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Hepatitis B Virus (HBV) is a stealthy and insidious pathogen capable of inducing

chronic necro-inflammatory liver disease and hepatocellular carcinoma (HCC),

resulting in over one million deaths worldwide per year. The traditional

understanding of Chronic Hepatitis B (CHB) progression has focused on the

complex interplay among ongoing virus replication, aberrant immune responses,

and liver pathogenesis. However, the dynamic progression and crucial factors

involved in the transition from HBV infection to immune activation and

intrahepatic inflammation remain elusive. Recent insights have illuminated

HBV’s exploitation of the sodium taurocholate co-transporting polypeptide

(NTCP) and manipulation of the cholesterol transport system shared between

macrophages and hepatocytes for viral entry. These discoveries deepen our

understanding of HBV as a virus that hijacks hepatocyte metabolism. Moreover,

hepatic niche macrophages exhibit significant phenotypic and functional

diversity, zonal characteristics, and play essential roles, either in maintaining

liver homeostasis or contributing to the pathogenesis of chronic liver diseases.

Therefore, we underscore recent revelations concerning the importance of

hepatic niche macrophages in the context of viral hepatitis. This review

particularly emphasizes the significant role of HBV-induced metabolic changes

in hepatic macrophages as a key factor in the transition from viral infection to

immune activation, ultimately culminating in liver inflammation. These metabolic

alterations in hepatic macrophages offer promising targets for therapeutic

interventions and serve as valuable early warning indicators, shedding light on

the disease progression.
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1 Introduction

Chronic Hepatitis B (CHB) affects metabolic processes,

potentially contributing to the development of Metabolic

Dysfunction-Associated Fatty Liver Disease (MASLD). This dual

pathology intensifies further liver injury, increasing the risks of

cirrhosis and liver cancer, and imposing a significant disease burden

(1–4). Although CHB and MASLD share common risk factors for

liver fibrosis and cirrhosis, particularly host metabolic factors, the

causal link between hepatitis B virus (HBV) infection and MASLD

remains elusive (1, 2). This is largely due to an incomplete

understanding of how HBV impacts host metabolic processes and

subsequently influences immunopathogenesis.

The inflammatory responses induced by the HBV are capable to

exacerbate hepatic steatosis through various mechanisms. HBV

DNA transcription can lead to metabolic reprogramming in the

liver, accelerating processes such as hepatic regeneration,

inflammation, and fibrosis (5). The HBV X (HBx) protein

activates signaling pathways such as Phosphoinositide 3-kinase

(PI3K)/protein kinase B (AKT) and Toll-like receptors (TLRs),

which influence hepatic lipogenesis, the conversion of cholesterol to

bile acids (BAs), and hepatic lipid homeostasis, thereby

contributing to hepatic steatosis (6–9). Additionally, HBV pre-S1

binding to NTCP) may alter hepatic cholesterol metabolism,

leading to hepatic steatosis (10). Despite these findings

collectively support the notion that metabolism plays a significant

role in liver inflammation in CHB, the specific details of the

intermediate mechanisms connecting intrahepatic metabolic

change with immune infiltration during CHB remain unclear.

Growing evidence has reinforced the notion that HBV can

manipulate metabolic processes by cross-talking with macrophages.

Basically, HBV was known as a stealthy virus which can hijack the

host’s BAs metabolic pathway. This can occur either by directly

sequestering them through binding to the NTCP receptor or by

being taken up by a subtype of macrophages via the cholesterol

transport system to hepatocytes for viral entry (10). Consequently,

the overloaded lipid transport system leads to compensatory up-

regulation of BAs and dysfunctional cholesterol metabolism,

resulting in the accumulation of lipid metabolites. This

accumulation gradually triggers an intensified inflammatory

response within hepatic macrophages (11, 12). With consistent

exposure to lipid metabolites, hepatic macrophages are likely to

undergo significant phenotypic and functional changes, primarily

within the vicinity of the liver portal area, bile ducts, or lipid-

accumulating regions (13, 14). For instance, a specific subset of liver

macrophages, Trem2+ macrophages, has been found to shift toward

a pro-inflammatory state in CHB-ACLF (14). Additionally, hepatic

macrophages can release chemokines such as C-X-C motif

chemokine ligand 9 and 10 (CXCL9 and CXCL10), which attract

lymphocytes and monocytes/macrophages, thereby further

contributing to liver inflammation (15). Hence, liver macrophages

act as a conduit and potentially connect HBV-induced metabolic

shifts with immune infiltrates exhibiting zonation characteristics.

