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A novel microRNA promotes
coxsackievirus B4 infection
of pancreatic b cells
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The epidemiological association of coxsackievirus B infection with type 1

diabetes suggests that therapeutic strategies that reduce viral load could delay

or prevent disease onset. Moreover, recent studies suggest that treatment with

antiviral agents against coxsackievirus B may help preserve insulin levels in type 1

diabetic patients. In the current study, we performed small RNA-sequencing to

show that infection of immortalized trophoblast cells with coxsackievirus caused

differential regulation of several miRNAs. One of these, hsa-miR-AMC1, was

similarly upregulated in human pancreatic b cells infected with coxsackievirus B4.

Moreover, treatment of b cells with non-cytotoxic concentrations of an

antagomir that targets hsa-miR-AMC1 led to decreased CVB4 infection,

suggesting a positive feedback loop wherein this microRNA further promotes

viral infection. Interestingly, some predicted target genes of hsa-miR-AMC1 are

shared with hsa-miR-184, a microRNA that is known to suppress genes that

regulate insulin production in pancreatic b cells. Consistently, treatment of

coxsackievirus B4-infected b cells with the hsa-miR-AMC1 antagomir was

associated with a trend toward increased insulin production. Taken together,

our findings implicate novel hsa-miR-AMC1 as a potential early biomarker of

coxsackievirus B4-induced type 1 diabetes and suggest that inhibiting hsa-miR-

AMC1 may provide therapeutic benefit to type 1 diabetes patients. Our findings

also support the use of trophoblast cells as a model for identifying microRNAs

that might be useful diagnostic markers or therapeutic targets for coxsackievirus

B-induced type 1 diabetes.
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1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease caused by

persistent immune-mediated destruction of insulin-producing

pancreatic b cells (1). It is estimated that 1/300 people in the

United States develop T1D by the age of 18 years (2). Currently,

there is no prevention or cure for T1D, which can only be managed

with life-long insulin supplements, immunotherapies, or islet cell

transplants. T1D is a complex disease, wherein a combination of

genetic and environmental factors interact to trigger immune-

mediated destruction of pancreatic b cells. Numerous clinical

observations suggest a causal link between coxsackievirus B

(CVB) infection and the onset of T1D. For example, studies have

shown that if a pregnant woman is infected with CVB, her child will

have increased risk of developing T1D (3, 4). Moreover, case studies

have shown that the onset of diabetes often occurred during an

active CVB infection (5, 6). Other studies have shown that patients

with newly diagnosed T1D often have higher levels of CVB

antibodies (7), or that CVB infection persists in T1D patients (8–

10). Individuals whose siblings have T1D are more likely to develop

T1D following a CVB infection, indicating an underlying genetic

component (3).

The epidemiological association of CVB with T1D suggests that

treating CVB infection to reduce viral load could delay or prevent

the onset of T1D. Indeed, mounting evidence from preclinical and

clinical studies supports a causal role of viral infection in triggering

T1D. For example, one study showed that non-obese mice were

protected from coxsackievirus B4 (CVB4)-induced T1D by

treatment with a monovalent vaccine against conserved regions of

viral protein 1 in CVB4 (11). The Provention Bio PRV-101

multivalent vaccine study to target CVB is currently in clinical

trials (NCT04690426) for prevention of T1D (12). More recently,

Krogvold and coworkers showed in a randomized phase II clinical

trial that insulin levels in newly diagnosed T1D patients were

preserved following treatment with antiviral agents (13). These

findings indicate that antiviral strategies have potential to prevent

or treat T1D. It follows that microRNAs (miRNAs) that support or

promote CVB infection may represent novel targets to inhibit virus-

induced T1D.

miRNAs are non-coding RNAs that can regulate gene

expression through inhibition of mRNA translation (14). The

relationship of miRNAs to viral immunity implicates them in

CVB-mediated autoimmunity associated with T1D (15).

Moreover, some miRNAs are implicated in the etiology of T1D.

For example, miR-146a is differentially expressed in T1D patients

and contributes to diabetic complications by regulating the

inflammatory response (16). Similarly, miR-184-3p is enriched in

insulin-producing pancreatic b cells where it regulates several b cell

functions (17). Importantly, many miRNAs are differentially

regulated in the placenta during viral infection and have been

implicated in providing antiviral immunity to the fetus (18).

