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Platinum-based chemotherapy
promotes antigen presenting
potential in monocytes of
patients with high-grade
serous ovarian carcinoma
Irina Larionova1,2*†, Pavel Iamshchikov1,2†, Anna Kazakova1,2,
Militsa Rakina1, Maxim Menyalo2, Kadriia Enikeeva3,
Guzel Rafikova3, Yuliya Sharifyanova3, Valentin Pavlov3,
Alisa Villert2, Larisa Kolomiets2 and Julia Kzhyshkowska1,3,4,5*

1Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State
University, Tomsk, Russia, 2Cancer Research Institute, Tomsk National Research Medical Center,
Russian Academy of Sciences, Tomsk, Russia, 3Institute of Urology and Clinical Oncology, Bashkir
State Medical University of the Ministry of Health of Russia, Ufa, Russia, 4Institute of Transfusion
Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim,
University of Heidelberg, Mannheim, Germany, 5German Red Cross Blood Service Baden-
Württemberg – Hessen, Mannheim, Germany
Ovarian cancer (OC) is the most lethal gynecologic malignancy worldwide. The

major clinical challenge includes the asymptomatic state of the disease, making

diagnosis possible only at advanced stages. Another OC complication is the high

relapse rate and poor prognosis following the standard first-line treatment with

platinum-based chemotherapy. At present, numerous clinical trials are being

conducted focusing on immunotherapy in OC; nevertheless, there are still no

FDA-approved indications. Personalized decision regarding the immunotherapy,

including immune checkpoint blockade and immune cel l–based

immunotherapies, can depend on the effective antigen presentation required

for the cytotoxic immune response. The major aim of our study was to uncover

tumor-specific transcriptional and epigenetic changes in peripheral blood

monocytes in patients with high-grade serous ovarian cancer (HGSOC).

Another key point was to elucidate how chemotherapy can reprogram

monocytes and how that relates to changes in other immune subpopulations

in the blood. To this end, we performed single-cell RNA sequencing of peripheral

blood mononuclear cells (PBMCs) from patients with HGSOC who underwent

neoadjuvant chemotherapeutic treatment (NACT) and in treatment-naïve

patients. Monocyte cluster was significantly affected by tumor-derived factors

as well as by chemotherapeutic treatment. Bioinformatical analysis revealed

three distinct monocyte subpopulations within PBMCs based on feature gene

expression –CD14.Mn.S100A8.9hi, CD14.Mn.MHC2hi and CD16.Mn subsets. The

intriguing result was that NACT induced antigen presentation in monocytes by

the transcriptional upregulation of MHC class II molecules, but not by epigenetic

changes. Increased MHC class II gene expression was a feature observed across

all three monocyte subpopulations after chemotherapy. Our data also

demonstrated that chemotherapy inhibited interferon-dependent signaling
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pathways, but activated some TGFb-related genes. Our results can enable

personalized decision regarding the necessity to systemically re-educate

immune cells to prime ovarian cancer to respond to anti-cancer therapy or to

improve personalized prescription of existing immunotherapy in either

combination with chemotherapy or a monotherapy regimen.
KEYWORDS

monocyte, ovarian cancer, chemotherapy, single cell sequencing, transcriptome,
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1 Introduction

Ovarian cancer (OC) is the most lethal gynecologic malignancy

in the world (1). In 2022 there were 324,603 incidences of OC and

206,956 deaths worldwide (2). According to the Globocan’s 2022

projections, by the year 2040 incidence will have risen by 42% to a

total of just over 446,000, with an even larger increase in the number

of deaths each year (up nearly 52% to over 314,000) (3). Most

patients with ovarian cancer are asymptomatic and are often

diagnosed at advanced stages. This has led to OC being labeled as

the “silent killer” (1). The principal hallmark of advanced-stage OC

is ascites — the accumulation of excessive fluid containing cellular

and acellular components in the abdomen (4). Advanced stages of

OC are associated with poor prognosis and a significant decrease in

survival rate compared to those diagnosed at stage I, although

survival rate may vary according to the different disease histotypes

(5). High-grade serous ovarian cancer (HGSOC) accounts for

approximately 70% of all cases, making it the most common and

deadliest histotype (1).

Most OC patients undergo primary debulking surgery

combined with platinum/taxan-based chemotherapy, with or

without the angiogenesis inhibitor bevacizumab, and, in certain

cases, followed by maintenance treatment with poly-ADP-ribose

polymerase (PARP) inhibitors (6, 7). However, if complete

cytoreduction cannot be achieved by debulking surgery, an

alternative therapeutic option for these patient groups is

neoadjuvant chemotherapy (NACT) (8). Despite a good response

to standard first-line chemotherapy, relapse occurs in 70% of

patients within a short period of time (4, 6).

The tumor microenvironment (TME) in ovarian cancer is

complex and unique, containing multiple cell types populating

both fluid (ascites) and solid (omentum) niches (4, 7). TME

targeting in ovarian cancer is intensely developing and the main

focus is on immune cells, cancer-associated fibroblasts, endothelial

cells and ECM-tumor cell interactions (7, 9–11). Among cells of

innate immune system, tumor-associated macrophages (TAMs) are

the most abundant cell population in the TME. TAMs may facilitate

tumor growth, activate angiogenesis, induce immunosuppression

and mediate chemoresistance (12, 13). The major plastic source for
02
TAMs are peripheral blood monocytes (14, 15). Accumulating

evidence suggests that the tumor-induced systemic environment

can re-program monocytes before their arrival to the tumor site

(14). Several studies reported transcriptional alterations in

circulating monocytes in several cancers, including human breast

cancer (16, 17), colorectal cancer (18, 19), renal cancer (20), and

hepatic cancer (21). Role of circulating monocytes in ovarian cancer

progression and response to chemotherapeutic intervention

remains undefined which indicates high relevance of all attempts

to uncover pro- and anti-tumor phenotypes of monocytes.

In our study we present the results of single-cell RNAseq

analysis of peripheral blood mononuclear cells (PBMCs) from

patients with HGSOC. One of the major aims of our study was to

evaluate the effects of chemotherapy on the peripheral immune

system, and to this end we compared samples of patients who were

treated with neoadjuvant chemotherapy (NACT) before surgery

and treated only by standard care therapy (debulking surgery and

adjuvant chemo(targeted) therapy). We focused on monocyte

population as it was one of the most altered by both cancer-

derived systemic factors and NACT subset.
2 Materials and methods

2.1 Clinical samples

The study group consisted of 10 cases of advanced stage

HGSOC (IIIС stage) diagnosed and treated in the Cancer

Research Institute, Tomsk National Research Medical Centre

(Tomsk, Russia). Patients had no acute pathologies, no infectious

disorders, and did not have a history of any other types of cancer in

addition to HGSOC. All 10 samples were used to conduct reduced

representation bisulfite sequencing (RRBS) and 6 samples were used

for single-cell RNA sequencing. Study group was divided according

to treatment plan: 3 patients received platinum-based neoadjuvant

chemotherapy (NACT) [carboplatin plus paclitaxel] prior to

surgery and 3 patients had debulking surgery without upfront

NACT. After surgery all patients received platinum/taxane-based

adjuvant chemotherapy.
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Healthy volunteers (N=10) were enrolled in this study as a control

group. The inclusion criteria for the healthy cohort were: no active

medical conditions, and no current or past history of an oncology disease.

