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Cytokines and chemokines skin
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with immune cells in blood and
severity in equine insect
bite hypersensitivity
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Stanislav Pantelyushin1,2,3, Juwela Lam1,2,3, Tanya Rhiner3,4,
Giulia Keller1,2,3, Nina Waldern3, Fabia Canonica1,2,3

and Antonia Fettelschoss-Gabriel 1,2,3*

1Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland, 2Faculty of Medicine,
University of Zurich, Zurich, Switzerland, 3Evax AG, Guntershausen, Switzerland, 4Equine Department,
Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
Background: Insect bite hypersensitivity (IBH) is the most frequent skin allergy of

horses and is highly debilitating, especially in the chronic phase. IBH is caused by

IgE-mediated hypersensitivity reactions to culicoides midge bites and an

imbalanced immune response that reduces the welfare of affected horses.

Objective: In the present study, we investigated the pathological mechanisms of

IBH, aiming to understand the immune cell modulation in acute allergic skin

lesions of IBH horses with the goal of finding possible biomarkers for a diagnostic

approach to monitor treatment success.

Methods: By qPCR, we quantified the gene expression of cytokines, chemokines,

and immune receptors in skin punch biopsies of IBH with different severity levels

and healthy horses simultaneously in tandem with the analysis of immune cell

counts in the blood.

Results: Our data show an increase in blood eosinophils, monocytes, and

basophils with a concomitant, significant increase in associated cytokine,

chemokine, and immune cell receptor mRNA expression levels in the lesional

skin of IBH horses. Moreover, IL-5Ra, CCR5, IFN-g, and IL-31Ra were strongly

associated with IBH severity, while IL-31 and IL-33 were rather associated with a

milder form of IBH. In addition, our data show a strong correlation of basophil cell

count in blood with IL-31Ra, IL-5, IL-5Ra, IFN-g, HRH2, HRH4, CCR3, CCR5, IL-
12b, IL-10, IL-1b, and CCL26 mRNA expression in skin punch biopsies of

IBH horses.

Conclusion: In summary, several cytokines and chemokines have been found to

be associated with disease severity, hence contributing to IBH pathology. These

molecules can be used as potential biomarkers to monitor the onset and

progression of the disease or even to evaluate and monitor the efficacy of new
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therapeutic treatments for IBH skin allergy. To our knowledge, this is the first

study that investigated immune cells together with a large set of genes related to

their biological function, including correlation to disease severity, in a large

cohort of healthy and IBH horses.
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1 Introduction

Similar to humans, animals also suffer from different forms of

allergy when exposed to allergens. Common hallmarks of skin

allergies are an imbalanced immune reaction causing severe

symptoms that reduce the welfare of affected animals. Insect bite

hypersensitivity (IBH) is a very frequent allergic disease in horses

caused by insect bites, more specifically by the salivary gland

proteins of biting midges, mainly the culicoides species (1–5).

IBH was earlier classified as a type I allergy (6, 7), whereas

characteristics of delayed type IV hypersensitivity have been

suggested (5, 8–10). Hence, it is not surprising that IBH horses

show an increase of culicoides allergen-specific IgE levels in serum

when compared to healthy horses (11–13). Moreover, allergen-

specific IgE levels are raised concurrently with the initial onset of

clinical signs of IBH, as observed in a study in horses imported from

Iceland to a culicoides-infested area of Europe (14). However, it was

shown that allergen-specific serum IgE cannot be used as a

predictor of IBH (14) and that also there was no correlation of

disease severity with Culicoides-specific IgE when using Culicoides

nubeculosus whole-body extract (15). Affected horses develop itchy

skin lesions along the dorsal and ventral bodyline with an “eczema-

like” morphology, with hyperkeratotic scales, that become worse

with scratching, resulting in exudate, crusts, swelling, and

lichenification. Moreover, IBH horses are susceptible to

developing allergic reactions elsewhere and have a higher risk for

airway hyperreactivity (16), which could potentially develop into

equine asthma in the future (13). That turn of events can become

life-threatening for horses and is a burden for horse owners.

The major players in IBH allergy are numerous, such as T

helper type 2 (Th2), regulatory T cells (Tregs), eosinophils,

epithelial cells, keratinocytes, mast cells, monocytes, and

basophils, which all have been postulated to be involved in the

pathological immune responses in IBH (9). The aim of this study is

to shed light on the pathological mechanisms of IBH during the

early and chronic phases of the disease. There is a necessity to

develop a diagnostic approach and ideally identify biomarkers to

follow the onset of disease, monitor progression and severity, and

potentially monitor the efficacy of a treatment for IBH in the future.