Thus, a better understanding of the early immune response may

reveal important clues regarding how response to viral infection

later in life (e.g., in pancreatic b cells) may lead to T1D. In

particular, trophoblast cells that comprise the epithelial cell

compartment of the placenta may provide a useful model for
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investigating how the prenatal immune system is altered during

viral infection, and how certain miRNAs are impacted by and/or

alter viral infection.

Given the importance of miRNAs in regulating viral infection

and their associations with T1D etiology, we hypothesized that

CVBs alter the miRNA signature of pancreatic b cells, which may in

turn lead to alterations in the transcriptome that contribute to the

autoimmune response that triggers T1D. Such a role would

implicate these miRNAs as therapeutic targets for inhibiting CVB

infection or its downstream effects to delay or prevent T1D. In the

current study, we show that infection of trophoblast cells with

CVB4 leads to the dysregulation of several miRNAs. We further

show that one of these miRNAs, hsa-miR-AMC1, is up-regulated in

human pancreatic b cells (a target cell of CVBs) following CVB4

infection. Moreover, treatment of b cells with an antagomir to

inhibit hsa-miR-AMC1 led to decreased CVB4 infection and

increased insulin production. These findings identify hsa-miR-

AMC1 as a novel miRNA that is up-regulated by CVB4 infection

of pancreatic b cells where it further promotes infection and

suppresses insulin secretion, suggesting that this miRNA may

serve as a novel diagnostic marker and/or therapeutic target for

CVB4-induced T1D.
2 Materials and methods

2.1 Cell lines

The immortalized pancreatic b cell line, EndoC-bH1, was

purchased from Human Cell Design (HCD) and grown in

bCOAT (HCD, Cat. # BC-120) or Matrigel-fibronectin (100 µg/

mL Corning, Cat. #CLS356234 and 2µg/mL, Sigma, Cat. #F1141,

respectively) (19), in OPTIb1 medium (HCD, Cat. # OB1-100).

Cells were passaged every 7 days. The immortalized human

trophoblast cell line hTERT (Sw.71), was purchased from

Abmgood (Cat. #T0532) and grown on dishes coated with

Applied Cell Extracellular Matrix (Abmgood, Cat. #G422) in

PriGrow IV medium (Abmgood, Cat. #TM004) supplemented

with 10% fetal bovine serum (FBS, GeminiBio, Cat. #100-106),

1% L-glutamine (Corning, Cat. #25-005-CI), 10 mM HEPES

(Sigma-Aldrich, Cat. #83264), 0.1 mM MEM non-essential amino

acids (Sigma-Aldrich, Cat#M7145), 1 mM sodium pyruvate

(GIBCO, Cat. #11360-070) and 1% penicillin-streptomycin (PSA,

GIBCO, Cat. #15140-122). LLC-MK2 derivative cells (ATCC#

CCL-7.1) or Vero cells (ATCC# CCL-81) were grown in Eagle’s

Modified Essential Medium (EMEM, ATCC, Cat. #30-2003)

supplemented with 10% FBS (GeminiBio, Cat. #100-106) and 1%

PSA (GIBCO, Cat. #15140-122). All cells were grown at 37°C,

5% CO2.
2.2 Propagation of viruses

Coxsackievirus (CVB) serotype 4 (ATCC# VR-184) was

propagated in LLC-MK2 derivative cells. CVB-E2 (diabetogenic

strain) was obtained from Laboratoire de Virologie ULR3610,
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ULille, and CHU Lille, France. Briefly, a 70% confluent monolayer

of LLC-MK2 was infected for 1 hour with CVBs at a multiplicity of

infection (MOI) of 0.1 or 0.01. Inoculum was then removed and

cells were washed with phosphate-buffered saline (Corning, Cat.