The study received approval from the Local Committee for

Medical Ethics and was conducted in accordance with the

guidelines of the Declaration of Helsinki and the International

Conference on Harmonization Good Clinical Practice Guidelines

(ICH GCP). Written informed consent was obtained from all

subjects, including the patients/participants, who willingly

provided their consent to participate in the study.
2.2 Monocyte isolation

Peripheral whole-blood samples were collected from patients with

ovarian cancer (n=10) and healthy donors (n=10). The peripheral

blood mononuclear cells (PBMCs) were separated from whole blood

by density gradient centrifugation using Lymphosep, Lymphocyte

Separation Media (#L0560-500, Biowest, France), 1.077 g/ml density,

at 600g for 30 minutes. The isolation of monocytes from PBMCs was

performed using positive magnetic selection with CD14+MACS beads

(#130-050-201, Miltenyi Biotech, Germany), resulting in 90–98%

monocyte purity as confirmed by flow cytometry. After monocyte

isolation, the samples were washed twice with DPBS without calcium

and magnesium at 300 g for 10 minutes. Subsequently, the cell

precipitate was lysed using lysis buffer RLT (#79216, Qiagen, USA)

and stored at -80°C until further experiments. Lysed monocytes were

used for DNA isolation and reduced representation bisulfite

sequencing (RRBS-Seq).
2.3 PBMC preparation for single-
cell sequencing

PBMCs were washed twice with DPBS without calcium and

magnesium at 300 g for 10 minutes and counted using CytoFLEX

flow cytometer (Beckman Coulter, USA). 1×106 PBMCs were used to

prepare cell suspension for single-cell sequencing. Cells were put into 1.5

ml cryo tubes and mixed with 500 ml of X-VIVO™ 10 Medium

(#180989, Lonza, Switzerland), 400 ml of fetal bovine serum

(#10500064, ThermoFisher Scientific, USA), and 100 ml of dimethyl

sulfoxide (#F135, Paneco, Russia). Subsequently, the cell suspension was

stored in cryo container at -80°C for 48 hours, and then stored in liquid

nitrogen until further experiments (but not more than 6 months).
2.4 Single-cell sequencing

Single-cell RNA sequencing was performed on the Chromium

X platform, using the 10х Genomics Chromium Next GEM Single

Cell 3′ Reagent Kit v3.1. (10х Genomics, USA). Prior to library

preparation, cells were counted and quality of samples was assessed.

Up to 8000 cells were used for further manipulations. cDNA

amplification and library construction were conducted following

the manufacturer’s protocol. Sequencing was performed with the

Illumina Nextseq 2000 platform (Illumina, USA).
Frontiers in Immunology 03
2.5 Single-cell RNAseq data analysis

Basic processing of raw sequencing data was performed in Cell

Ranger 7.1.0 (22) using human genome reference GRCh38-2020-A

with default parameters. Resulting gene-barcodematrices were analyzed

in Seurat (23) in R environment. Doublet cells effect was addressed with

scDblFinder (24). SCTransform normalization was used to normalize

raw counts. Linear dimension reduction was performed with PCA.

Batch correction was performed using Harmony. First 40 Harmony

corrected principal components were used in clustering and non-linear

dimension reduction via UMAP in Seurat. Resulting cell clusters were

annotated using SingleR (25) with Monaco et al. reference (26) and

manual annotation with Human Protein Atlas scRNAseq human blood

atlas (27). Differential gene expression analysis between sample groups

was conducted with pseudo-bulk approach (28). Thus, individual cell

clusters having not less than 45 cells and 1000 total raw counts were

sample-wise aggregated using sum of raw counts. Batch-effect was

corrected using ComBat-seq (29), and differential expression analysis

was conducted in DESeq2 package (30). Gene set enrichment analysis

(GSEA) was carried out with fgsea package (31). Individual cell clusters

having not less than 45 cells and 1000 total raw counts were sample-

wise aggregated using sum of raw counts. AUGUR tool (32) was used to

indicate most responsive cells to biological perturbations in single-cell

data. Compositional data analysis was performed with scCODA tool

(33) to analyze changes in cell abundancies. UCell packages (34) was

used to evaluate gene signatures distribution among cell clusters and

sample groups. Cell-cell communication was profiled with ligand-

receptor interaction analysis in Liana tool (35). Gene coexpression

networks in monocytes were analyzed with hdWGCNA package (36).

Co-expression modules were analyzed with fgsea package to evaluate

enrichment of modules in different samples groups. Visualization was

performed using Seurat, scCustomize (37), Cpubr (38),

EnhancedVolcano (39) and ggplot2 (40).
2.6 DNA extraction

DNA were extracted from lysed monocyte samples using

AllPrep DNA/RNA/miRNA Universal Kit (#80224, Qiagen,

USA). The quality of DNA was assessed by TapeStation 4150

automated electrophoresis system (#RRID: SCR_019393, Agilent

Technology, USA). The quantity of DNA was assessed by Qubit 4

fluorometer (#RRID: SCR_018095, ThermoFisher Scientific, USA).
2.7 Reduced representation
bisulfite sequencing

Samples were purified using magnetic beads AMPure XP

(Beckman Coulter) and concentration was controlled using

Fluoroskan. Libraries were prepared using Zymo-Seq RRBS

Library Kit (#D5461) and Zymo-Seq UDI Primer Plate (#D3096)

(Zymo Research, USA), according to the manufacturer’s

instructions. Sequencing was performed by the Illumina NovaSeq

6000 platform (Illumina, USA).
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2.8 Reduced representation bisulfite
sequencing data analysis

RRBS sequencing data processing included quality control and

trimming of technical sequences, mapping of reads to the reference

genome, counting the level of cytosine methylation in the CpG

context, and differential methylation analysis. Quality control and

trimming of adapter sequences were performed in FastQC

programs (41) and Trim_Galore (42). Mapping of RRBS reads to

the human reference genome GRCh38 was performed using the

Bismark program (43). Cytosine methylation levels in CpG context

were also counted in Bismark. Differential methylation analysis was

performed in the R environment, using the edgeR package (44),

negative binomial modeling of raw methylation counts to search for

differentially methylated CpG sites was performed following this

manual (45). We obtained a list of genes with hyper- and

hypomethylated CpG sites in proximity of promoter regions

(-10000 and +10000 bp from transcription start site), and

enriched the obtained gene list by biological pathways in the

online tool Enrichr (46).
3 Results

3.1 Single cell RNAseq analysis revealed
tumor-specific re-programming of
peripheral blood monocytes

PBMCs were obtained from six patients with high-grade serous

ovarian carcinoma (HGSOC) and six healthy donors (Figure 1A).

