabetic patients (42). This research

aimed to determine if DCs and BMDCs stimulated by NECA
Frontiers in Immunology 08
could influence the differentiation of Th17 and Treg cells and the

secretion of related cytokines.

For this purpose, NECA-activated BMDCs and DCs, sourced

from both healthy individuals and patients with DM and DR, were

co-cultured with CD4+ T cells isolated from naïve mice and

humans. The findings revealed that BMDCs and DCs treated

with NECA in both healthy subjects and patients suffering from

DM and DR, suppressed Th17 cell differentiation. Conversely,

these NECA-treated cells promoted the differentiation of Treg

cells in mice, healthy subjects, and patients with DM, as identified

by FCM analysis, illustrated in Figure 9. ELISA showed that

NECA-treated DCs inhibited the IL-17 secretion, whereas

stimulated the TGF-b and IL-10 secretion in healthy individuals

and patients with DM. It inhibited the IL-17 secretion but
A

B

C D

FIGURE 5

NECA influenced the presence of DC surface markers, release of inflammatory cytokines and mRNA/protein expression in TLR pathway in patients
with DR. (A) Histograms were overlapped to compare NECA treated DCs (n = 10) with controls (n = 10) from the representative experiment, and the
variation in MFI for surface markers of CD40, CD80, CD86, HLA-DR. (B) IL-6, IL-10, IL-12/p70 and TNF-2 were measured by ELISA in NECA-treated
DCs (n = 10) vs. vehicles (n = 10). (C, D) MRNA relative transcription level and protein expression level of TLR-4, MYD88, and NF-88 in DCs of
NECA-treated (n = 10) vs. vehicles (n = 10) by PCR and WB. Statistical analysis involved the utilization of the paired samples t-test and Wilcoxon test.
(ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001,****P < 0.0001).
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increased the TGF-b secretion in patients with DR and

mice (Figure 10).
4 Discussion

DR is a microvascular complication of diabetes. DR

pathogenesis is complex. Inflammation is the main cause of all

diabetic complications, including DR (43). The continuous rise in

blood sugar in diabetic patients induces low-grade inflammation,

resulting in leukocyte stasis and retinal microvascular changes (44).

This can lead to retinal inflammation, oxidative stress, and rupture

of the blood-retinal barrier. Chronic retinal inflammation causes

capillary degeneration, non-perfusion, vascular permeability, and

leakage, while vascular injury initiation causes retinal

neovascularization, proliferative diabetic retinopathy, and vision

loss (45). In our previous study, we found that people with DR had

less adenosine in their stools than healthy individuals (22). Previous
Frontiers in Immunology 09
research has shown that adenosine regulates immunity. Adenosine

analogs have protective effects in many inflammatory disease

models . Adenosine deficiency contributes to chronic

inflammation in several autoimmune diseases (16). We aimed to

understand whether the decrease in adenosine in the gut of patients

with DR affects the occurrence and development of the disease.

NECA is a non-selective adenosine receptor agonist. In this

study, we showed that in vitro, NECA decreased the expression

of surface markers CD40 and CD80 in mouse BMDCs and DCs

of patients with DM and healthy individuals and the expression

of MHCII in BMDCs and HLA-DR in DCs of healthy

individuals. Only CD80 expression was inhibited in DCs of

patients with DR. NECA increased the cytokine IL-10 secretion

in DCs of patients with DM and DR and healthy individuals.

However, NECA inhibited the secretion of DCs cytokines IL-6,

IL-12 p70, and TNF-a in healthy individuals. Moreover, NECA

inhibited the secretion of IL-12 p70 and TNF-a from BMDCs

while inhibiting the secretion of IL-12 p70 and TNF-a in
A

B

FIGURE 6

MRS1754 inhibited the effect of NECA on DC surface markers and release of inflammatory cytokines in healthy individuals. (A) Histograms were
overlapped to compare NECA treated DCs (n = 10) with NECA+MRS1754-treated DCs (n = 10) from the representative experiment, and the variation
in MFI for surface markers of CD40, CD80, CD86, HLA-DR. (B) IL-6, IL-10, IL-12/p70 and TNF-2 were measured by ELISA in NECA-treated DCs (n =
8) vs. NECA+MRS1754-treated DCs (n = 8). Statistical analysis involved the utilization of the paired samples t-test and Wilcoxon test. (ns: not
significant, *P < 0.05, **P < 0.01).
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patients with DM and DR, respectively. Novitskiy has shown

that adenosine stimulates intracellular cAMP accumulation

through Gs-coupled adenosine receptors A2A and A2B and

regulates the differentiation and function of mouse and human

macrophages and DCs (46). Alessandra Franco et al. found that

tmDCs in children secrete the anti-inflammatory factor IL-10

when stimulated by Fc and overexpress the adenosine A2AR,

which, when activated by NECA, inhibits the release of pro-

inflammatory cytokines by most immune cells (47). Jeffrey M.