Thus, we investigated a gene expression panel of cytokines,

chemokines, and receptors in correlation with the major players
02
in IBH on a large number of horses in tandem with immune cell

counts in blood, taking healthy horses as control and IBH horses by

severity. The skin sample requires only a small 2-mm skin punch

biopsy and therefore is a big advantage when compared to more

invasive 6-mm biopsies for histology. To our knowledge, this is the

first study that addressed the modulation of various immune cell-

related genes in the skin by individual qPCR in correlation to

immune cells in blood and disease severity. Moreover, the study

suggested top molecules significantly differing in healthy versus

mild versus moderate/severe IBH horses and, hence, possibly

serving as biomarkers.
2 Materials and methods

2.1 Ethics

All study horses were privately held by their owners. All horse

owners provided signed informed consent. All interventions were

approved by the cantonal veterinary authorities (License 33558).

The horses were screened in the IBH season (Supplementary Figure

S1) prior to the study. All “IBH horses” showed clinical signs of IBH

lesions during the entire season at dorsal and ventral body lines with

typical characteristics such as hair loss, scales, crust, excoriations,

lichenification, and swelling. All horses were dewormed regularly.

Horse groups included the following: IBH with lesional biopsies and

healthy controls. Skin punch biopsies were collected from the mane,

head, breast, flank, and knee of IBH horses and only from the mane

of healthy horses. Moreover, IBH horses were divided into mild (M)

and moderate/severe (M/S) groups with lesion scores ≤100 and

>100, respectively.
2.2 Punch biopsies

Punch biopsies (2 mm) from lesional (n = 34) skin of IBH-

affected, mild (M) (n = 6), and moderate/severe (M/S) (n = 28) IBH

horses (Supplementary Table 1), as well from healthy (H) (n = 24)

skin of non-IBH horses were collected into RNAlater™

stabilization solution (Thermo Fisher, Waltham, MA, USA) for

RNA extraction as described previously (17).
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2.3 Blood analysis by IDEXX Diavet

Blood analysis was conducted on a large cohort of horses from

April to October, during the warm season. Immune cell count and

differential blood analysis on samples from healthy (n = 33) and

IBH (n = 80) [M (n = 31) and M/S (n = 49)] horses were conducted

using fresh ethylenediaminetetraacetic acid (EDTA) blood, as

measured by IDEXX Diavet.
2.4 Blood collection for PBMC isolation
and in vitro restimulation

A subgroup of horses was randomly selected for an in vitro

stimulation experiment comprising healthy (n = 22) and IBH {n =

40 [M (n = 29) and M/S (n = 11)]} horses. Blood was collected for

peripheral blood mononuclear cell (PBMC) isolation using NH

Sodium Heparin VACUETTE® containers (Greiner Bio-One,

Kremsmuenster, Austria).
2.5 IBH lesion scoring

The methodology is described in Reference (15).
2.6 PBMC stimulation with culicoides
in vitro

Density gradient centrifugation (Ficoll-Paque™ Plus, Cytiva,

Marlborough, MA, USA; cat. GE17–1440-03) was used to isolate

PBMCs from diluted heparinized blood in phosphate-buffered

saline (PBS) 1× (Thermo Fisher, cat. 10010023) in SepMate 50-

mL tubes (STEMCELL, Vancouver, BC, Canada; cat. 85460),

according to the manufacturer’s instructions. PBMCs were

counted; resuspended in RPMI GlutaMAX 1640 medium

(Thermo Fisher, cat. 72400021) complete with 10% fetal bovine

serum (FBS), 1% PenStrep (Thermo Fisher, cat. 15140122), 1×

NEAA (Thermo Fisher, cat. 11140050), and 1× sodium pyruvate

(Thermo Fisher, cat. 11360070); and stimulated for 24 h with

whole-body extract (WBE) of C. nubeculosus (10 mg/mL,

Stallergenes Greer, Baar, Switzerland; cat. XPB69X1A2.5) or

medium alone. Cells were harvested by centrifugation and

processed by qPCR using the Cells-to-Ct kit (Thermo Fisher, cat.

A35381) according to the manufacturer’s instructions.
2.7 Total RNA extraction and qPCR

Total RNA was extracted from skin punch biopsies using

TRIzol total RNA extraction (Sigma, St. Louis, MO, USA; cat.

T9424). The concentration was quantified using a NanoDrop

Spectrophotometer. To eliminate residual DNA, 1,000 ng of RNA
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was digested using DNAse I (Ambion, Austin, TX, USA; cat.

AM2222). The purified RNA was then transcribed into cDNA

using PrimeScript™ RT kit (Takara Bio, Mountain View, CA,

USA; cat. RR037A) according to the manufacturer’s instructions.