The current consensus recognizes that hepatic niche macrophages,

comprising resident macrophages, Kupffer cells (KCs), and monocyte-
Frontiers in Immunology 02
derived macrophages (MDMs) and their various subsets, play a crucial

role in maintaining hepatic homeostasis by participating in various

processes, including metabolic regulation, modulation of

inflammation, promotion of immune tolerance, support for

immunologic cell death, and facilitation of tissue repair in the

physiological state (16–18). Despite researchers having a profound

understanding of these issues, discussions regarding the involvement of

hepatic macrophages in CHB progression have been still prominent,

particularly in relation to three questions: 1) whether they promote

immune activation or immune tolerance during CHB, 2) how they

perceive hepatocyte stress or directly detect pathogens, and 3) what are

their intrahepatic roles in HBV infection, metabolic hijacking and

immune inflammation?

This review provides a contemporary insight into the

knowledge accumulated in recent years. We emphasize the novel

perspectives for intrahepatic metabolic alterations during HBV

entry and replication, and shedding light on the multifaceted

functions of hepatic macrophages during CHB processes,

including bridge between HBV-Mediated Metabolic Change with

Intrahepatic Inflammation.
2 Metabolic changes and
characteristics during HBV entry
and intrahepatic replication

2.1 Novel route for HBV entry:
macrophage-mediated reverse cholesterol
transport enhances HBV targeting
in hepatocytes

Although HBV is known to enter hepatocytes through NTCP, the

mechanism by which a single HBV particle can establish chronic liver

infection after intravenous injection, evading scavenger cells in the

circulation or spleen, has remained a puzzle (10, 19). Surprisingly,

Esser K. et al., utilizing an ex vivo liver perfusion model, discovered

that HBV, in association with lipoproteins, exhibited a tendency to be

taken up by liver macrophages, leading to its accumulation in

recycling endosomes before being re-secreted by macrophages, this

time in association with free cholesterol obtained from the

endocytosed lipoproteins. Subsequently, in the same ex vivo model,

HBV was taken up by hepatocytes along with macrophage-derived

neutral lipids (20). These findings support the conclusion that HBV

efficiently targets hepatocytes not solely through a routine viral-

specific host cell approach but also by exploiting neighboring cells

in the liver. This research provides compelling evidence that HBV

associates with lipoproteins, using the cholesterol transport pathway

through macrophages and their cargo delivery system to reach

hepatocytes (Figure 1).

However, echoing Cheng Y’s remarks, a fundamental question

remains unresolved: How does HBV interact with Apolipoprotein E

(ApoE)-rich lipoproteins (21)? Given the high efficacy of HBV in

exploiting macrophages for trans-infection of hepatocytes, we posit

that HBV may engage in a molecular interaction with ApoE, which

could potentially involve their protein structures. To address this
frontiersin.org
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question, we performed docking simulations involving Hepatitis B

core antigen (HBcAg) (Figure 2A), Hepatitis B surface antigen

(HBsAg) (Figure 2B), Hepatitis B e antigen (HBeAg) (Figure 2C)

proteins, and ApoE molecules. The top 15 weighted scores of the

“balance” calculation, calculated from the interface root mean

square deviation (IRMSD) method by the Cluspro2 online

analysis platform, are normalized and presented as a heatmap

(Figure 2D). In contrast to HBsAg, HBcAg, and HBeAg have a

more robust binding with ApoE. This kind of conjunction could

happen in HBV-uptaking macrophages.
2.2 Altered lipid metabolism in CHB livers
induces hepatocyte damage by activating
DAMPs and PAMPs

As depicted in Figure 1, lipid metabolism is altered from the

beginning of HBV entry. However, hepatocytes damage with the

abnormal elevation of alanine transaminase (ALT) only happened

during hepatitis phase of CHB infection. As shown in the study by

Allen et al., treatment with BAs did not lead to increased caspase 3

activity in mouse hepatocytes or the release of ALT into the culture

medium. This compelling observation strongly supports the notion

that BAs do not directly induce apoptosis or necrosis in hepatocytes

(22, 23). Furthermore, early growth response protein 1 (Egr1), a critical
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regulator of various genes, particularly those involved in pro-

inflammatory cytokine production and pathways associated with

pathogen-associated molecular patterns (PAMPs), was found to be

upregulated (22). Additional evidence indicates that BAs need to enter

and accumulate within hepatocytes to stimulate cytokines expression,

and this effect is not mediated by cytokines membrane receptors (24,

25). Taken together, these findings, observed in both humans andmice,

support the hypothesis that when BAs accumulate within hepatocytes,

they initiate liver injury by triggering an inflammatory response,

leading to the production of pathophysiologically relevant

concentrations of chemokines and adhesion molecules, including

Monocyte Chemoattractant Protein-1 (MCP-1/Ccl2), Macrophage

inflammatory protein-2 (MIP-2/Cxcl2), and Intercellular cell

adhesion molecule-1 (ICAM-1) (24) of which lay the foundation for

the infiltration of monocytes/macrophages.