#21-040-CV) and maintained in EMEM supplemented with 2%

FBS and 1% PSA. Cytopathic effects (CPE) were monitored over 1-5

days or until 90% CPE was observed. The viruses were harvested by

3-freeze-thaw cycles and contents were collected and centrifuged at

10,000xg at 4°C for 10 minutes. The supernatant was collected,

aliquoted, and stored at -80°C. Viral titration was performed using

plaque assays as described (20).
2.3 Antagomirs

A customized antagomir against hsa-miR-AMC1 (Integrated

DNA Technologies) was dissolved in DNase/RNase-free water (100

µM or 500 µM) and aliquoted for storage at -80°C.
2.4 RNA sequencing and bioinformatics

2.4.1 Small RNA sequencing (RNA-seq)
Sw.71 cells were seeded (3x105 cells/well) overnight and then

infected with CVB4-JVB strain for 24 hours at a multiplicity of

infection (MOI) of 1. Infected cells were washed and pelleted for

RNA extraction, library preparation, and small RNA-Seq (Genewiz,

Azenta). Reads were aligned to miRbase (miRNA), and differential

gene expression was performed using DESeq2. For novel miRNA

prediction, sequences were aligned to the human genome and

subjected to RNA folding and secondary structure analysis

(miRDeep2, V2_0_0_7). All experiments were performed in three

biological replicates (i.e., in triplicate).
2.4.2 Standard RNA-seq
Sw.71 cells (3x105/well) or EndoC-bH1 cells (6.7x105/well) were

seeded overnight and then infected with CVB4 (CVB4-JVB or E2

strain) for 24 hours at a MOI=1 (Sw.71 cells) or for 1 hour at a

MOI=0.1 (EndoC-bH1 cells). Infected cells were washed and

pelleted for RNA extraction (RNeasy Plus Kit, Cat. #74136),

library preparation, and RNA-Seq (Genewiz, Azenta). Reads were

aligned to the human reference genome, Genome Reference

Consortium Human Build 38 (21), with STAR 2.7.10b (22).

Differential gene expression was performed using DESeq2 1.40.2

(23). All experiments were performed in triplicate.
2.5 miRNA isolation and qPCR

miRNA was extracted from infected cells using a mirVana™

miRNA isolation kit (ThermoFisher Scientific, Cat. #AM1560).

Reverse transcription was performed using TaqMan™ MicroRNA

Reverse Transcription Kit (ThermoFisher Scientific, Cat. #4366596)

and TaqMan™ MicroRNA Assay (ThermoFisher Scientific, Cat.

#4427975, assay IDs 001006 and CT9HJTV) using a custom-
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nucleolar RNA “RNU48” (control miRNA) or hsa-miR-AMC1,

according to the manufacturer’s instruction. qPCR was performed

using TaqMan™ Fast Advanced Master Mix (ThermoFisher

Scientific, Cat. #4444557) in a BioRad CFX96 TouchTM Real-

Time PCR Detection System. Fold-change in miRNA expression

was calculated using the 2-DDCT method (24). All experiments

were performed in triplicate.
2.6 Cytotoxicity analysis

To evaluate cytotoxicity of antagomirs on EndoC-bH1 cells, the

CellTiter 96 Aqueous One Solution Cell Proliferation MTS assay kit

(Promega, Cat. #G3582) was used according to the manufacturer’s

instructions. Briefly, 2.24x104 cells/well were seeded in 96-well

plates pre-coated with Matrigel-fibronectin matrix, as described

above. Antagomir was serially diluted (10 µM - 0.1 µM) and

transfected into EndoC-bH1 cells using OptiMEM media (Gibco,

Cat. #31985062) and Lipofectamine RNAiMAX Transfection

Reagent (Invi trogen, Cat . #13778150) fo l lowing the

manufacturer’s instructions. After 3 hours transfection mix was

removed and replaced with EndoC-bH1 growth medium. Cells

were incubated at 37°C for 24h, then MTS solution was added to

each well and incubated for an additional 2 hours for color

development. Plates were read at 490 nm and cytotoxicity was

plotted using GraphPad Prism (v.9.5.1). All experiments were

performed in triplicate.
2.7 Viral inhibition analysis

To evaluate effects of miRNA inhibition, EndoC-bH1 cells

grown on 96-well plates were transfected with antagomir 24

hours before infection with CVB4-JVB or CVB4-E2 strains

(MOI=0.1). After incubation for 1 hour, the inoculum was

removed, and cells were incubated in EndoC-bH1 cells growth

medium for another 24 hours. Supernatants were collected, and

plaque assays performed to determine viral infectivity. The

percentage of viral inhibition was plotted using GraphPad Prism

(v.9.5.1). All experiments were performed in triplicate.
2.8 Glucose-stimulated insulin secretion
(GSIS) analysis