Real-time PCR quantitative mRNA analyses were performed on

the Viia 7 instrument using Fast SYBR green master mix (Thermo

Fisher, 4385612). Data were normalized by subtracting the Ct of the

housekeeping gene GAPDH from the Ct of the gene of interest, and

the difference (DCT) was analyzed as 2−DCT. The primers used for

RT-qPCR are listed in Supplementary Table 2.
2.8 Statistics

Data are presented as mean ± standard error of the mean (SEM).

The significance of the differences between several groups was

determined by the Kruskal–Wallis test followed by Dunn’s Multiple

Comparison post-test. Significant differences between compared pair

groups were calculated using the Mann–Whitney test. No outliers

were excluded. The correlation of simultaneous blood cell differential

counts and biopsy qPCR data of healthy (n = 24) and IBH (n = 31)

horses was assessed by Spearman’s correlation two-tailed statistic test.

The receiver operating characteristic (ROC) curve is a commonly

used tool for evaluating performance by calculating the area under

the curve (AUC). ROC analysis is independent of label distribution,

whichmakes it a valuable tool commonly used in various applications

including disease prediction (18, 19). ROC analysis was employed to

assess the diagnostic efficiency of the diagnostic gene mRNA

investigated in this study using GraphPad Prism. *p < 0.05, **p <

0.01, ***p < 0.001, and ****p < 0.0001 indicate significant differences.

GraphPad Prism software (version 9, GraphPad, La Jolla, CA, USA)

was used for statistical analysis.
3 Results

3.1 Immune cell differential counts in blood
of healthy and IBH horses

Our results showed a significant increase in monocyte (1.15×),

eosinophil (1.99×), and basophil (1.13×) cell counts in the blood of

IBH horses when compared to healthy horses, while no significant

difference in neutrophils and lymphocytes was observed

(Supplementary Figure S2A).

When taking IBH severity into account, monocyte cell counts

were found to increase when comparing moderate/severe cases to

healthy controls. In addition, a significant increase in eosinophil

counts was observed in the blood of both severity groups when

compared to healthy horses. Also, basophil cell counts of moderate/

severe IBH horses were significantly increased when compared to

healthy and mild IBH horses. Lymphocyte and neutrophil cell

counts remained comparable among IBH severity groups and

healthy horses (Figure 1A).
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FIGURE 1

Differential blood counts and gene expression in skin punch biopsies from healthy and insect bite hypersensitivity (IBH) horses in relation to disease
severity. Differential blood cells and skin punch biopsies from healthy skin (H) of healthy horses (n = 24 biopsies, n = 33 blood) and IBH horses (n =
34 lesional biopsies, n = 80 blood) divided into mild (M) (n = 6 biopsies, n = 31 blood) and moderate/severe (n = 28 biopsies, n = 49 blood) were
collected simultaneously during IBH season with high symptoms in August. (A) Counts of monocytes, neutrophils, eosinophils, lymphocytes, and
basophils in blood of healthy and IBH horses. Relative mRNA expression of inflammatory genes. (B) Relative mRNA expression of IL-1a, IL-1b, CXCL8,
CCL2, TNF, CCL11, CCL24, CCL26, CXCL10, IL-5Ra, CCR3, and CCR5. (C) Relative mRNA expression of Th1, Th2, Treg-related genes IL-4, IL-13, IL-5,
IL-31, IFN-g, IL-12b, IL-10, IGHE, histamine receptor (HR) H2, HRH4, TSLP, IL-33, and IL-31Ra. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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3.2 Cytokines, chemokines, and receptors
in healthy and IBH skin biopsies

3.2.1 Pro-inflammatory cytokines and
chemokines in skin of IBH horses

Using qPCR on contemporaneous biopsies showed a significant

increase in inflammatory cytokines and chemokines in IBH

compared to healthy horses for IL-1a, IL-1b, CXCL8, CCL2, and
TNF (Supplementary Figure S2B; Figure 2A).

In biopsies, an increase in inflammatory CXCL8 and CCL2

(Figures 1A, 2B) was found in both severity groups when compared

to healthy controls. For IL-1a, IL-1b, and TNF (Figures 1A, 2B),

there was only a significant difference when comparing healthy to

moderate/severe IBH.

3.2.2 Eosinophil chemotactic genes increase in
skin of IBH horses

Also, an increase in mRNA expression levels of CCL11, CCL26,

and CXCL10 (Supplementary Figure S2B; Figure 2A), all

chemoattractants involved in the recruitment of eosinophils to the

lesion site, was found. Further upregulation was found for the
Frontiers in Immunology 05
associated receptors IL-5RA and CCR5, as well as for the

eosinophilic master regulator IL-5, when comparing IBH to healthy

skin punch biopsies (Supplementary Figure S2B; Figure 2A).