Moreover, once these BAs accumulate within the cell, they

trigger endoplasmic reticulum (ER) stress and induce

mitochondrial damage (25–27). The detection of mitochondrial

damage in hepatocytes treated with BAs implies that these damaged

mitochondria might release damage-associated molecular patterns

(DAMPs), subsequently activating PAMPs, such as TLRs. Notably,

TLR9 is a receptor residing within the ER and endosomes, serving

as an intracellular DNA sensor. Previous research has shown that

mitochondrial DNA can activate TLR9 and stimulate the expression

of inflammatory cytokines (27). The involvement of TLR9 is further
FIGURE 1

Model of HBV entry into hepatocytes via two routes. First Route: ① Enveloped hepatitis B virus (HBV) particles circulate within the sinusoidal blood,
traversing the fenestrae of sinusoidal endothelial cells to access the space of Disse. Eventually, they reach the integral membrane protein receptor

NTCP, which concurrently impedes the transport of bile acids. ② Repressed bile acid transport inhibits the farnesoid X receptor/small heterodimer
partner (FXR/SHP) signaling pathway, leading to the compulsory upregulation of the transcription factor Cytochrome P450 Family 7 Subfamily A

Member 1 (CYP7A1) ③. ④ Increased CYP7A1 accelerates the reversed transport of cholesterol and promotes the synthesis of bile acids. ⑤ The low

density lipoprotein receptor (LDLR) pathway is activated, further promoting the process of bile acid synthesis. Second Route: ① HBV became
entrapped within serum triglyceride-rich lipoproteins (TRL), traverse the endothelial cell layer to access the space of Disse. Once there, they are
ensnared through electrostatic interactions with HSPG (heparan sulfate proteoglycan) before ultimately binding with NTCP (sodium taurocholate

co-transporting polypeptide). ② ③ When associated with lipoproteins, HBV is preferentially internalized by liver macrophages into recycling

endosomes. ④ Subsequently, HBV particles enter hepatocytes. Cholesterol esters of endocytosed lipoproteins undergo hydrolysis by the endosomal
acid lipase, liberating free cholesterol. This free cholesterol is then conveyed to the cell membrane, released from the macrophage, and can bind to
extracellular lipid receptors, facilitating additional uptake into hepatocytes. The figure was created by BioRender (BioRender.com).
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2024.1414594
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1414594
A B

D

C

FIGURE 2

Computational docking analyses were performed to examine the interactions between HBcAg, HBsAg, and HBeAg proteins with APOE molecules, shedding
light on potential molecular associations. Display of docking results between representative HBcAg (protein ID, Q9E6S6) (A), HBsAg (protein ID, Q9E6S4) (B),
HBeAg (protein ID, P0C6H2) (C) proteins, and APOE (protein ID, P02649) molecules. The protein IDs were obtained from UniProt (https://www.uniprot.org/).
The yellow protein represents APOE, and the Cyan protein represents HBV. Local graphs depict the Top 5 polar bonds with the closest distances in the
docking results. Red denotes oxygen (O) atoms, and blue denotes nitrogen (N) atoms. Numbers indicate the distances between atoms forming polar bonds
(unit: angstroms, Å). (D) The table displays the top 15 results of the 'balance' calculation weight scores, obtained through the Cluspro2 online analysis
platform using the interface root mean square deviation (IRMSD) method. A1, A2, A3, B1, B2, C represent different HBV subtypes, each uniquely identified by
specific protein IDs obtained from UniProt (https://www.uniprot.org/). The protein IDs for HBeAg are as follows: Q91C37 (A1 subgenotype), P0C692 (A2
subgenotype), Q4R1S0 (A3 subgenotype), P0C699 (B1 subgenotype), P0C6G7 (B2 subgenotype), P0C6H2 (C subgenotype); The protein IDs for HBsAg are as
follows: P31873 (A1 subgenotype), O91534 (A2 subgenotype), Q4R1S6 (A3 subgenotype), Q9QBF0 (B1 subgenotype), Q9QAB7 (B2 subgenotype), Q9E6S4 (C
subgenotype); The protein IDs for HBcAg are as follows: I7JHV6 (A1 subgenotype), P0C696 (A2 subgenotype), P0C697 (A3 subgenotype), P0C677 (B1
subgenotype), Q9QAB9 (B2 subgenotype), Q9E6S6 (C subgenotype); The protein IDs for AOPE is P02649. A higher value, represented by a darker red shade
in (D), corresponds to a stronger polar bond energy, suggesting a more favorable and robust binding between the two proteins.
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substantiated by observations that bile acid-induced cytokines

responses are diminished in mouse hepatocytes when

mitochondria are protected by agents such as cyclosporine A

(27). Based on this evidence, we endorse the idea that progressive

lipid metabolism alteration induced by HBV infection initiates

PAMPs and DAMPs, thereby shaping a pro-inflammatory

intrahepatic micro-environment, without direct damage to

hepatocytes (Figure 3).
2.3 Characteristics of intrahepatic
metabolic changes during CHB: spatial
and temporal specificity

With our advancing understanding of liver anatomy and the

liver micro-environment, Guilliams M. et al., emphasized that the

liver has a dynamic complexity that has not yet been adequately

described (28). We now recognize the liver as a complex organ

characterized by a large number of microscopic functional units,

including hepatic (classic) lobules, portal lobules, and liver acini.