GSIS was performed as described by Tang et al. (25) with minor

modifications. Briefly, EndoC-bH1 cells were transfected with

antagomir or mock-transfected without antagomir for 24 hours,

then infected with CVB4-E2 or CVB4-JVB strain for 1 hour or left

uninfected as a control. The next day cells were serum-starved, first

in serum-free medium for 1 hour followed by Krebs buffer solution

for 1 hour (Human Cell Design, bKREBS®). Cells were then

stimulated with 20 µM glucose for 40 minutes, and supernatant

was collected and stored at -20°C prior to enzyme-linked

immunosorbent assay (ELISA) to quantify insulin (Human
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Insulin Kit, Mercodia, Cat. #10-1113-01). ELISA was performed on

duplicate samples from each of three independent experiments.
2.9 Statistical analysis

Data are presented as average ± S.E.M from three biological

replicates (n=3), with at least two technical replicates for each

experiment. Statistical significance was determined using a t-test or

one-way ANOVA, as detailed in figure legends.
3 Results

3.1 Identification of differentially expressed
miRNAs in CVB4-infected trophoblast cells

To identify miRNAs that might regulate T1D-associated genes

following CVB infection, we infected Sw.71 cells with a prototype/

reference strain of CVB4, CVB4-JVB, for 24 hours then isolated

total RNA and performed miRNA sequencing. Table 1 shows the

top 5 differentially expressed miRNAs in response to CVB4-JVB

infection, compared to uninfected cells. The novel miRNAs were

predicted using hairpin structures of the precursor miRNAs. The

miRanda (v3.3a) target scanner was used to predict target sites

based on miRNA sequences and corresponding genomic cDNA

sequences. As an example, predicted target genes of hsa-miR-

AMC1 are listed in Supplementary Table S1.
3.2 hsa-miR-AMC1 is expressed in
pancreatic b cells

We chose to further investigate hsa-miR-AMC1 since this novel

miRNA has not been explored in any disease context. Interestingly,

pathway enrichment analysis of predicted hsa-miR-AMC1 target

genes (Supplementary Table S1) revealed a 5.6-fold enrichment of

predicted hsa-miR-184 target genes (false discovery rate, 4.7E-02).

This finding is intriguing, as hsa-miR-184 is expressed in pancreatic

b cells where it negatively regulates genes involved in insulin

production, some of which are involved in T1D (26–28). To

determine whether hsa-miR-AMC1 is also expressed in pancreatic

b cells, and whether its expression is altered by CVB4 infection, we

performed qRT-PCR of uninfected cells and cells infected with the
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variant, CVB4-E2 (Figure 1B). The results showed that not only is

hsa-miR-AMC1 expressed in pancreatic b cells, but it is also up-

regulated during infection with either CVB4 strain (Figures 1A, B).
3.3 Inhibition of hsa-miR-AMC1 reduces
CVB4 infection of pancreatic b cells

Pancreatic b cells are a known site of postnatal CVB4 infection

and replication (10, 29). Since we observed that hsa-miR-AMC1

was highly up-regulated in CVB4-infected cells (Table 1; Figure 1),

we next evaluated the effect of a hsa-miR-AMC1 inhibitor

(antagomir) on CVB4 infectivity of b cells. A cell viability assay

showed that treatment with the hsa-miR-AMC1 antagomir was well

tolerated by pancreatic b cells over a range of concentrations (0.1

µM to 10 µM) (Supplementary Figure S1). Interestingly, treatment

with the hsa-miR-AMC1 antagomir significantly inhibited infection

of pancreatic b cells (p <0.0001) by either the prototype CVB4-JVB

strain (Figure 2A) or the diabetogenic CVB4-E2 variant (Figure 2B).

Taken together, our findings indicate that hsa-miR-AMC1 is

induced by CVB4 infection in pancreatic b cells and promotes

CVB4 infection. We speculate that the initial induction of hsa-miR-

AMC1 upon CVB4 infection may lead to altered regulation of target

genes that drive a positive feedback loop to enhance infectivity.
3.4 Inhibition of hsa-miR-AMC1 impacts
insulin production in pancreatic b cells
infected with the diabetogenic CVB4-
E2 strain

We next determined if treating pancreatic b cells with the hsa-

miR-AMC1 antagomir alters insulin secretion in a high-glucose

environment, without and with CVB4 infection. We first

determined insulin production in the absence or presence of

antagomir without infection. One-way ANOVA showed that

insulin production was increased when cells were challenged with

20 µM glucose, with or without antagomir (p = 0.0484, F = 3.133).