Blood samples were collected after 2-3 courses of platinum-based

neoadjuvant chemotherapy (NACT) for three patients and after

surgery without NACT courses for other three cases. All patients

underwent adjuvant chemotherapy (paclitaxel+carboplatin) after

surgery. Isolated PBMCs were analyzed on a 10x Chromium

platform, and the transcriptome of each sample was obtained

using Illumina NextSeq 2000 platform. Raw sequencing reads

were processed using Cell Ranger 7.1.0 (look material and

methods section) to perform quality control, read alignment in

individual cells, and count gene-barcode matrix. Resulting gene-

barcode matrices were processed via Seurat package in R

environment. Cells with less than 300 detected genes, 1000 UMIs,

5% of ribosomal transcripts, and more than 10% of mitochondrial

transcripts were filtered out as low-quality cells. Removal of cell

doublets was addressed with scDblFinder tool. Raw counts

normalization was performed via SCTransform for further PCA

and UMAP dimension reduction and Louvain clustering in Seurat.

A total of 28,779 high-quality cells and 17 cell clusters were

obtained for analysis. Two samples obtained from healthy donors

failed quality control (QC) and were excluded in the further

analysis. UMAP plots of PBMCs derived from treated and

untreated patients with HGSOC (n = 6) and healthy donors

(n = 4) are shown in Figure 1B. The PBMC clusters were

annotated automatically using SingleR tool with Monaco et al.
Frontiers in Immunology 04
reference and manually using Human Protein Atlas human blood

single-cell atlas (27). Concordant result was used as final annotation

comprising following known cell lineages: T/NK cells (Treg;

CD4.T.naive; CD8.T.naive; CD4.T.EM; MAIT.T.; CD8.T.EM;

NK.CD56lo; NK.CD56hi), myeloid cells (CD14.Mn.S100A8.9hi;

CD14.Mn.MHC2hi; CD16.Mn; mDC), B-cells (B.naïve;

B.memory; Plasma.cell), pDC and Platelets (Figure 1B). Top

marker genes for each cell type cluster are indicated in Dot

plot (Figure 1C).

We next proceeded with detailed analysis of monocyte cell cluster

to elucidate the differences in monocyte profile between the tumor

and healthy states. In order to detect differentially expressed genes

between three groups, we used pseudo-bulk approach with DESeq2.

The analysis revealed the tumor-specific functional activation of the

following processes: cell surface interactions at vascular wall,

glycolysis, MTORC1 signaling, serine/threonine kinase activity,

angiogenesis, interferon alpha/beta signaling, and interferon gamma

signaling. Among up-regulated genes there were SDC2, FKBP5, MX1,

IFITM1, DAPK1, FABP5, SIGLEC1, CEBPD, ABCA1, AREG, CD63,

and others (Supplementary Figure S1A). The most significant down-

regulated genes included HLA-DRB5, HLA-DQA2, LRAR1, CXCL8,

IL1B, JUNB, CCL5, GZMB, TNF, and IL32 related to MHC II protein

complex, chemokine and cytokine activity, LPS-mediated signaling,

TLR signaling, neutrophil migration and chemotaxis, and antigen

binding (Supplementary Figure S1B). We concluded that tumor

induces monocyte reprogramming towards activating monocyte

interaction with vascular wall and suppressing antigen presentation

and immune-inflammatory state.

We then questioned whether it can be related to variability in

gene patterns for distinct monocyte subpopulations. Three main

subpopulations of monocytes were assigned based on the distinct

marker profile: CD14.Mn.S100A8.9hi, CD14.Mn.MHC2hi and

CD16.Mn (Figures 1B, C). We investigated tumor-related changes

in each monocyte subset separately. In CD14.Mn.S100A8.9hi

cluster, cancer-specific genes of interest included SIGLEC1, MX1,

FKBP5, AREG, HBEGF, LYZ, OAS1, CEBPD, FABP5, MARCO,

CD163, DAPK1, and PECAM1 among others, related to interferon

alpha/gamma pathway, glycolysis, MTORC1 signaling, hypoxia,

endocytosis receptor activity, and serine/threonine kinase activity

(Figures 1D, E). In CD14.Mn.MHC2hi cluster the up-regulation of

the following genes of interest was detected in cancer: SDC2,

MS4A4A, MX1, FKBP5, OAS1, CEBPD, FABP5, DAPK1, CD63,

IFITM1, VSIG4, and CXCR4 annotated with interferon alpha/

gamma, MYC targets, angiogenesis, glycolysis, oxidative

phosphorylation, MTORC1 signaling, and HSF1 activation.

Among suppressed pathways there are inflammation, neutrophil

chemotaxis, antimicrobial activity, and TGFb-signaling

(Figures 1D, E). CD16.Mn cluster was less represented in amount

with activated genes in cancer samples. Higher expression of

HIF1A, ABCA1, FPR1, CD63, and FCN1 was found in cancer

compared to healthy state (Figures 1D, E).

Several up-regulated genes, i.e. SIGLEC1 and MS4A4A were

indicative only for monocyte cluster within whole PBMC

population (Figure 1F). We focused on two functionally attractive
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for monocyte/macrophage lineage cell genes – SIGLEC1 and

MS4A4A . Herewith SIGLEC1 is specifically expressed in

CD14.Mn.S100A8.9hi cluster, and MS4A4A was significantly

indicative for CD14.Mn.MHC2hi cluster (Figure 1F).

In total, the presence of cancer induced general pro-tumor

reprogramming of monocytes by activating interferon pathways,

angiogenesis, glycolysis, oxidative phosphorylation, and lipid

metabolism. These changes were strongly indicative for S100A8.9hi

and MHC2hi subsets, but in less extend for CD16 subset.
Frontiers in Immunology 05
3.2 Platinum-based chemotherapy induces
monocyte transcriptional programming
that differs from overall tumor-specific
changes in monocyte profile

In advanced ovarian cancer NACT is a treatment strategy that

favors optimal cytoreduction and decreases rates of perioperative

morbidity. Despite the high response rate to NACT, tumor

progression after or during NACT courses remains an unresolved
FIGURE 1

Single cell RNAseq analysis of PBMCs in high-grade serous ovarian carcinoma revealed tumor-specific programming of monocytes (A) Overall study
design. (B) Distribution of PBMC cell clusters and individual samples in UMAP 2D dimensions. (C) Dot plot discriminates marker genes for each
cluster. (D) Volcano plots demonstrate p-value and log2fold-change value for DEGs in each monocyte subpopulation (CD14.Mn.S100A8.9hi;
CD14.Mn.MHC2hi; CD16.Mn) versus healthy control (|L2FC|>0.58, FDR<0.05). (E) Bar plots with GSEA results indicate top deregulated pathways in
each monocyte subpopulation (CD14.Mn.S100A8.9hi; CD14.Mn.MHC2hi; CD16.Mn) versus healthy control (FDR<0.1). (F) Localization of SIGLEC1 and
MS4A4A gene expression among individual cells on UMAP. DnN – healthy control (donor group), OvN – treatment-naive group, OvY – NAC-
treated group.
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challenge (8, 47). There is still no indication for immunotherapy for

HGSOC patients treated or untreated with NACT, and the lack of

effective molecular and cellular targets justifies the intensive

investigations of immune-related mechanisms (48). The data on

monocyte reprogramming under the chemotherapy in cancer is

limited (15). To understand whether chemotherapy can affect

monocyte profile in ovarian cancer, we performed comparative

analysis of a) NACT-treated PBMC samples with untreated

PBMCs and b) NACT-treated PBMC samples with healthy

donors` samples.