These acini can be divided into three zones based on their proximity

to portal canals and adjacent central veins, contributing to uneven

blood flow in these three zones. Questions about the relationship

between liver blood flow and hepatic metabolism were raised by
Frontiers in Immunology 05
Macdonald AC as early as 1979 (29). In line with earlier

perspectives, Esser K, et al., also explored the deposition of HBV

in the perisinusoidal space of Disse, where HBV can bind to its

receptor on hepatocytes or even be directly transported to

hepatocytes by disrupting the reverse cholesterol transport (20).

The precise metabolic alterations induced by HBV in different

regions of the liver, various cell types, and at different disease

stages remain largely unknown.

Most recently, Li J. et al., conducted an analysis of PBMC

transcriptomics from patients in five distinct disease stages,

including acute-on-chronic liver failure (ACLF), acute-on-chronic

hepatic dysfunction (ACHD), liver cirrhosis (LC), CHB, and

normal controls (NC). Their study aimed to demonstrate the

presence of immune-metabolism disorders during the

development of HBV-ACLF. Notably, they reported increased

expression of metabolic genes related to lipid metabolism, fatty

acid metabolism, oxygen homeostasis, and autophagy in the PBMC

transcriptomics of CHB patients compared to healthy controls

(HC) (13). Subsequently, Peng B. et al., characterized the immune

micro-environment in the livers of patients with ACLF and also

investigated the role of lipid metabolism. They employed single-cell

RNA-sequencing (scRNA-seq) to examine liver non-parenchymal

cells (NPCs) and PBMCs from healthy controls, cirrhosis patients,

and ACLF patients. It’s important to note that well-defined natural
FIGURE 3

Hypothesis on the process of how HBV induces liver injury. ① Accumulation of metabolites, including bile acids and cholesterol, in the liver.
② Metabolism alteration promotes the expression of pro-inflammatory signaling like Toll-like receptors (TLRs) in hepatocytes, leading to the
transition of highly heterogeneous hepatic macrophages into a pro-inflammatory phenotype characterized by increased expression of pro-

inflammatory cytokines and activation of specific signaling pathways. ③ More inflammatory cells are recruited into the liver through the release of

chemokines like CXCL9/10. ④ Within the highly heterogeneous hepatic macrophages, the presence of at least five potential clusters can be
identified in both physiological and pathological states of the liver (e.g., Acute-on-Chronic Liver Failure, ACLF; Chronic hepatitis B, CHB…). Each

cluster is associated with specific marker genes and potential functions. ⑤ The phenotypic and functional transitions may exhibit variation across
different stages of CHB and diverse liver regions. The figure was created by BioRender (BioRender.com).
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history disease stages of CHB patients were not included for further

comparison (14).

In 2021, Sun Z. et al., conducted a study comparing serum BA

profiles among different groups: CHB patients with normal ALT

(CHB-NALT), CHB patients with abnormal ALT (CHB-AALT), and

healthy controls (HCs). They employed Ultra-high-performance

liquid-chromatography and analyzed transcriptomic data of hepatic

gene expression. The findings revealed a significantly higher

percentage of conjugated BAs and primary BAs in CHB patients,

even in the absence of apparent liver injury. Moreover, CHB-AALT

group exhibited higher levels of serum BA species, including

glycolithocholic acid (GLCA), taurochenodeoxycholic acid (TDCA),

taurolithocholic acid (TLCA), and taurochenodeoxycholic acid

(TUCDA) compared to CHB-NALT (30). Clearly, there is a

distinct metabolic fingerprint between the inflammatory (hepatitis)

and non-inflammatory (non-hepatitis) phases. However, the specific

metabolic changes that occur at each of the four natural infection

history stages, and the factors that determine the transition between

these stages, remain largely unknown.

Despite the rapid advancements in omics-sequencing methods,

including spatial transcriptomics and spatial proteomics, there is

still a lack of evidence regarding the spatial (tissue/cell-specific) and

temporal (different disease stages) metabolic changes within the

liver tissues in CHB.
3 Limitations of current studies on the
mechanisms of HBV-mediated
metabolic changes: are hepatocytes
the sole targets?