Tukey’s HSD test for multiple comparisons revealed no significant

difference in this induction between these two groups (p > 0.05,

Figure 3A), suggesting that antagomir treatment had no appreciable

effect. We next treated cells with antagomir followed by infection

with CVB4-JVB or CVB4-E2. In CVB4-JVB infected cells without
TABLE 1 Top 5 differentially expressed miRNAs in CVB4-infected trophoblast (Sw.71) cells (n=3).

miRNA log fold change log CPM* p Value False discovery rate

hsa-miR-1304-5p -10.25544649 2.040398839 1.28E-06 0.003426258

hsa-miR-3913-5p 9.516579482 1.324338283 1.01E-05 0.013449967

hsa-miR-AMC1 14.00786084 5.758995884 1.89E-05 0.014947595

hsa-miR-AMC2 13.7003916 5.452149213 2.24E-05 0.014947595

hsa-miR-AMC3 9.279520905 1.097630449 3.70E-05 0.019778888
*Log CPM = logarithm of counts per million reads.
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antagomir, we observed the expected trend of increased insulin

upon glucose challenge (p = 0.0001). This increase remained

significant in antagomir-treated cells (p = 0.0018), although it

appeared dampened (Figure 3B). In contrast, when cells were

infected with the diabetogenic CVB4-E2 variant under high

glucose conditions, insulin levels were increased by antagomir

treatment when compared with untreated cells (p = 0.049,

Figure 3C). We speculate that this effect of antagomir-treatment

on insulin levels could be due to either protection of pancreatic b
cells from virus-induced cell death or increased ability of cells to

secret insulin. In either case, these results suggest that hsa-miR-

AMC1 inhibition in diabetogenic CVB4 strains (e.g., E2 strain)
Frontiers in Immunology 05
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stimulated insulin levels.
3.5 Identification of potential hsa-miR-
AMC1 gene targets

We used the miRanda algorithm (v3.3a) to identify 64 genes

with predicted target sites for hsa-miR-AMC1. Intriguingly, this

hsa-miR-AMC1 target gene set (Supplementary Table S2) indicated

enrichment of the “Insulin/IGF-MAPK cascade” (Enrichr, Panther

2016) (30–32), which regulates carbohydrate metabolism and
FIGURE 1

hsa-miR-AMC1 is upregulated in pancreatic b cells following CVB4 infection. Cells were left uninfected or were infected with the JVB strain (A) or
the E2 strain (B) of CVB4, as indicated. qPCR was performed to determine relative hsa-miR-AMC1 expression after normalization to RNU48
expression (a small-nucleolar RNA control). For (A, B) hsa-miR-AMC1 expression in uninfected cells is set at a value of 1.0. Data are average ± S.E.M;
t-test, p values are indicated, n = 3 biological replicates.
FIGURE 2

Inhibition of pancreatic b cell infection by (A) CVB4-JVB or (B) CVB4-E2 following treatment with non-cytotoxic concentrations of hsa-miR-AMC1
antagomir, determined by plaque assays using LLCMK2 cells. For (A, B) infectivity in the absence of antagomir is set at 100%. Data are average ±
S.E.M.; n = 3 biological replicates; p values are indicated, One-way ANOVA followed by post hoc Tukey’s multiple comparisons test.
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insulin-like growth factor receptors. We then asked whether any of

these genes are also differentially regulated in pancreatic b cells

upon CVB4 infection. RNA-seq followed by assessment of

differential gene expression using DESeq2 revealed 2739 or 132

differentially expressed genes (DEGs) following CVB4-E2 or CVB4-

JVB infection, respectively (adjusted p-value < 0.05). We next

determined whether any of these DEGs are predicted hsa-miR-

AMC1 target genes. Interestingly, only one gene, leucine-rich repeat

LGI family member 3 (LGI3), was common among all groups

(Supplementary Figure S2A). Intriguingly, LGI3 is a prognostic

marker of pancreatic cancer and regulates a number of relevant

genes (33). For example, LGI3 regulates insulin-like growth factor

binding protein 5 (IGFBP5), which is downregulated in T1D (34)