When taking IBH severity into account, an increase in

eosinophil counts associated with CXCL10 was found for both

severity groups compared to healthy controls (Figures 1B, 2B),

while CCL11 and CCL26 (Figures 1B, 2B) continued to exhibit

significantly increased levels in moderate/severe IBH when

compared to healthy samples. IL-5Ra and CCR5 not only showed

a significant increase in mRNA expression compared to healthy

controls but also compared to milder IBH cases (Figures 1B, 2B).

Also, a significant increase in CCL24 (Figures 1B, 2B) was found in

mild compared to healthy or moderate/severe IBH horses. No

significant difference for CCR3 was observed (Supplementary

Figure S3; Figure 2B).

3.2.3 Increase in Th1/Th2/Treg cytokines in skin
of IBH horses

Furthermore, mRNA expression of Th2 cytokines such as IL-4,

IL-13, and IL-5 (Supplementary Figure S2C; Figure 2A)

significantly increased in IBH skin punch biopsies compared to
FIGURE 2

Overview of mRNA fold-change gene expression of cytokines, chemokines, and receptors in skin of healthy and insect bite hypersensitivity (IBH)
horses. The genes were classified into specific functional groups based on their biological role in allergy. (A) Fold-change expression in IBH lesional
(L) (n = 34) vs. healthy (H) (n = 24). (B) Fold-change gene expression of IBH severity by mean IBH ≤ 100 [mild (M)] (n = 6) and mean IBH > 100
[moderate/severe (M/S)] (n = 28). Fold-change expression comparing mild (M) IBH (IBH-M) to H (column 1), moderate/severe (M/S) IBH (IBH-M/S)
(column 2) to H, and IBH-M/S to IBH-M (column 3). The data shown present the fold change as mean ratio per gene of compared groups. The
mean was calculated as sum of each individual expression in all horses per gene divided by the number of horses. Fold-change mRNA gene
expression color code: green, significant upregulation; light green, non-significant upregulation; orange, significant downregulation; and light
orange, non-significant downregulation. mRNA gene expression normalized to GAPDH.
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healthy samples. An increase in IL-31 expression (Supplementary

Figure S2C; Figure 2A) in the lesional skin of IBH compared to

healthy horses is associated with Th2-mediated pruritus via the IL-

31 signaling axis (20). Interestingly, Th1 cytokines such as IFN-g
and IL-12b significantly increased in IBH skin punch biopsies as

well, compared to healthy biopsies (Supplementary Figure S2C;

Figure 2A), as did Treg-associated IL-10 (Supplementary Figure

S2C; Figure 2A).

Regarding gene expression in biopsies and IBH severity, only

Th1-associated IFN-g (Figures 1C, 2B) increased in moderate/

severe cases when compared to both healthy and mild IBH

horses, whereas Th2-associated IL-13 and IL-5, Th1-associated

IL-12b, and Treg-associated IL-10 (Figures 1C, 2B) increased

when comparing moderate/severe IBH horses to healthy controls

only. Th2-mediated IL-31 expression (Figures 1C, 2B), associated

with pruritus, was found to be significantly increased when

comparing mild IBH to healthy controls or to moderate/severe

IBH. No significant difference was found for IL-4 (Supplementary

Figure S3A; Figure 2B).

3.2.4 Increase in IgE and histamine receptors in
IBH horses

Moreover, mRNA levels of IGHE and histamine receptors

(HRs) HRH2 and HRH4 (Supplementary Figure S2C; Figure 2A)

significantly increased in IBH skin punch biopsies, compared to

healthy controls, whereas neither HRH1 nor HRH3 was expressed

in any group (data not shown).

A significant increase in IGHE mRNA expression (Figures 1C,

2B) was found in biopsies of both IBH severities when compared to

healthy controls. Regarding HRH2 and HRH4 (Figures 1C, 2B),

both histamine receptors showed a significant increase exclusively

in moderate/severe IBH when compared to healthy and mild

IBH horses.
Frontiers in Immunology 06
3.2.5 Innate barrier damage and immune-
mediated link to the nervous system in skin of
IBH horses

Innate barrier damage was indicated in allergic horses by

thymic stromal lymphopoietin (TSLP) and IL-33 mRNA

expression (Supplementary Figure S2C; Figure 2A), both of which

were significantly increased in IBH lesions when compared to

healthy skin. Also, an increase of histamine receptor-independent

IL-31Ra (Supplementary Figure S2C; Figure 2A) was observed in

IBH skin punch biopsies compared to healthy horses. Considering

disease severity, the increase in TSLP only persisted when

comparing severe IBH cases to healthy controls, whereas IL-31Ra

was increased when comparing moderate/severe IBH horses to

healthy controls as well as to mild IBH cases (Figures 1C, 2B).