Current studies suggest that hepatocytes are the primary

targets of HBV-induced intrahepatic metabolic changes. Are

hepatocytes the only targets of HBV-induced intrahepatic

metabolic changes? Shin HJ. et al., demonstrated that the HBx

promotes gluconeogenesis through the nitric oxide (NO)/c-Jun N-

terminal kinases (JNK) pathway (31). Li H. et al., verified that

HBV upregulates glycolysis (32). In addition, Liu B. et al., found

that HBx-mediated NF-E2-related factor 2 (Nrf2) activation

promotes the pentose phosphate pathway (PPP) by stimulating

glucose-6-phosphate dehydrogenase (G6PD) expression (33).

Furthermore, accumulating evidence from studies using HBV-

replicating cell lines and mouse models have shown that HBV can

promote fatty acid synthesis through various mechanisms, and is a

potential trigger of liver steatosis (6–8, 24, 33–36). Additionally,

HBV infection also impacts other hepatic metabolic signaling

pathways, such as nucleic acid metabolism and vitamin

metabolism (37, 38).

Notably, the identification of the bona fide receptor for HBV,

confirmed through stable HBV infection models and human

hepatocytes, has revealed that the viral entry mechanisms for

HBV (19). However, it remains unclear whether and what extent

HBV can influence cellular metabolism via NTCP. Oehler N. et al.,

subsequently demonstrate that the binding of HBV to NTCP limits

its function, subsequently promoting compensatory BA synthesis
Frontiers in Immunology 06
and cholesterol provision (39). Patman G. et al., further support that

HBV infection alters bile acid metabolism (40).

In other words, traditional studies on how HBV infection affects

metabolic changes has predominantly relied on hepatoma cell lines,

HBV transgenic mice, or peripheral non-tumor tissues after surgical

resection. It’s worth noting that hepatocyte-specific transporters are

known to be altered or lost in cell lines, mice models, and primary

human hepatocyte cultures (Table 1). The narrow tissue and host

tropism of HBV has constrained studies on interactions established

by HBV in human hepatic niche (41, 42).
4 Function of hepatic macrophages
niche: shaping intrahepatic micro-
environment for immune tolerance
or infiltration

4.1 Viral replication magnitude: a
contradictory determinant of immune
tolerance and immune activation

It is known that KCs prefer to reside in the liver, and they are

enriched with an array of pattern recognition receptors (PRRs) on

cellular surface, including TLRs and nucleotide-binding

oligomerization domain-like receptors (NLRs). This localization

and receptor expression make them first-line responders to

pathogens such as HBV. Liver macrophages are also capable of

directly recognizing HBV (43, 44). However, the long-standing

debate as to whether HBV induces immune activation or promotes

liver tolerance remains unresolved.

Liu J. et al., demonstrated that HBV stimuli induce KC-

mediated T cell tolerance through the secretion of IL-10 in a

TLR2-dependent manner (45). Li’s research further supported the

concept that KCs Support HBV-Mediated CD8+ T cell exhaustion

via the TLR2 signaling pathway (46). Suzanne Faure-Dupuy et al.,

reported that exposure to HBV or HBV-producing cells during

differentiation and activation led to distinct responses. Pro-

inflammatory macrophages (namely M1-MDMs) secreted lower

levels of IL-6 and IL-1b, while anti-inflammatory macrophages

(namely M2-MDMs)secreted higher levels of IL-10 when exposed

to HBV during activation (47). In conclusion, their findings suggest

that KCs play a role in promoting the secretion of anti-

inflammatory cytokines such as IL-10 and TGF-b, contributing to

transient activation by secreting IL-6, and potentially increasing the

expression of inhibitory checkpoint factors (e.g., PD-1/PD-L1) (48).

These results raise the possibility that HBV-driven limited

activation of hepatic macrophages could be a contributing factor

to the establishment and persistence of infections in vivo.

However, Cheng X. et al., provided evidence that HBV has

evolved to evade the innate immunity of hepatocytes but activates

macrophages during infection (49). Cheng’s research underscored

that macrophage could detect HBV, but this typically requires

exposure to high HBV titers. This observation may help explain

the prolonged “window period” observed during acute infection

and why HBV tends to establish chronic infections. In the most
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TABLE 1 Summary of HBV induced metabolic alterations via cells lines, animal models, and clinical specimens.
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recent study, it was found that the magnitude of viral replication

and the specific anti-viral immune responses should ideally dictate

the extent of inflammation. However, it’s important to note that a

direct correlation between these factors is not consistently observed

in patients with chronic viral hepatitis (50).