First, we questioned which cell types are the most responsive to

NACT-dependent effects in our single-cell data. We applied Augur,

a method to prioritize the cell types most responsive to biological

perturbations in a multidimensional space of single-cell data (32).

Augur employs a machine-learning framework abolished the

dependence on the total number of cells. Mathematically, this
Frontiers in Immunology 06
method uses area under the receiver operating characteristic

curve (AUC) accounting both the amount and magnitude of

simulated differential expression. According to this method, cell

subsets in NACT-treated samples where the Augur score increased

significantly (Augur score more than 0,7) compared to healthy

control, included pDC [0,731], CD14.Mn.MHC2hi [0,726], and

CD16.Mn [0,715] (Figure 2A). When comparing untreated samples

with healthy controls prioritized cell populations included

Plasma.cell [0,768] and NK.CD56lo [0.715] (Figure 2A). In

compliance with this algorithm, monocyte cluster undergoes a

more extensive transcriptional reprogramming particularly under

NACT rather than just in the presence of the tumor overall.

Further in-depth bioinformatic analysis confirmed that

chemotherapy affects the monocyte transcriptome more intensely

than the tumor-related systemic influence from untreated samples. In

NACT-treated patients, there were 241 (FDR < 0.05) activated genes
FIGURE 2

Chemotherapy-induced transcriptional programming in cancer monocytes (A) Augur demonstrates top-affected cell types in naive tumor PBMCs
(upside) and in NAC-treated PBMCs (underside) (indicated by Augur score). (B) NAC-related gene signature obtained using UCell tool. (C) Abundance
plot demonstrated cell content in studied cohorts. *Significant difference in cell abundance in NAC vs. Dn (FDR<0.1). (D) Volcano plots demonstrate
p-value and log2fold-change value for DEGs in each monocyte subpopulation (CD14.Mn.S100A8.9hi; CD14.Mn.MHC2hi; CD16.Mn) of NAC-treated
monocytes versus healthy control (|L2FC|>0.58, FDR<0.05). (E) Bar plots with GSEA results indicate top deregulated pathways in each monocyte
subpopulation (CD14.Mn.S100A8.9hi; CD14.Mn.MHC2hi; CD16.Mn) of NAC-treated monocytes versus healthy control (FDR<0.1). DnN – healthy
control (donor group), OvN – treatment-naive group, OvY – NAC-treated group.
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in total in the monocyte cluster compared to healthy donors. This is

more than six times the number of activated genes in untreated

cancer samples versus healthy controls (39 genes, FDR < 0.05). The

most interesting genes included TMEM51, NOTCH1, EEPD1, MAFB,

HLA-DRB5, LRPAP1, TSNARE1, HDAC9, SNAI3, SEMA4A,

MARCO, CD63, LRPAP1, ABCA1, and HLA-DQB2 among others,

annotated with lipid metabolism, NOTCH signaling, cellular

response to low-density lipoproteins, mononuclear cell

differentiation, lymphocyte/leukocyte differentiation, regulation of

Ras protein signal transduction, regulation of small GTPase

mediated signal transduction, leukocyte transendothelial migration,

oxidative phosphorylation, VEGF signaling, adhesion molecule

binding, MTORC1 signaling, and WNT beta catenin signaling

(Supplementary Figures S2A, B). Such functional pathways like

TLR receptor signaling, TNF signaling pathway, complement

activation, humoral immune response, and cellular amino

acid catabolic processes were suppressed in monocytes under

NACT. In monocyte subpopulations (CD14.Mn.S100A8.9hi,

CD14.Mn.MHC2hi and CD16.Mn) there were some specific

changes under NAC compared to healthy control monocytes

(Supplementary Figures S2C, D).

When comparing NACT-treated samples with untreated ones in

cancer patients the expression of TMEM51, NOTCH1, EEPD1,

MAFB, and HLA-DRB5 remained increased in monocytes of

treated patients (Figure 2B). All these genes are remarkably specific

for monocyte cluster within other PBMC clusters as well as for

CD14.Mn.S100A8.9hi and CD14.Mn.MHC2hi subpopulations, but

not for CD16.Mn (except HLA-DRB5) one within the whole

monocyte cluster. Functional annotations confirmed the particular

activation of the following pathways for NACT-treated monocytes

when comparing to untreated ones: leukocyte transendothelial

migration, MHC class II protein complex binding, cell adhesion

molecules, TGFb signaling, cholesterol homeostasis, Wnt beta

catenin signaling, and ECM binding (Supplementary Figures S2E,

F). Interesting that SIGLEC1 remained to be a signature gene for

S100A8.9hi untreated monocytes, and MS4A4A – for MHC2hi

untreated monocytes. It means that chemotherapy may not affect

their expression. By comparing treated vs untreated cancer samples,

we also found upregulation of glycolysis regulator PFKFB3 in NACT-

induced monocytes. In our recent study PFKFB3 was indicated as a

prognostic biomarker for colon cancer (19). Its expression was

significantly elevated in peripheral blood monocytes in colon

cancer compared to rectal cancer and healthy control. PFKFB3

expression correlated to M2-polarized macrophages and indicated

poor prognosis in colon cancer patients (19).

To show what affected the change of the monocyte

subpopulation composition more – the tumor itself, in case of

tumor-naïve samples, or the added effect of chemotherapeutic

treatment we then analyzed our single-cell data comparing

compositional changes of major cell types in PBMCs between

cancer patients and healthy controls . The single-cel l

compositional data analysis (scCODA) was applied (30). In

contrast to other commonly used models, scCODA proposes

Bayesian approach for cell-type composition differential

abundance analysis. It allows to work with low number of

experimental replicates and accounts joint modeling of all
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Reference cell type was set automatically to NK.CD56hi.

Decreased proportions of CD14.Mn.S100A8.9hi cell subsets were

observed in NACT-treated cancer patients compared to healthy

controls (log2FC=0,824, FDR=0,1) (Figure 2C). It can be explained

by their facilitated recruitment to tumor promoted by

chemotherapeutic treatment (49). Despite the only slight decrease

in the amount of S100A8.9hi monocytes, this fact did not diminish

NACT-mediated effects.