Wilson described that NECA inhibits TNF-a and IL-12 in DCs

and BMDCs in a concentration-dependent manner but

increases IL-10 secretion, which is regulated by the A2BR

(48). Liang Dongchun reported that BMDC differentiated into
Frontiers in Immunology 10
CD11c+Gr-1+, which enhanced the stimulation of Th17 in the

medium containing NECA, and gd-T cells are necessary for this

enhanced reaction process. Many studies are consistent with

our findings (49).

Four types of adenosine receptors (A1R, A2AR, A2BR, and

A3R) exert negative or positive effects by binding to different

receptors. Activation of A2AR suppresses the response (50),

while activation of A2BR enhances it (47). However, many

studies have suggested that A2BR is involved in the immune

response to inflammation and plays an anti-inflammatory role

(51). For example, during hypoxia and peritonitis, mucosal

inflammation is reduced by A2BR signaling (52), while drug

blocking of A2BR enhances septicemia-induced inflammation
A

B

C D

FIGURE 7

Effect of NECA on BMDCs function in vivo in mice. (A) Histograms were overlapped to compare NECA treated BMDCs (n = 4) with controls (n = 4)
from the representative experiment, and the variation in MFI for surface markers of CD40, CD80, CD86, MHCII in EDR mice. (B) IL-6, IL-10, IL-12/
p70 and TNF-2 were measured by ELISA in NECA-treated BMDCs (n = 4) vs. vehicles (n = 4). (C, D) MRNA relative transcription level and protein
expression level of TLR-4, MYD88, and NF-88 in BMDCs of NECA-treated (n = 4) vs. vehicles (n = 4) by PCR and WB. Statistical analysis involved the
utilization of the paired samples t-test. (ns: not significant, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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and angioplastication-induced vascular disease (53). In a mouse

gut IR model, A2BR knockout mice had more severe IR damage

than wild-type mice (54). In animal models of IR injury,

adenosine protects intestinal microcirculation through A2BR

signaling (55). NECA is one of the most potent A(2B) adenosine

receptor agonists. Németh Zoltán H found that NECA could

prevent the development of diabetes in STZ and cyclolinamide-

induced diabetic mouse models, strongly suppressed expression

of the pro-inflammatory cytokines TNF-a , macrophage

inflammatory protein 1, IL-12, and IFN-g. At the same time,

A2B receptor antagonists could reverse the effect of NECA (56).

Different studies suggest that the anti-inflammatory effect may

be caused by A2AR (57). However, most studies believe that the

effect is mainly through A2BR and A3 stimulation, which may

be related to NECA concentrations. Dal Ben Diego et al.

reported that different concentrations of NECA derivatives

could inhibit the activity of adenylyl cyclase, thereby affecting

its stimulating effect on A3R (58). Our results showed that

NECA inhibited the maturation of DCs and BMDCs, increased

the production of anti-inflammatory factors, decreased pro-

inflammatory factors, and played a role in inhibiting

inflammat ion . Furthermore , we added MRS1754 , an

antagonist of the A2BR, to the DC of healthy individuals, and

the effect of NECA on DC changed. Hence, We concluded that

NECA inhibited inflammation not by activating A2AR, but

perhaps by A2BR or the other types of adenosine receptors

(A1R or A3R).A2BR may play an anti-inflammatory role.

The data reported herein also suggests that different

populations of DC and BMDC have different responses to

NECA. This phenomenon may reflect the existence of unique
Frontiers in Immunology 11
DC subtypes or indicate that DC from different sources was in

different stages of maturity before NECA treatment, subtypes

on the different expression of adenosine receptors in DC, thus

causing different responses. The expression of adenosine

receptors on the DC surface of patients with DR is also a

direction that we will continue to study in the future.

However, our findings suggest that NECA can inhibit

inflammation in vitro and in vivo. Many previous studies have

investigated the role of NECA in diabetes and the complications

caused by diabetes. Studies have been conducted on heart

disease, diabetes, and kidney disease (59), but few studies

have been conducted on NECA in DR. Our previous studies

found adenosine changes through intestinal metabolites in

patients with DR. In this study, intragastric administration of

NECA reduced the intraocular retinal lesions, inhibited DC

maturation and the release of inflammatory cytokines through

the TLR-MYD88-NF-kB pathway in animals. This suggested

that NECA may reduce inflammation and slow down the

development of DR in vivo. Adenosine regulates immune

homeostasis. The decrease in adenosine in the feces of DR

patients may destroy the regulation of adenosine on immunity,

increase the immune response, and accelerate the disease

progression of DR. However, our findings are only a

preliminary study, and there is no direct evidence yet on how

NECA’s effect on BMDCs can reduce retinopathy through

intraocular responses. For the insufficiency of the experiment,

we need further exploring in our subsequent experiments.