In summary, HBV-mediated hepatic macrophages have the

potential to induce either an anti-inflammatory or pro-tolerogenic

differentiation. This phenotypic/functional switch may either support

or inhibit further liver pathogenesis in CHB. Nevertheless, the precise

mechanisms responsible for chronic liver inflammation and the key

factors influencing the various stages of the disease’s natural history

are yet to be fully elucidated (Figure 3).
4.2 Hepatic macrophage niche are
attracted to sites where lipid metabolites
are exposed for clearance

Single-cell and spatial transcriptomic technologies have unveiled

an underappreciated heterogeneity among liver macrophages,

prompting us to reconsider the role of macrophages in liver

homeostasis and disease (17, 18). Previous research has categorized

five hepatic macrophage clusters with distinct transcriptomes,

including the MARCOhi cluster, Trem2hi cluster, S100A8hi cluster,

MMP19hi cluster, and MKi67hi cluster in ACLF livers (13). Guilliams

M, et al., further provided a more comprehensive depiction of the

human liver atlas and identified two subsets of the Trem2hi cluster

(mature and immature), which they later named Lipid-associated

macrophages (LAMs) (18). Importantly, a notion supported by the

induction of LAMs marker genes through the treatment of murine

bonemarrowmacrophages with lipids in vitro. Besides, Ramachandran

P. et al., demonstrated location of LAMs around the bile ducts in the

healthymouse, human, andmacaque liver. However, in the presence of

steatosis, LAMs are preferentially recruited to the steatotic regions of

the liver (51). Guilliams M’s research suggests that LAMs can be

induced by local lipid exposure (18).

Trem2 signaling has been recognized as a crucial sensor of

metabolic pathology, responding to disruptions in tissue-level lipid

homeostasis and giving rise to a novel and conserved Trem2+LAM

subset (52–54). In accordance with these studies, Trem2+macrophages

were found to express lipid metabolism genes marked by APOC1,

APOE, GPNMB, and SPP1, as well as pro-inflammatory genes

including IL18, CCL5, CCL18, among others (55). Additionally, the

first identified scar-associated macrophages in liver cirrhosis, known as

Trem2+CD9+macrophages, were found to originate from circulating

monocytes and expand in the context of liver fibrosis. These

Trem2+CD9+macrophages displayed pro-fibrogenic effects,

contributing to tissue repair following liver injury (55). As metabolic

alterations play a pivotal role in reshaping the hepatic micro-

environment niche, including the recruitment of Trem2+monocytes/

macrophages and the activation of Trem2+monocytes/macrophages

toward a pro-inflammatory state, the precise phenotype and functional

changes in the micro-environment of CHB livers, as well as variations

across disease stages, remain unclear.

In a recent study, Dib L. et al., demonstrated that LAMs undergo a

transition to an inflammatory state in human atherosclerosis. This
Frontiers in Immunology 10
transition revealed the presence of PLIN2hi/TREM1hi macrophages,

which are associated with TLR-dependent inflammation and linked to

cerebrovascular events (53). Peng B. et al., shed light on the immune-

suppressive role of Trem2+monocytes/macrophages in the context of

late-stage ACLF livers (14). Notably, their study provided further

evidence that the accumulation of a-linolenic acid (a-LA) could

enhance the expression of Trem2 on monocytes/macrophages in an

inflammatory environment. This phenomenon was demonstrated

through in vitro experiments involving LPS and a-LA stimulation

on CD14+cells, suggesting that increased levels of unsaturated free

fatty acids (FFAs) and disturbances in a-LA metabolism may serve as

a bridge facilitating the differentiation and activation of

Trem2+monocytes/macrophages in ACLF livers (14).

In the context of CHB, the binding of HBV pre-S1 to NTCP

hinders bile acid uptake and compensatory upregulates the

expression of cholesterol synthesis genes, including 3-hydroxy-3-

methylglutaryl-coenzyme A (HMG-CoA) reductase and the LDL

receptor. Consequently, this process is associated with the promotion

of TLR signaling and inflammasome activation in hepatic

macrophages (12, 13), suggesting it’s bridge role between

enhancing lipid metabolites and pro-inflammation. However, HBV

exploits NTCP in hepatocytes, disrupting the cholesterol transport

pathway between macrophages and their target hepatocytes (10).

Whether the specific type of hepatic macrophages involved, such as

whether it is LAMs, known to be activated by local lipid exposure,

and their role in eliminating excess metabolites and metabolic

intermediates, triggering phenotype and functional reprogramming

of the hepatic infiltrating microenvironment, remains unknown and

is worthy of attention (Figure 4).
4.3 Pro-inflammatory hepatic
macrophages, orchestrating increased
liver infiltration and exacerbating
liver inflammation

Traditional research categorized liver macrophages into “M1”

or “M2” subsets, with a focus on their phenotype shifts and

functional changes. M1 macrophages are associated with a pro-

inflammatory effect, producing cytokines such as tumor necrosis

factor (TNF)-a, IL-1b, and reactive oxygen species (ROS), which

contribute to liver inflammation and injury as the disease

progresses. In contrast, M2 macrophages exhibit an anti-

inflammatory phenotype. It’s important to note that liver

macrophages niche is highly plastic and can rapidly transition

from a homeostatic state to a pro-inflammatory state in response

to viral infection (56, 57).