We analyzed specific effects of NAC by comparison of NAC-

t rea ted monocy te s vs . t r ea tment -na ive samples . In

CD14.Mn.S100A8.9hi subset we found the upregulation of

mentioned above NACT-affected genes TMEM51, NOTCH1,

EEPD1, MAFB, and HLA-DRB5 as well as more unique genes for

this cluster SERPINB2, SMAD6, TGFBR2, ID1, PXN, ADAM10,

ADAM9, ITGAX, IL31RA, IL6R, and RHOU among others. The

activation of cell adhesion molecule binding, MHC class II protein

complex binding, leukocyte transmigration, TGFb signaling, and

other pathways was observed (Figures 2D, E). The expression of

such genes as HLA-DQA2, CD300LD, S100A5 LGALS1, ELOVL5,

SPRED2, SLC2A3, ELOVL5, NINJ1, HMGA1, and E2F3 was

exclusively elevated in CD14.Mn.MHC2hi monocytes of treated

patients compared to untreated monocytes. Activated genes were

related to the following pathways: peptide antigen assembly with

MHC protein complex, leukocyte cell-cell adhesion, positive

regulation of wound healing, regulation of Notch signaling

pathway, regulation of cell-cell adhesion, regulation of

angiogenesis, leukocyte transendothelial migration, Rap1 signaling

pathway, adherens junction, and antigen processing and

presentation (Figures 2D, E). CD16.Mn subset was less

numerically significant compared to other subsets (Figures 2D, E).
3.3 Antigen presentation is a distinct
feature for chemotherapy-
induced monocytes

Platinum-based chemotherapy can induce immunogenic cell

death (ICD) associated with tumor cell damage, leading to cell

surface protein expression, cytokine secretion, or plasma

membrane rupture and subsequent release of the intracellular

material (50, 51). The released intracellular molecules that are

damage-related molecular patterns (DAMPs) make antigen-

presenting cell (APCs) including macrophages sensitive to the

recognition of tumor antigens. MHC class II molecules are

expressed primarily on the surface of APCs and present peptides

derived from extracellular antigens (52). Monocytes/macrophages are

the most abundant MHC class II positive cells in tumor

microenvironment (53).

Surprisingly, we revealed notable and specific upregulation of

genes of MHC class II protein complex, in monocytes under

chemotherapy treatment, but not in untreated monocytes. These

genes include HLA-DRB5, HLA-DQA2, HLA-DQB1, and HLA-

DQB2 (Figure 3A). Increased MHC class II gene expression was

driven largely by classical monocytes (S100A8.9hi and MHC2hi) it

was a feature of chemotherapeutic impact across all three monocyte
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subsets. Antigen presentation requires not only the expression of

HLA genes on APCs, but also the activation of T cells (54, 55). We

analyzed whether T lymphocytes which interact with APCs can be

functionally affected by NACT. No remarkable changes were

observed in CD4 naïve T, CD4 memory T, and Treg cells. But

there were significant changes in transcriptomic profile of CD8

memory T cells. We noticed decreased expression of IL7R, IL12RB2,

IL5RA, IL21R, GZMK, and other genes in CD8.T.EM subset

(Figure 3B). These interleukin receptors are responsible for

thymic development, T cell maturation and T-cell immune

response (56–58), and their inhibition can lead to defected

immune response. Downregulation of these T cell regulatory

genes was observed for both NACT-treated and untreated

samples, indicating that changes in CD8+ T cell transcriptome is

induced by tumor-released factors and are not altered by

chemotherapy (Supplementary Figures S3A, B).

We then directed to ligand-receptor identification which may

underlie the interactions within PBMCs. To decipher cell-cell

communications in PBMCs affected by NACT, we used tool

integrated LIANA, a database of ligand-receptor interactions, and

Tensor-cell2cell, a dimensionality reduction approach devised to
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(59). After inferring cell-cell communication with LIANA from our

PBMC data, and running a Tensor Component Analysis with Tensor-

cell2cell, 7 factors were obtained (Supplementary Figure S4), each of

which represents a different cell-cell communication program. Four

vectors that include the sample, ligand-receptor interaction, sender cell

type, and receiver cell type were obtained for each factor

(Supplementary Figure S4).

Applied bioinformatics tool demonstrated that factor 5 was

associated with antigen presentation via MHC class II molecules

and their interactions with CD4 T cells (Figure 3C). We then

focused on the factors where monocytes were “sender cells” or

“receiver cells”. Most selectively monocytes act as the “receiver

cells” within other PBMCs in factor 1. In-depth analysis revealed

that Factor 1 is related to antigen presentation via MHC class I

molecules as well as monocyte activation (Figure 3C). Oppositely, in

factor 2 monocytes in addition to acting as the “receiver cells”, also

were the main “sender cells”. A number of cell-cell interactions,

associated with adhesion molecules, were indicative of factor 2 and

likely characterized the adhesion to the vascular wall, which

conforms to the DEG analysis described above. Most interesting
FIGURE 3

Chemotherapy induces activation of antigen presentation in peripheral blood monocytes. (A) NAC-related gene signature (MHC2 signature) obtained
using UCell tool. (B) CD8-associated gene signature obtained using UCell tool (C) Factor loadings per each group (constructed using LIANA with
Tensor-cell2cell) (Upside). Top 15 ligand-receptor pairs associated with factor 1, factor 2 and factor 5 (Underside). (D) Module enrichment with GSEA
in individual comparison by monocyte subpopulations (CD14.Mn.S100A8.9hi; CD14.Mn.MHC2hi; CD16.Mn) (FDR<0.05). NS, not significant.
OvNvsDnN – treatment-naive vs. healthy control; OvYvsDn – NAC-treated vs. healthy control; OvYvsOvN – NAC-treated vs. treatment-naive.
(E) DEGs (FDR<0.1) reveled in distinct module-associated groups.
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was the fact that factor 1 and factor 2 were suppressed in untreated

patients and were similar for NACT-treated samples and donors’

samples, while factor 5 related to antigen presentation via MHC

class II was upregulated in NACT-induced PBMCs. This is in line

with our above-mentioned results and further confirms the

noticeable activation of antigen presentation via MHC class II in

monocytes under chemotherapy.
3.4 Chemotherapy-induced antigen
presentation potential in monocytes is
accompanied by inhibition of interferon
signaling and activation of pro-tumor
monocyte polarization

Next, we analyzed gene networks provided by distinct co-

expression modules built by closely correlated transcript patterns.

We used hdWGCNA, a comprehensive base for analyzing co-

expression networks in high-dimensional transcriptomics data

(36). This bioinformatics tool allowed us to reveal 22 co-

expression modules for monocytes that differed between

investigated groups (Figure 3D). All modules contain strongly

correlated hub genes. Functional annotations performed with

Enrichr and names we gave to modules are indicated in Table 1.

We registered the most essential alterations in modules M4, M5,

M7, M11, M14, M17, and M19. Among these modules, M4, M11,

M14 and M19 were significantly upregulated in NACT-affected

monocytes (Figure 3D). Module of special focus was M19 related to

antigen presentation via MHC class II. HLA-DR and HLA-DQ

genes formed hub gene pattern for this module (Figure 3E). Module

4 was characterized by multiple processes mainly related to TGFb

signaling, one of the main indicator of M2 pro-tumor macrophage

polarization (12). M11 was associated with Rho GTPases

intracellular signaling that regulates cell adhesion and motility, as

well as endocytic and exocytic vesicle trafficking (59, 60). Module

14, which we annotated as “immune synapse”, was functionally

attractive. This module caught our close attention due to the

significant upregulation of its core genes associated with the

formation of immune synapses (61–63) in our NACT-treated

samples. Less is known about the formation of such synapses

between monocytes and lymphocytes, but it is critical for

understanding how the presentation of tumor antigens from

macrophage/monocyte to T cell can be impaired by anti-

cancer treatment.