Furthermore, IL-33 showed a significant increase in mild IBH

versus healthy horses but was decreased in moderate/severe cases

compared to milder disease presentations (Figures 1C, 2B).
3.3 Immune cells in blood correlation with
mRNA gene expression in skin biopsies

To address the theoretical link between blood cells and tissue

markers, the correlation between immune cell differential counts

was explored in blood and mRNA gene expression in the tissue of

IBH horses. Our data showed a strong and significant positive

correlation (r > 0.6) of basophil cell counts in blood with IL-31Ra,

IL-5, IL-5Ra, IFN-g, HRH2, HRH4, IL-12b, CCR3, CCR5, IL-10, IL-

1b, and CCL26 in the lesional biopsy skin (Figure 3A). In addition, a
significant moderate positive correlation (0.4 < r < 0.6) of basophil

cell counts was observed in blood with IL-13, TNF, and TSLP in

lesional biopsy skin. A moderate and significant negative

correlation was found for basophils and CCL2. For the other
B

A

FIGURE 3

Blood immune cell counts correlation with mRNA tissue gene expression in (A) insect bite hypersensitivity (IBH) and (B) healthy horses. Statistical
significance by Spearman’s correlation is indicated by dot size, from small to larger size increasing with correlation and significance; downregulation
in red and upregulation in blue using color gradients. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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immune cell counts in blood, our data showed a weak but

significant positive correlation of neutrophils with IL-31Ra,

HRH2, CXCL10, and IL-1b (Figure 3A). In addition, for

monocytes, a weak and significant positive correlation was noted

with IL-31Ra, HRH2, and IL-1b (r < 4) as well as a weak and

significant negative correlation with IGHE, IL-31, HHR1, HRH-3,

CCL24, and IL-4 (Figure 3A). For lymphocytes, a weak and

significant negative correlation was found for IL-4 (Figure 3A).

Subsequently, the same analysis this time was repeated on the

healthy horse blood differential counts and gene mRNA expression

in healthy skin biopsies. Among the five immune cells and the 30

genes explored in this study, a weak but significant negative

correlation of eosinophils with IL-5Ra and a weak and significant

positive correlation of eosinophils with TSLP were observed

(Figure 3B). For basophils, a weak and significant positive

correlation was found with CCL26 (Figure 3B). For lymphocytes,

a weak and significant positive correlation was found with IL-

13 (Figure 3B).
3.4 Allergen restimulation of PBMCs from
healthy and IBH horses

Concurrent with the differential blood counts, PBMCs were

collected for in vitro allergen restimulation. Due to the limited

availability of sample material, the analyzed gene panel was reduced

to the following: IL-1a, IL-1b, IL-4, IL-5, CXCL8, IL-17, IL-31,
CCL2, and CXCL10. Of these, only CXCL10 showed a significantly

different gene expression, increasing in moderate/severe cases

compared to healthy controls as well as to mild IBH cases. Data

are presented as fold change normalized to the non-stimulated

condition (Figure 4A). In addition, the CXCL10 ROC analysis

showed high sensitivity/specificity when comparing healthy or
Frontiers in Immunology 07
mild to moderate/severe allergen-stimulated PBMCs in IBH and

healthy horses (Figure 4B; Supplementary Table 3). Other

investigated genes showed no significant changes in the blood

(data not shown).
3.5 Sensitivity and specificity of severity
indicating genes in healthy versus
IBH horses

The sensitivity and specificity of all the genes analyzed from

skin punch biopsies were also investigated for their potential to

accurately predict IBH presentation in horses using ROC analysis.

Our investigation showed high and significant sensitivity/specificity

(area > 0.8): CXCL8, CCL2, IL-1a, IL-1b, and TNF for the

inflammation panel (Figure 5A; Supplementary Table 4); CXCL10

and CCR5 for the eosinophilic panel (Figure 5B; Supplementary

Table 4); IL-10 for the Th subset panel (Figure 5C; Supplementary

Table 4); IGHE and HRH2 for the IgE panel (Figure 5D;

Supplementary Table 4); and TSLP for the innate barrier panel

(Figure 5E; Supplementary Table 4). Further genes with good and

significant sensitivity/specificity (0.7 < area < 0.8) were found:

CCL11, CCL26, and IL-5Ra for the eosinophil panel (Figure 5B;

Supplementary Table 4); IFN-g, IL-12b, IL-13, and IL-5 for the Th

subset panel (Figure 5C; Supplementary Table 4); and HRH4 for the

IgE panel (Figure 5D; Supplementary Table 4). Additional ROC

analysis was conducted on the genes differentially expressed in IBH

horses comparing mild to moderate/severe disease: IL-5Ra, CCR5,

IFN-g, and IL-31 were significantly upregulated and IL-31 and IL-

33 were significantly downregulated in M/S compared to M horses.