Accordingly, we hypotheses that, the prolonged disruption in

lipid and cholesterol efflux between hepatic macrophages and

hepatocytes during the immune tolerance stage of CHB patients

leads to the accumulation of excessive cholesterol and lipid

metabolites. This, in turn, exacerbates pro-inflammatory signaling

through both PAMPs and DAMPs within host cells. Consequently,

this process reshapes the macrophage niche, inducing a transition

in the immune micro-environment from macrophage-mediated

tolerance to immune activation (58).
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In Do TH’s research, Trem2+macrophages display heightened

lipid metabolism profiles alongside pro-inflammatory profiles,

resulting in the up regulation of pro-inflammatory chemokines,

cytokines, MMPs, and S100 proteins to further recruit and activate

immune cells (55). In Dib L’s research, once the macrophages shift

into a pro-inflammatory phenotype (PLIN2hi/Trem1hi), they

exhibit a unique chemokine signature with transcripts for pro-

atherogenic CCR2 ligands (CCL2 and CCL7), which play a non-

redundant role in atherogenesis and monocyte recruitment (51).

Aberrant immune metabolism in the liver of CHB leads to pro-

inflammatory macrophage activation. This, in turn, sustains the

production of pro-inflammatory cytokines, including Chemokine

(C-X-C motif) ligand 9/10 (CXCL-9/CXCL-10), and others, which

are essential for recruiting lymphocytes and monocytes/

macrophages to the liver tissue (15, 58). These studies provide

further support for the concept that pro-inflammatory hepatic

macrophages play a central role in enhancing liver infiltration

and exacerbating liver inflammation (Figure 4) (19).
5 Future perspectives

CHB is characterized by distinct and dynamic disease

progression stages, yet the mechanism governing host immune
Frontiers in Immunology 11
responses, particularly within the liver, and the development of liver

pathology throughout these stages remain elusive. In this context,

we highlight the pivotal role of hepatic macrophages in both

recognizing HBV through innate immunity and evading HBV

immune surveillance through various mechanisms. However, the

specific trigger responsible for shifting the immune tolerance state

of the CHB-infected liver towards an immune-activated state,

ultimately resulting in liver inflammation and liver injury,

remains unidentified.

As the body of evidence regarding the involvement of HBV in

metabolic processes grows, it becomes increasingly clear that HBV

employs a dual strategy for entering target cells (10, 13, 21). Besides,

our review initially emphasizes the significant role of HBV-induced

metabolic changes in hepatic macrophages as a key factor in the

transition from viral infection to immune activation, ultimately

leading to liver inflammation. We propose that metabolic

alterations in specific hepatic macrophages subsets are crucial for

CHB liver inflammation and disease progression. Our concept

presents new potential intervention strategies for achieving a

functional cure in CHB: early blockade of HBV-induced

metabolic changes and inflammation; modulation of the pro-

inflammatory phenotype of liver-resident macrophages by

targeting specific markers or genes; and targeted metabolic

therapy with antiviral and anti-inflammatory effects.
FIGURE 4

The potential immunopathology of how HBV shapes hepatic macrophage niches, ultimately leading to liver inflammation. ① Persistent HBV
stimulation induces abnormal lipid metabolism, characterized by the accumulation of metabolites such as bile acids and cholesterol in the liver

microenvironment. ② The aberrant lipid metabolism triggers an innate immune response by releasing PAMPs, such as the up-regulation of TLRs’

expression in hepatocytes, and DAMPs released by damaged hepatocyte mitochondria. ③ The accumulation of lipids recruits a specific cluster of
macrophages, possibly Lipid-Associated Macrophages (LAMs), identified by the expression of Trem2, triggering a transition into a pro-inflammatory

phenotype. ④ The activated LAMs exhibit a distinctive transcriptomic profile with elevated expression of IL-1b, IL-6, IL-12, TNF-a, CCL18, CXCL9/10,
MMP7, MMP12, M1F, S100A8/A9, leading to the recruitment of more inflammatory cells. ⑤ Deepening liver inflammation occurs as a result of
increased infiltration of inflammatory cells into the liver. The figure was created by BioRender (BioRender.com).
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However, current studies on the mechanisms of HBV-mediated

metabolic changes and intrahepatic inflammation have been

conducted either in hepatoma cell lines like HepG2 and Huh7,

HBV transgenic mice, or peripheral non-tumor tissues after surgical

resection. These in vitro experiments are insufficient to accurately

reflect the levels of HBV-mediated metabolic and inflammatory

changes (8, 24, 31–33, 36–38). Although the rapid advancement of

omics technologies, multi-omics studies on clinical liver biopsy

samples have compensated for the lack of observations on real

clinical samples, existing research still lacks monitoring of samples

from different stages of CHB’s natural history, as well as

pathological and omics-level monitoring of different spatial or

anatomical regions (13, 14, 17, 18, 51–55).