Oppositely, M17 related to interferon response was clearly

suppressed in NACT-treated samples but activated in tumor

untreated samples. We referred M7 to immune defense response

module and it was accurately inhibited in both treated and

untreated cancer samples, indicating general tumor-induced

immune suppression. Different mechanisms of immune

dysfunction in cancer are known (64, 65). Interesting observation

was made for M5 that was assigned with processes related to the

tumor-hormone receptors interactions, including estrogen and

androgen responses (Table 1). M5 expressed differently in treated

and untreated samples: increased in treatment-naïve samples and

downregulated in NACT-affected ones (Figure 3D). Altogether
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activity coming with inhibition of IFN-dependent factors,

immunosuppression and increasing pro-tumor orientation.

M12 and M18 were clearly defined as CD16-spesific modules and

were annotated with multiple immune regulated functions as well as

with GTPase activity. According to the literature data, non-classical

CD14lowCD16hi monocytes involved in the patrolling and innate local

surveillance, and did not cross-present antigen to CD8+ T cells (66).

Non-classical monocytes patrol the vasculature, clearing dying

endothelial cells, and protecting vessel health (49, 67). Above we

noticed that despite the CD16hi subset undergoing both overall

tumor-dependent and NACT-specific changes, these changes are

represented less extensively compared to CD14-expressing subsets

(S100A8.9hi and MHC2hi).
3.5 Chemotherapy-activated antigen
presentation potential in monocytes is not
epigenetically controlled

It is known that functional reprogramming of cells can be driven

by synchronized regulation of gene expression, which is mediated by

epigenetic modulation (68). To check whether the expression of HLA

class II genes is regulated epigenetically, we performed CpG

methylation analysis by reduced representation bisulfite sequencing

(RRBS). RRBS was done on peripheral blood CD14+ monocytes

obtained from eight HGSOC patients (n=3 for NACT-treated and

n=5 for treatment-naïve) and healthy volunteers (n=10). Raw read

processing and QC resulted in eight high quality samples having

about 30 million raw reads each. After CpG methylation calling in

Bismark there were around 385 million CpG sites detected with

40.5% mean methylation in group without NACT and 41.3% mean

methylation in NACT group. Raw CpG coverage matrices from

Bismark were imported in R environment and analyzed using

generalized linear modeling in edgeR package. CpG sites were

excluded if came from chrY and unassembled chromosomes and if

had less than 8x coverage resulting in 1,303,255 CpG sites. M-values

of CpG methylation was used in exploratory analysis. Top 10 000

variable CpG sites were used in principal component analysis (PCA)

and hierarchal clustering (Figures 4A, B). Exploratory analysis did

not indicate significant difference between NACT-treated and

treatment-naïve samples. Differential methylation analysis revealed

67 differentially methylated CpG sites in NACT group and 33

differentially methylated CpG sites in treatment-naïve group

(FDR<0.25) near promoter regions: +/- 10 kb from TSS

(Figure 4C). Functional annotation of genes with differentially

methylated CpG sites near promoter region did not indicate any

biological processes observed in scRNAseq data. We also did not find

methylation/demethylation of CpG sites in HLA class II or other

regulators of antigen presentation or even tumor activity (Figure 4D).

We did not find any valuable changes when we analyzed differentially

methylated CpG sites in treatment-naïve vs. healthy control

(Supplementary Figures S5A–D) and NAC-treated vs. healthy

control (Supplementary Figures S5E–G). We concluded that

chemotherapy-activated programs in monocytes were not

epigenetically controlled.
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TABLE 1 Module characteristics.

Module Name Top 5 hub-genes Top enrichment terms

Mn-M1 Immune-regulated
FCGR3A, CDKN1C,
RHOC, HES4, SETBP1

Neutrophile Degranulation; Complement; Fc Gamma R-Mediated Phagocytosis; Innate
Immune System; Complement; B cell receptor signaling pathway; Natural killer cell
mediated cytotoxicity

Mn-M2
Ribosomal
protein module

RPL26, RPS12, RPL10,
RPL32, RPL28

Cytoplasmic Translation; Peptide Chain Elongation; Formation Of A Pool Of Free 40S
Subunits; GTP Hydrolysis And Joining Of 60S Ribosomal Subunit

Mn-M3
RUNX2-
regulated module

MED13L, ZEB2,
KMT2C,
STK10, RAPGEF1

Transcriptional regulation by RUNX2; MET Promotes Cell Motility; Downregulation of
SMAD2/3: SMAD4; Signaling By MET; Regulation Of RUNX1 Expression And Activity

Mn-M4 TGFb-related module
RGCC, LGALS2, EMP1,
ITGA5, KLF10

TGF-beta Signaling; Positive Regulation of Extracellular Matrix Assembly; TNF-alpha
Signaling via NF-kB

Mn-M5
Tumor-hormone
receptors related module

FKBP5, FMN1, PTEN,
AKAP13, CD163

PI3K-Akt signaling pathway; Hypoxia; Estrogen Response Early; Estrogen Response Late;
Glycolysis; TGF-beta Signaling; Androgen Response

Mn-M6 Undefined
GIMAP7, CD52, PCF11,
PLCG2, TTC1

No significant terms

Mn-M7
Immune
defense response

VCAN, S100A12, LYZ,
DPYD, ARHGAP26

Neutrophil Degranulation; Positive Regulation Of Response To External Stimulus;
Positive Regulation Of Defense Response; Signaling By Interleukins; Hemostasis;
Macrophage Activation; Complement

Mn-M8
Oxidative
phosphorylation

S100A4, TMSB10,
TYROBP,
SERF2, S100A6

Oxidative phosphorylation; Respiratory Electron Transport; Proton Motive Force-Driven
Mitochondrial ATP Synthesis; Citric Acid (TCA) Cycle And Respiratory Electron
Transport; Cellular Respiration

Mn-M9
TNF-alpha Signaling via
NF-kB

CCDC200, FOSB,
CXCL8, IL1B, ATF3

TNF signaling pathway; NF-kappa B signaling pathway; Hypoxia; IL-17 signaling
pathway; p53 Pathway; NF-kappa B signaling pathway; Toll-like receptor
signaling pathway

Mn-M10
Angiogenesis-
related module

MBNL1, MEGF9,
MAP3K5, VMP1, F13A1

Complement; Negative Regulation Of Cellular Response To Vascular Endothelial Growth
Factor Stimulus; Regulation Of Blood Vessel Endothelial Cell Migration; Regulation Of
Platelet Activation

Mn-M11
Rho GTPases
intracellular signaling

DOCK2, PAN3, PUM2,
ADAM10, CUL3

Signaling By Rho GTPases; Ubiquitin mediated proteolysis; Class I MHC Mediated
Antigen Processing And Presentation; TLR4 Cascade; Antigen Processing: Ubiquitination
And Proteasome Degradation; Signaling By Receptor Tyrosine Kinases; RHO
GTPase Effectors