ROC analysis showed high significant sensitivity/specificity (area >

0.8) (Figure 5F; Supplementary Table 5) when comparing M/S and

M horse groups.
BA

FIGURE 4

Peripheral blood mononuclear cell (PBMC) restimulation from healthy and insect bite hypersensitivity (IBH) horses with culicoides allergen. (A) Gene
expression of in vitro allergen restimulated PBMCs from healthy and IBH horses in relation to disease severity. Gene expression in PBMCs isolated
from healthy (H) (n = 22), mild (M) IBH (IBH-M) (n = 29), and moderate/severe (M/S) IBH (IBH-M/S) (n = 11) upon restimulation with culicoides
whole-body extract. Fold-change expression is shown for culicoides-stimulated normalized to unstimulated PBMCs for CXCL10 mRNA expression in
mild (M) and moderate/severe (M/S) IBH compared to healthy horses. (B) CXCL10 receiver operating characteristic (ROC) analysis from stimulated
PBMCs with allergen in healthy and IBH horses. ROC analysis of healthy versus IBH mild and moderate/severe samples for CXCL10 in stimulated
PBMCs with culicoides from healthy and IBH horses. *P < 0.05, **P < 0.01.
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4 Discussion

In the current study, we investigated the immune cell counts in

the blood simultaneously with the expression of genes in the skin of

IBH and age-matching healthy control horses. The focus of genes

relates to previously described innate and adaptive immune cells

and their biological function in IBH.

Our results reveal an inflammatory monocytosis in the blood

that was significantly associated with IBH, in particular with

moderate/severe IBH. Along the same lines, earlier, we described

a similar pattern of monocytes and eosinophils in blood when

observing blood cell counts over a whole IBH season (21). This may

suggest somehow a dependence or crosstalk between both immune

cells. Our data further show a significant increase in the mRNA

expression of inflammatory cytokines and chemokines in lesional

IBH skin when compared to healthy skin. In addition, pro-

inflammatory cytokines IL-1a, IL-1b, and TNF were associated

with severity, while chemotactic factors CXCL8 and CCL2 were

rather independent of severity but with high sensitivity and

specificity for IBH in general. CCL2 predominantly attracts

monocytes to the skin (17, 22), while CXCL8 is involved in

basophil, neutrophils, and T-cell recruitment (23–27). Moreover,

IgE-binding monocytes have been described in horses and may be

linked with allergy by triggering the release of CXCL8 supporting

basophil recruitment (28). Overall, the data suggest that

inflammation is a general characteristic of IBH, whereas

monocytes and associated inflammatory cytokines and

chemokines, with a special emphasis on IL-1b and HRH2, may

play a role in the enhancement of type I and/or type IV allergic

immune responses.
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In addition to inflammation, eosinophilia is another well-

known hallmark of IBH. Across species, eosinophils are

commonly associated with allergy, asthma, and infection and

represent an inflammatory and toxic cell type, which causes tissue

damage (29). Eosinophil accumulation in IBH horses aligns with

our previous findings of a highly significant increase in eosinophil

counts in blood yet in a severity-dependent manner (15). Further,

we observed an increase in eosinophilic chemokines (such as

CCL11, CCL26, and CXCL10) and receptors (such as IL-5Ra and

CCR5) in lesional skin punch biopsies from IBH horses compared

to healthy controls. In particular, our data show that IL-5Ra and

CCR5 were associated with IBH severity, with high sensitivity and

specificity for CCR5, CCL26, and CXCL10. Also, CXCL10 was the

only gene significantly upregulated in allergen-stimulated PBMCs

from moderate/severe IBH compared to healthy and mild IBH

horses. CXCL10, also called IFN-g-inducing protein (IP-10) (30), as

such is secreted upon response to IFN-g by various cells including

monocytes and epithelial cells (31–33). Additionally, others

demonstrated that CXCL10 upregulation through the CXCR3 axis

causes attraction of Th1 cells and activates eosinophils (32, 34, 35).

Indeed, our data show an increase in CXCL10 and Th1-associated

cytokines IFN-g and IL-12b in IBH compared to healthy horses.