Moreover, we found that mRNA expression related to the

TLR-MYD88-NF-kB pathway in DC was also altered by PCR

and WB detection. It was previously reported that A2a mainly
A B

C D

E

F

FIGURE 8

Changes of retina by HE staining in EDR mice. (A) Changes of GCL in saline-treated EDR mice. (B) Changes of GCL NECA-treated EDR mice. (C)
Changes of INL and ONL in saline-treated EDR mice. (D) Changes of INL and ONL in NECA-treated EDR mice. (E) Thickness of GCL/retina ration in
NECA-treated EDR mice (n=4) vs. saline-treated EDR mice (n=4). (F) Thickness of (INL+ONL)/retina ration in NECA-treated EDR mice (n=4) vs.
saline-treated EDR mice (n=4). (The blue arrow points to the ganglion cells layer,the red double-headed arrow points to the inner and outer nuclear
layers). Statistical analysis involved the utilization of the paired samples t-test. (*P < 0.05).
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activates the downstream signaling pathway through the PKA

pathway and may directly or indirectly cause changes in nuclear

factors through cAMP phosphorylation (60). Additionally, this

might be attributed to alterations in potassium channel activity,

as evidenced by 86Rb+ efflux experiments, or due to the

suppression of calcium channels, indicated by 45Ca2+ uptake

experiments. TLRs are sentinel cell transmembrane pattern

recognit ion receptors expressed in human and other

mammalian white blood cells. The involvement of TLRs leads

to the initiation of signaling cascades that ultimately lead to

host immune responses. Activation of the TLR signaling

pathway can cause the onset of immune diseases (61). The

findings from our study indicated that NECA significantly

reduced both the mRNA transcription levels and the protein

expression of TLR4 and MYD88 in BMDCs and DCs derived

from healthy individuals, as well as in those from patients with

DM. In addition, similar inhibitory effects of NECA on the

mRNA transcription and protein expression of TLR4 and
Frontiers in Immunology 12
MYD88 were observed in DCs from DR patients . In

summary, our study revealed that NECA reduces the mRNA

of the TLR-MYD88-NF-kB pathway, affecting downstream

cAMP changes after adenosine receptor binding, suggesting

that this pathway may also affect the inflammatory effect of DC.

Thl7 and Treg cells are important in promoting or inhibiting

the inflammatory response. Breaking the pro-inflammatory balance

between Thl7 and inhibitory Treg cells causes many inflammatory

and autoimmune diseases (36). An imbalance between these two

cell types can precipitate immune disorders, including ulcerative

colitis (UC) (37) and type 2 diabetes mellitus (38). Treg cells are

integral in suppressing effector T cells, fostering immune tolerance,

and averting autoimmune conditions. Conversely, Th17 cells are

implicated in various autoimmune diseases. Under normal

physiological conditions, these cell types mutually inhibit each

other, sustaining a dynamic equilibrium that is vital for immune

defense and stability (39). Th17 cells emerge from DCs within an

environment rich in pro-inflammatory cytokines. Enhancing
A B

C D

FIGURE 9

NECA-treated DCs/BMDCs promoted the differentiation of Treg cells and inhibited the differentiation of Th17 cells. (A–D) Proportion of Treg and
Th17 cells in CD4 after co-culture of NECA-treated DC and CD4 cells (n=8) vs. co-culture of NECA-untreated DC and CD4 cells (n=8) detected by
FCM in healthy individuals/DM patients/DR patients/mice. The statistical analysis utilized the paired samples t-test. (ns: not significant, *P < 0.05,
**P < 0.01, ***P < 0.001).
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specific DC subsets and curtailing the production of pro-

inflammatory cytokines has been shown to promote Treg cell

proliferation and impede Th17 cell differentiation (40).

Furthermore, hindering the maturation of dendritic cells and the

production of IL-6 can significantly influence T-cell differentiation

(41). In our study, we examined CD4+ T cell differentiation after

NECA processing in vitro, which promotes Treg cell differentiation

and TGF-b production in the analysis of the inhibitory factors of

the Treg cells while inhibiting T17 cell differentiation and

inflammatory factor production. Further research is needed to

determine if NECA directly impacts T-cell differentiation. In

general, our study found that NECA can inhibit inflammation by

affecting DC.

In conclusion, there are few studies on the correlation between

intestinal fecal metabolites and DR patients and none on the
Frontiers in Immunology 13
correlation between adenosine and gut DR. Our research

indicated that the adenosine receptor ligand may treat DR.
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