Mn-M12
Immuno-
metabolic module

GAPDH, CAPG, CSTA,
BLVRB, S100A10

Neutrophil Degranulation; Degradation Of Cysteine And Homocysteine; Cellular
Response To Chemical Stress; Sulfur metabolism; Glycolytic Process; Innate
Immune System

Mn-M13
Ubiquitination and
Rho GTPases

COP1, VPS13B, USP25,
ZDHHC20, PICALM

Ubiquitin-Dependent Protein Catabolic Process; Ubiquitin mediated proteolysis; Positive
Regulation of Autophagy; Signaling By Rho GTPases; RHO GTPase Effectors

Mn-M14 Immune synapsis
JARID2, PID1,
ZFAND3,
RCOR1, MEF2A

Signal Transduction; Nervous System Development; Wnt-beta Catenin Signaling; Axon
Guidance; Developmental Biology; Regulation Of T Cell Activation Via T Cell Receptor
Contact With Antigen Bound To MHC Molecule On Antigen Presenting Cell

Mn-M15 Endocytosis
CELF2, MIS18BP1,
SBF2, RNF144B, SCLT1

Cytosolic Transport; Endosomal Transport; Golgi To Endosome Transport; Vesicle
Fusion; Protein Ubiquitination; Endocytosis; Intracellular Protein Transport

Mn-M16 Undefined
FTL, AIF1, TMSB4X,
CST3, IFI30

Signaling By B Cell Receptor (BCR); Mitochondrial Electron Transport, Cytochrome C To
Oxygen; Beta-catenin Independent WNT Signaling; Proteasome; CLEC7A (Dectin-1)
Signaling; Ubiquitin-dependent Degradation Of Cyclin D

Mn-M17 Interferon response
MX1, IFI44L, IFI44,
IFIT1, EPSTI1

Interferon Gamma Response; Interferon Alpha Response; Defense Response To Virus;
Interferon Alpha/Beta Signaling

Mn-M18
GTPase activity
dependent module

UTRN, PTPRC,
FAM117B,
NCOA2, ITSN2

RAC1 GTPase Cycle; Bacterial invasion of epithelial cells; Signaling By Rho GTPases,
Miro GTPases And RHOBTB3; RAC2 GTPase Cycle; RAC3 GTPase Cycle; Clathrin-
mediated Endocytosis

Mn-M19
Antigen processing
and presentation

HLA-DRB1, HLA-
DQA1, HLA-DQB1,
HLA-DRB1, HLA-DRA

Antigen processing and presentation; Th1 and Th2 cell differentiation; Peptide Antigen
Assembly With MHC Class II Protein Complex; Cell adhesion molecules; Positive
Regulation Of Leukocyte Cell-Cell Adhesion

(Continued)
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4 Discussion

The major aim of our study was to uncover cancer specific

transcriptional and epigenetic changes in peripheral blood

monocytes in patients with HGSOC. Another insistent point was

to unravel how chemotherapy can re-program monocytes and how

it can relate to changes in other immune subpopulations in blood.

Monocytes are highly plastic innate immune cells that display

significant heterogeneity during homeostasis, inflammation, and

tumorigenesis (69). Re-education of circulating monocytes toward

T-cell stimulatory macrophages upon their extravasation in the

tumor may be introduced in addition to known immunotherapeutic

strategies. Identifying mechanisms capable of “re-educating”

circulating monocytes will likely represent a useful strategy to

prevent relapse and metastasis development after or even during

anti-cancer treatment (14). However, understanding a tumor-

associated monocyte profile is complicated by the fact that

phenotypes of human peripheral blood monocytes display

considerable heterogeneity between individuals and depending on
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reprogramming (14). Data on monocyte profile alterations

induced by ovarian cancer-derived microenvironment are limited

and require detailed analysis. The most common feature of

peripheral blood monocytes of cancer patients reported in several

studies is the acquisition of immunosuppressive activity and the

downregulation of the MHC class II surface protein HLA-DR, a key

mediator of antigen presentation (14). In present study, we

performed single-cell RNA sequencing of PBMCs in patients with

ovarian cancer who underwent neoadjuvant chemotherapeutic

treatment and in treatment-naïve patients. Monocyte cluster was

significantly affected by tumor-derived factors as well as by

chemotherapeutic impact. We revealed that, in general, cancer

induces the suppression of antigen presentation and the immune-

inflammatory state in monocytes, but the activation of interferon-

dependent pathways and pro-tumor metabolism.

Circulating monocytes are a dynamic population of cells

consisting of multiple subsets that differ in phenotype, size,

morphology, and transcriptional profiles (49, 69). In humans,
TABLE 1 Continued

Module Name Top 5 hub-genes Top enrichment terms

Mn-M20 Undefined
MARCH1, SSH2,
ANKRD44,
PLCL2, TNRC6B

RAC1 GTPase Cycle; Mitotic Spindle; Class I MHC Mediated Antigen Processing And
Presentation; Antigen Processing: Ubiquitination And Proteasome Degradation;
Regulation Of GTPase Activity; Signaling By Rho GTPases

Mn-M21 TNF-alpha Signaling
CD83, RASGEF1B,
NR4A1, NAMPT, JUNB

TNF-alpha Signaling via NF-kB; Apoptosis; Reactive Oxygen Species Pathway; Interferon
Gamma Response; Inflammatory Response

Mn-M22
Tumor
immune response

RUNX1, TREM1, IL6R,
LUCAT1, ATP2B1

Inflammatory Response; Epithelial Mesenchymal Transition; Positive Regulation Of
Collagen Metabolic Process; Hypoxia; Interleukin-4 And Interleukin-13 Signaling
FIGURE 4

Methylation level in CpG sites in CD14+ monocytes of treated vs. untreated samples (A) PCA plot demonstrated analyzed samples (OvY – NAC-
treated monocytes; OvN – treatment naive monocytes). (B) Heatmap with hierarchical clustering of OvY vs. OvN samples using top 10 000 variable
CpG cites. (C) Volcano plot with differentially methylated CpG sites near promoter region (|L2FC|>1, FDR<0.25). (D) Functional annotation of genes
with differentially methylated CpG sites near promoter region performed with Enrichr (FDR<0.1).
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these subsets can be distinguished by the expression of CD14 and

CD16 and divided into CD14+ CD16− classical, CD14+ CD16+

intermediate and CD14-CD16+ nonclassical monocytes (49).

Bioinformatical analysis allowed us to reveal three distinct

monocyte subpopulations within PBMCs based on feature gene

expression – CD14.Mn.S100A8.9hi, CD14.Mn.MHC2hi and

CD16.Mn subsets.

Interesting observation was made in our study for CD16 cluster.

Cancer-specific changes that we observed were strongly indicative

for S100A8.9hi and MHC2hi subsets, but in less extend for CD16

subset. It is known that CD14+ classical monocytes represent the

majority of monocytes in blood and are recruited to tissues to

replenish macrophages in homeostasis and disease, whereas CD14-

negative monocytes are a minority (∼7%) of human blood

monocytes (70). According to existing data, non-classical

CD14lowCD16hi monocytes are involved in the patrolling and

innate local surveillance, they clear dying endothelial cells and

protect vessel health, but do not cross-present antigen to CD8+ T

cells (49, 66, 67, 70). Using tool integrated LIANA and Tensor-

cell2cell we found that CD16hi monocytes have two distinct

modules that are not found in CD14-expressing subsets. These

modules are characterized by some immune-regulatory functions

and by the regulation of cell adhesion, that corresponds to

existing data.