CCR5 is expressed on Th1-type lymphocytes, monocytes/

macrophages, basophils, eosinophils, and dendritic cells (DCs)

when they are in the immature stage (36) and may play a role in

innate immune cell migration, particularly in the migration of

eosinophils. CXCL10 and CCR5 have been described earlier in

the context of IBH in a study comparing RNAseq data in IL-4/-5/-

13 and TNFa-stimulated equine keratinocytes derived from IBH

and healthy horses (37). Finally, eotaxins have also been described
B C
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FIGURE 5

Severity indicating genes. Receiver operating characteristic (ROC) analysis of severity indicating genes from biopsies in healthy and insect bite
hypersensitivity (IBH) horses. ROC analyses of (A) CXCL8, CCL2, IL-1a, IL-1b, and TNF. (B) CCL11, CCL24, CCL26, IL-5Ra, CXCL10, CCR3, and CCR5.
(C) IFN-g, IL-4, IL-5, IL-13, IL-12b, IL-31, and IL-10. (D) IGHE, HRH2, and HRH4. (E) TSLP, IL-33, and IL-31Ra. (F) ROC analyses of IL-5Ra, CCR5, IL-31,
IL-33, IFN-g, and IL-31Ra in M vs. M/S horses.
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in the context of IBH and, as human analogs are responsible for the

recruitment, accumulation, and activation of eosinophils in the skin

(38, 39), with CCL26 potentially being involved in the

transepithelial migration of eosinophils (40). Taken together, this

suggests that eosinophils in the blood and their recruitment into the

skin play a key role in IBH development and progression, exhibiting

a strong link with disease severity. Expression of IL-5Ra seemed to

negatively correlate with eosinophils of healthy horses. We

previously demonstrated that our eIL-5-CMV-TT vaccine

successfully induced autoantibodies against eIL-5 and mediated a

statistically significant reduction in eosinophil counts in blood and

lesion scores in vaccinated horses when compared with placebo

horses and the pre-treatment season (15, 41), further solidifying the

role of eosinophils as main players in IBH and as promising

therapeutic targets. Recently, we identified two subsets of

eosinophils in IBH horses with different phenotypes and

migration functions: resident (rEos) and inflammatory

eosinophils (iEos). rEos are mainly present in low percentages in

healthy horses’ blood, while iEos are dominant in IBH horses,

exhibiting increased granular content and high migratory

properties compared to rEos (42). The eIL-5-CMV-TT vaccine

successfully reduced iEo counts in the blood of IBH horses,

suggesting an IL-5 dependency for the development of the

iEo phenotype.

The number of lymphocytes in blood was comparable in

healthy and IBH horses, whereas several Th1, Th2, and Treg

cytokines such as IL-4, IL-5, IL-10, IL-12b, IL-13, IL-31, and IFN-

g, were upregulated in lesional biopsies of IBH horses when

compared to healthy horses. The latter cytokines were further

associated with a more severe disease presentation and showed

good sensitivity and specificity for IBH, with the exception of IL-4

and IL-31. However, Th2 cells are not the only source of IL-4 and

IL-13, with basophils (43–45) and mast cells (46, 47) also releasing

the cytokines in relatively large quantities, thus making them

suboptimal indicators of Th2 involvement. In addition, our data

show that Th1 cytokine, IFN-g, seems to be also involved in IBH

immunopathology. In other studies, as in human atopic dermatitis

(AD), IFN-g was described as a driver of chronic inflammation, and

its overexpression can lead to recurrent inflammation and pruritus,

causing lichenoid degeneration of the skin in the chronic phase (48,

49) and, as such, may also have a role in the lichenification process

of IBH. In addition, IL-10, highly expressed in the lesional skin of

IBH horses in our data, is another T-cell cytokine that is produced

by adaptive immune cells such as Th1, Th2, Th17, Treg, CD8+ T

cells, and B cells (50–53). Also, IL-10 could be secreted by innate

immune cells such as DCs (54), macrophages (55), mast cells (56),

natural killer (NK) cells (57), eosinophils (58), and neutrophils (59).

Interestingly, IL-10 showed high sensitivity and specificity,

implicating potential T-cell exhaustion in IBH-affected skin. The

role of IL-10 in IBH, however, needs further investigation, as it may

be secreted by several adaptive and innate immune cells, which all

play important roles in skin allergy (60, 61). A potential link

between IL-10 and eosinophilia may be supported by data from

IL-10−/− mice showing diminished skin infiltration of eosinophils

and IL-4 and IL-5 mRNA expression in a mouse model of allergic
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dermatitis (62). Recently, Th2 cells, a major source of IL-4, IL-5,

and IL-13, were subdivided into conventional Th2 (cTh2) cells and

pathogenic effector Th2 (peTh2) cells (63). cTh2 cells mainly

express IL-4 and IL-13, thereby promoting the B-cell class switch

to IgE antibody-producing plasma cells in type I allergic reactions.