and is associated with CVB infection in patient samples (35). Thus,

LGI3 may be an interesting hsa-miR-AMC1 target gene for future

studies. A heat map shows the expression profile of the thirteen

genes that were predicted target genes of hsa-miR-AMC1 and also

differentially expressed in pancreatic b cells infected with the

diabetogenic CVB4-E2 strain (Supplementary Figure S2B). Of

note, some of these genes have roles in regulating glucose

metabolism and insulin regulation (36–38).
4 Discussion

Extensive research has revealed the multifactorial etiology of

T1D. Genetic factors such as specific HLA types play a major role in

a child’s susceptibility to T1D, and the risk of getting T1D increases

15-fold with a family history, particularly when the father has T1D

(39). Importantly, however, ~80% of T1D patients do not have a

family history of T1D, indicating that environmental factors play a

major role in the disease etiology (2). Certain viruses are major

suspects in triggering autoimmune conditions such as multiple

sclerosis, rheumatoid arthritis, lupus erythematosus. Indeed,

mounting evidence implicates enteroviruses such as CVB as likely

triggers of the autoimmune response that leads to T1D (40–42).

miRNAs are endogenous small RNAs that can regulate gene

expression and are often differentially expressed when exposed to a
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viral infection, contributing to dysregulation of immune function

and prevention of an effective interferon response (43).

Enteroviruses, including CVBs, can modulate expression of

miRNAs, and miRNA modulation may be a vital step in

successful viral infection (44–46). While it is unclear how CVB4

regulates hsa-miR-AMC1 expression, a study of CVB3-induced

viral myocarditis showed that miR-222 expression was promoted

by a complex that includes Dicer and the adenosine deaminases

acting on RNA (ADAR) enzyme, ADAR1p150 (47). Importantly,

some miRNAs can regulate expression of genes that have been

implicated in the T1D autoimmune response (48, 49). In addition,

viral infection can alter miRNA pathways to facilitate viral

replication (50). For example, miR-146a was significantly

upregulated during CVB3-infected mice and potentially

modulated TLR3 and TRAF6 genes that control b cell activity in

diabetes-induced inflammation (51–53). Dysregulation of miRNAs

can also hamper the function of interferons, particularly in

persistent infections leading to the T1D autoimmune response (29).

In the current study, we report two known and three novel

miRNAs that are differentially expressed during CVB4 infection of

trophoblast cells. hsa-miR-1304-5p was down-regulated during

infection, while the other four miRNAs were significantly up-

regulated. Interestingly, five target genes of miRNA hsa-miR-3913

(TLR8, SIRPG, TLR7, FUT2, and SMARCE1) have been identified

as risk factors of T1D, as documented in Genome-wide association

studies (GWAS). Moreover, all five of the latter genes were directly

or indirectly associated with an immune response to viral infection

(54–57). Interestingly, hsa-miR-AMC3 has a predicted target gene,

CTLA4, wherein a single nucleotide polymorphism shows strong

association with T1D risk due to autoimmune susceptibility (58).

From among the several miRNAs that we determined to be

altered by CVB infection, we chose to further investigate hsa-miR-

AMC1 because (1) this novel miRNA has not yet been explored in

any disease context, and (2) our pathway enrichment analysis for

predicted hsa-miR-AMC1 target genes revealed overlap with target

genes of hsa-miR-184, a known negative regulator of genes that

control insulin in pancreatic b cells (26). Furthermore, enriched

transcription factor and protein-protein interactions analysis of
FIGURE 3

Effects of hsa-miR-AMC1 antagomir on glucose-stimulated insulin secretion (GSIS) in (A) non-infected, (B) CVB4-JVB-infected, and (C) CVB4-E2-
infected pancreatic b cells. Data are average ± S.E.M.; n = 3 biological replicates; p values are indicated, ns, non-significant, One-way ANOVA
followed by post hoc Tukey’s multiple comparisons.
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hsa-miR-AMC1 identified association with nuclear factor, erythroid

2 (NFE2), a known regulator of the heme oxygenase 1 (HMOX1)

gene (59) for which down-regulation is associated with delayed

onset of T1D (26), as well as with nuclear respiratory factor 1

(Nrf1), for which decreased function is associated with loss of b cell

activities (60).