Our latest insights underscore that HBV induces significant

alterations in metabolic pathways, particularly within the interplay

between hepatocytes and the hepatic macrophage efflux system

during HBV infection (13, 21). This dynamic interaction serves as

a critical link connecting HBV infection and pro-inflammatory

activation. While this hypothesis is promising, it necessitates

further experimental validation. Several unresolved issues warrant

additional emphasis: 1) The specific metabolic profiles for distinct cell

clusters, particularly hepatocytes and macrophages at different stages

of CHB, remain un-characterized. 2) The degree of liver injury and

the extent of changes in key cellular metabolic factors have not yet be

established. 3) In-depth understanding of spatial zonation into CHB

liver by multi-omics and subsequent validations are required.

Therefore, future studies should prioritize diverse cohorts

representing different stages of CHB natural history. Combining

multi-omics sequencing technologies to analyze these abundant

clinical samples is essential for a comprehensive understanding and

control of changes at the genomic, proteomic, metabolomic, and other

levels. Bioinformatic analyses should focus on characterizing cell

cluster-specific metabolic profiles within the liver and examining

correlations between metabolic changes and key biomarkers

associated with immune activation or liver injury. Comprehensive

omics-sequence analyses and subsequent research are crucial to

substantiate these findings, aiming to elucidate the spatial and

temporal dynamics of intrahepatic metabolites and immune-

pathological profiles. Additionally, effective animal models of

inflammation progression and in vitro experiments are needed to

complement omics findings and confirm our conclusion: the potential

role of hepatic macrophages in activating metabolic changes and

inflammatory responses that ultimately result in liver injury.
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a-LA a-linolenic acid

APOE apolipoprotein E

APOC1 apolipoprotein C1

ACHD acute-on-chronic hepatic dysfunction

ASC2 activating signal co-integrator-2

ALT alanine transaminase

BA bile acid

CYP7A1 Cytochrome P450 Family 7 Subfamily A Member 1

C/EBPa CCAAT enhancer binding protein a

CHB chronic hepatitis B

CHB-
NALT

CHB patients with normal ALT

CHB-
AALT

CHB patients with abnormal ALT

CHKA choline kinase alpha

DDB1 damage binding protein 1

Egr1 early growth response protein 1

ER endoplasmic reticulum

FABP5 Fatty acid-binding protein 5

FFAs free fatty acids

FXR Farnesoid X receptor

G6Pase glucose-6-phosphatase

GFAT1 glutamine-fructose-6-phosphate amidotransferase 1

GCA Glycocholic acid

GCDCD glycochenodeoxycholic acid

GLCA glycolithocholic acid

NO nitric oxide

JNK c-Jun N-terminal kinases pathway

GnT-III N-acetylglucosaminyltransferase-III

MASLD Metabolic Dysfunction-Associated Fatty Liver Disease

HC healthy controller

HCC Hepatocellular Carcinoma

HBx HBV X protein

HBV-
ACLF

HBV-induced acute-on-chronic liver failure

HBcAg Hepatitis B core antigen

HBsAg Hepatitis B surface antigen

HBeAg Hepatitis B e antigen

HNF-4a nuclear factor-4 alpha

HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase
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KCs Kupffer cells

LXR liver X receptors

LCs liver cirrhosis

LC-MS-MS Liquid Chromatography with tandem mass spectrometry

LXRE LXR-response element

LAMs Lipid-Associated Macrophages

LRH-1 liver receptor homolog-1

LDLR low-density lipoprotein receptor

MerTK Mer tyrosine kinase

MDMs monocyte-derived macrophages

NPCs non-parenchymal cells

NCs normal controls

NTCP sodium taurocholate co-transporting polypeptide

NLRs nucleotide-binding oligomerization domain-like receptors

NAFLD Nonalcoholic fatty liver disease

PBMC peripheral blood mononuclear cells

PEPCK Phosphoenolpyruvate Carboxykinase

PRRs pattern recognition receptors

PPARa Peroxisome proliferator-activated receptor a

PTHs Primary Tupaia hepatocytes

PHHs Primary human hepatocytes

AKT Phosphoinositide 3-kinase (PI3K)/protein kinase B

ROS reactive oxygen species

SHP small heterodimer protein

SEMA6B semaphorin 6B

SREBP1 Sterol Regulatory Element-binding Protein-1

scRNA-seq single-cell RNA-sequencing

TDCA Taurodeoxycholic acid

TLCA Taurolithocholic Acid

TLRs Toll-like receptors

TUCDA Tauroursodeoxycholic acid

TCA Taurocholic Acid

TCDCA Taurochenodeoxych

TNF-a tumor necrosis factor

UPLS-MS Ultra-performance liquid chromatography-mass spectrometry

VLDL very low-density lipoprotein
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