Also, cTh2 cells are suggested to produce only low levels of IL-5 and

hence play a less decisive role in recruiting eosinophils as what

occurs in the late phase of type I and delayed type IVb

hypersensitivity allergic reactions (63). In contrast, peTh2 cells

are highly positive for IL-5 and thus a major driver of eosinophil

production, recruitment, and activation leading to eosinophil-

mediated tissue damage. It has been suggested that chronic

antigen exposure promotes the transformation from cTh2 cells

into peTh2 cells. Indeed, our data showed high and strongly

significant levels of IL-5 and IL-5Ra that were expressed in severe

IBH skin punch biopsies compared to healthy or mild IBH horses.

During allergen sensitization, Th2 interaction with B cells leads

to the production of culicoides-specific IgE that binds to its receptor

FceR1 on the membrane of mast cells and basophils (64). A re-

encounter with an allergen provokes degranulation and secretion of

mediators such as histamines and leukotrienes, which initiate

clinical manifestations of allergy. Basophils, as well as eosinophils,

also express IL-5 receptor (65) together with receptors for IL-33

(66–68) and TSLP (69, 70). As such, their role is not limited to IgE-

mediated reactions through FceR1, but they also infiltrate

inflammatory lesions and release pro-inflammatory mediators like

histamines and leukotrienes, as well as cytokines IL-4 and IL-13.

Our results showed a significant increase in basophil cell counts

together with an increase in IgE, HRH2, and HRH4 mRNA

expression in IBH skin, both of which are associated with IBH

disease emergence and severity, with IgE and HRH2 showing the

highest sensitivity and specificity. Concerning the link between

different allergic immune cells, we previously showed that eIL-5-

CMV-TT vaccination significantly decreased the number of

inflammatory eosinophils in blood but also reduced basophil cell

counts in the second vaccination year, suggesting a long-term and

broader dampening of allergy upon vaccination (21, 42). Strikingly,

correlating gene expression in skin and blood cell counts revealed

strong and positive correlation with basophils and genes involved

but not limited to the eosinophilic panel such as IL-5, IL-5Ra,

CCR5, CCR3, and CCL26. As such, this may point to a direct

bystander effect of IL-5 on basophils, which express IL-5Ra (71, 72).

Other top candidates that positively correlated with basophil counts

were IL-31Ra, IFN-g, and IL-1b, while IL-1b also correlates to a

weaker extent with neutrophil and monocyte cell counts.

TSLP and IL-33 are two alarmin cytokines that drive type 2

responses at the skin barrier level and hence play a role in the early

development of allergic reactions (73, 74). Both are potential targets

in the treatment of allergic diseases (75). Indeed, TSLP and IL-33

were both expressed in lesional IBH biopsies and levels correlated

with disease severity with high sensitivity and specificity. Also,

TSLP has been confirmed in earlier studies to play an important role

in IBH by mRNA quantification either in lesional IBH biopsies (17)

or in culicoides allergen-stimulated equine primary keratinocytes

(37, 76, 77). The scratching of insect bites seemed to cause early skin
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barrier defects and related TSLP upregulation, which may be

important in priming a type 2 response. Th2-related peripheral

pruritus mediated by IL-31 acting on the specific receptor IL-31Ra

on peripheral nerves (17) and other immune cells such as

eosinophils (78–80) seemed to be involved and was associated

with a more severe disease presentation. The expression of IL-

31Ra was significantly elevated in acute lesions, whereas IL-31 was

significantly expressed in mild when compared to acute and healthy

skin horses.

In summary, our results indicate that IBH-affected horses have

multifactorial strong inflammatory responses, impaired T-cell

cytokines, and increases in eosinophils, monocytes, and basophils

when compared with healthy controls. Interestingly, a set of genes

such as CXCL8, CCL2, CXCL10, and IgE was expressed to be

similarly upregulated in both mild and moderate/severe when

compared to healthy horses. By contrast, IL-5Ra, CCR5, IFN-g,
and IL-31Ra were significantly expressed only in severe IBH

compared to mild and healthy horses. In addition, IL-31 and IL-

33 were significantly upregulated genes in mild IBH horses

compared to healthy and moderate/severe IBH horses.

Interestingly, basophil cell count in blood together with IL-5Ra,

CCR5, IFN-g, and IL-31Ra mRNA expression in tissue not only

significantly increased in moderate/severe IBH compared to mild

and healthy horses but also showed a strong correlation. In

summary, those genes may serve as biomarkers to monitor the

onset and progression of IBH in the future. Once confirmed, those

new biomarkers can prove invaluable for the detection and

monitoring of disease onset and progression as well as for the

evaluation of the efficacy of new therapeutic treatments in IBH

skin allergy.
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