We identified thirteen predicted target genes of hsa-miR-AMC1

that were also differentially expressed by pancreatic b cells infected

with the diabetogenic CVB4-E2 strain (Supplementary Figure S2A-

Supplementary Table S2). Of these, TNS3, MAFK, GALNT10,

UBE3B, and C1orf21 are also predicted target genes of hsa-miR-

184 (61). This subset of thirteen genes enriched the insulin/IGF-

MAPK cascade in Panther pathways. Furthermore, most of these

genes were down-regulated with exception of SLC7A5, MAFK,

TNS3, and ZNF707 (Supplementary Figure S2B). Notably, an

increase in transcription factor MAFK has been identified to

hamper pancreatic beta cell function (38).

To understand the potential link between CVB infection and

insulin regulation, we assessed overlap/interaction between

pathways regulated by CVB and insulin regulatory pathways.

Indeed, CVB viruses hijack several host pathways such as

phosphoinositide-3-kinase–protein kinase B/Akt (PI3K/Akt)

pathway, and mitogen-activated protein kinase (MAPK) to gain a

replicative advantage. The MAPK pathway controls carbohydrate

metabolism and cell growth via insulin receptors and insulin-like

growth factor receptors, respectively. The MAPK pathway could be

initiated via enteroviral modulation of the PI3K/Akt pathway,

which is used by enteroviruses in the early stages of infection to

promote viral replication and decrease apoptosis (62, 63). On the

other hand, AMP-activated protein kinase (AMPK) is a well-

identified target for diabetes and diabetes-related symptoms (64–

66) and a kinase regulator of energy homeostasis (67). AMPK is

necessary for activation of Akt (68) and is modulated by viruses

during an infection (69). One hypothesis is that under

mitochondrial stress caused by enterovirus infection there is

increased viral replication and inhibition of IFN immune

response via downstream AMPK targets. Considering that hsa-

miR-AMC1 may regulate the insulin/IGF pathway-MAPK cascade

in pancreatic b cells infected with CBV, it is interesting to speculate

that its antagomir could prevent collapse of this cascade.

Consistently, we observed in cells infected with the clinical

diabetogenic CVB4-E2 variant that treatment with the hsa-miR-

AMC1 antagomir increased glucose-dependent induction of insulin

above the level of induction in untreated cells (Figure 3).

Although the exact mechanism through which hsa-miR-AMC1

promotes CVB infection is not yet elucidated, some viruses utilize

host miRNAs to modulate viral restriction factors. One example is

miR-376b-3p, which is up-regulated during porcine reproductive

and respiratory syndrome virus (PRRSV) infection. Indeed, miR-

376b-3p was found to target TRIM22, a virus restriction factor that

interacts with the N protein of PRRSV, thereby limiting the activity

of TRIM22 to exert its antiviral defense and providing a replicative

advantage to the virus (70).

Finally, our use of the trophoblast cell model is an exciting

development that may have important utility in the research of

CVB-induced-T1D. Indeed, there has been recent interest in
Frontiers in Immunology 07
investigating how maternal T1D impacts placental function and

fetal development (71). Our finding that the trophoblast miRNA,

hsa-miR-AMC1, is also present in pancreatic b cells and was

significantly upregulated during CVB4 infection leads us to

propose that the trophoblast cell model may be useful for

discovering novel biomarkers with postnatal relevance to T1D.

In summary, our study has identified a novel miRNA, hsa-miR-

AMC1, the inhibition of which reduces CVB4 infection of

pancreatic b cells and may also increase insulin production by

pancreatic b cells infected with certain diabetogenic CVB4 strains.

These findings are timely, as there has been increased evidence that

miRNAs play a crucial role in regulating genes implicated in various

autoimmune conditions. Indeed, recent literature suggests that

miRNAs could be explored as potential biomarkers (72) and as

targets to manage autoimmunity (73). To explore utility of hsa-

miR-AMC1 as an early biomarker of CBVB-induced T1D, future

studies will assess samples obtained through consortiums such as

the network for pancreatic organ donors (nPOD), environmental

determinants of islet autoimmunity (ENDIA), and the

environmental determinants of diabetes in the young (TEDDY).

Further studies are also warranted to elucidate mechanisms of hsa-

miR-AMC1 action toward exploiting it as a novel therapeutic target.
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