Bioinformatical analysis helped us to reveal distinct cancer-specific

features in CD14.Mn.S100A8.9hi, CD14.Mn.MHC2hi and CD16.Mn

subsets. We focused on two functionally attractive for monocyte/

macrophage lineage cell genes – SIGLEC1 and MS4A4A. Herewith

SIGLEC1 is specifically expressed in CD14.Mn.S100A8.9hi cluster, and

MS4A4A was significantly indicative for CD14.Mn.MHC2hi cluster

within whole PBMC population. Sialic acid binding Ig like lectin 1

(Siglec1) is adhesion molecule playing role in endocytosis (71, 72).

However, little is known about Siglec1 on monocytes, but minor data

demonstrated that higher expression of Siglec1 on tumor-associated

macrophages correlated to worse prognosis in cancer patients (17). The

tetraspan surface molecule MS4A4A is specific for monocyte-

macrophage lineage cells and highly expressed in TAMs. It is known

that MS4A4A can promote T cell exhaustion, and is associated with

poor prognosis in several cancers (73, 74). Identifying specific profile

alterations in peripheral blood monocytes can serve as diagnostic,

predictive, and prognostic less invasive biomarkers as well as may

correlate with the efficacy of antitumor therapy (14).

The most intriguing result was NACT-induced antigen

presentation by MHC class II molecules in monocytes. Increased

MHC class II gene expression was a feature observed across all three

monocyte subpopulations after chemotherapy. Again, despite

CD16hi subset undergoing both tumor-dependent and NACT-

specific changes at a direction similar to classical monocytes

(S100A8.9hi and MHC2hi), these changes are represented less

extensively compared to CD14-expressing subsets.

Some chemotherapeutic agents, including platinum ones, are

able to drive immunogenic cell death (ICD) that is based on the

release of potential immunogenic signals, known as “damage-

associated molecular patterns” (DAMPs), from dying cells to

induce immune responses (75–77). Presentation of tumor-

associated antigens via the major histocompatibility complex
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immune response (78). It is known that MHC class I, expressed

on many cells, are generally recognized by cytotoxic CD8+ T cells,

while MHC class II that are expressed preferentially by professional

APCs, activate CD4+ T cells, which play critical roles in supporting

CD8+ T-cell activation and generation of memory T cells (54, 78).

In tumor murine model, it was demonstrated that MHC class

IIhi tumor-associated macrophages (TAMs) accumulated at early

stages and had tumor suppressive activity, in contrast, MHC class

IIlow TAMs became more dominant in advanced tumor and

supported tumor growth (79). Single-cell RNAseq data we

obtained revealed that the expression of genes of MHC class II

are suppressed in treatment-naïve tumor samples. But surprisingly,

MHC class II expression was up-regulated after chemotherapy. Our

results are in a line with the recent study where authors performed

single cell RNAseq analysis using paired PBMC samples from

ovarian cancer before and after NACT (80). In this study,

treatment with NACT was associated with increased expression of

HLA class II and antigen presentation genes on all monocyte

subpopulations, although CD14++CD16– classical monocyte

population was likely the major source of upregulated HLA class

II within the monocyte cluster. Authors revealed increased numbers

of memory T-cell receptor (TCR) clonotypes and increased central

memory CD8+ and regulatory T cells after chemotherapy, however,

in total NACT did not alter the composition of circulating T cells

(80). Another scRNAseq analyses performed in PBMCs of one

recurrent OC patient before and after NAC treatment demonstrated

the tendency towards an exhaust state of CD8+ T cells under

chemotherapy (81). In our study we also did not notice

remarkable changes in CD4 naïve T, CD4 memory T, and Treg

cells. Only in CD8 memory T cells there were decreased expression

of some interleukin receptors and effector molecules that are

responsible for thymic development, T cell maturation and T-cell

immune response.

The success of immunotherapy, including immune checkpoint

blockade (ICB) and immune cell–based immunotherapies, can

depend on the effective antigen presentation to cytotoxic immune

cells (54, 78). The impairments in the intercommunications

between APCs and T cells can be a serious reason for the

incomplete response to anti-cancer therapy (54, 55). Thus, it was

shown that TAMs have the potential to phagocytose and process

tumor-associated antigens, but fail to successfully support T cell

activation (82). Using a fluorescent mouse model of spontaneous

immunoevasive breast cancer authors identified a subset of myeloid

cells that ingest tumor-derived proteins and present processed

tumor antigens to reactive T cells, but do not support T cell

activation or sustain cytolysis (82). Another study using lattice

light sheet microscopy, demonstrated that TAMs and CD8+ T cells

interact by shaping long-lasting, antigen-specific synaptic contact

resulted in T cell exhaustion. Reciprocally, exhausted CD8+ T cell

actively recruit monocytes to the TME and increase MHC class II

expression in differentiated macrophages (62). The importance of T

cell-macrophage interactions in the TME was demonstrated in one

more study (83). Tumor-specific CD4 T cells instructed MHC class

II-expressing monocytes to differentiate into anti-tumor

macrophages (83). Furthermore, IFNg signaling on antigen-
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presenting TAMs combined with cognate interaction with T cells is

necessary for the most effective antitumor response (54, 84). MHC

class II-expressing monocytes with high endocytic activity and IL-

10 p r odu c t i on a f t e r ch emo th e r ap y cou l d i n i t i a t e

immunosuppression (85). Our data demonstrated that

chemotherapy inhibited interferon-dependent signaling pathways,

but activated some TGFb-related genes. According to above

mentioned literature data it can be related to incomplete anti-

tumor response.

All these facts demonstrate that the immune system must be

equipped to detect and eliminate dying cells after chemotherapy.

Ovarian cancer remains one of the few malignancies where immune

checkpoint inhibitors exhibit only modest activity as monotherapy and

currently has no FDA-approved indication (80, 86, 87). In recent years,

ICB has been actively developing and a large number of clinical trials

are underway (86–89). However, ICB often does not show a lasting

positive response and, thus, has not entered routine use in clinical

practice (90). It is hypothesized that OC may be somewhat resistant to

ICB due to a low intrinsic tumor immunogenicity and high mutational

burden, as well as excessive immunosuppressive mechanisms in the

tumor microenvironment (91). Some clinical studies indicated that

NACT may be a promising platform for building combinatorial

immunotherapy strategies in ovarian cancer (48, 80). Moreover,

search for NACT-mediated mechanisms can be crucial for choosing

the ideal timing (“window” period) providing the best opportunity for

immunotherapy combined with chemotherapy (92). We believe that

our study can help unveil how we can re-educate monocytes toward T-

cell-stimulatory macrophages upon extravasation in the tumor and

how we can educate the tumor microenvironment in ovarian cancer to

respond to mono- or combination chemo-/immunotherapy.
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