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Plasma metabolome analysis for
predicting antiviral treatment
efficacy in chronic hepatitis B:
diagnostic biomarkers and
therapeutic insights
Deying Chen1, Yingfeng Lu1, Jiangshan Lian1, Jiong Yu1,
Liang Li2* and Lanjuan Li1*

1State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research
Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University,
Hangzhou, China, 2The Metabolomics Innovation Centre and Department of Chemistry, University of
Alberta, Edmonton, AB, Canada
The early and accurate identification of predictive biomarkers for antiviral

treatment efficacy remains a significant clinical challenge, particularly in the

management of chronic hepatitis B (CHB). This study aimed to assess whether

the plasma metabolome could reliably predict the success of antiviral therapy in

CHB patients. We conducted a retrospective analysis on 56 treatment-naive CHB

patients at the First Affiliated Hospital of Zhejiang University fromDecember 2013

to March 2016. Patients who underwent a 48-week treatment regimen of

entecavir (ETV) and interferon-alpha (IFN-a) were randomly assigned to either

a discovery cohort (n=29) or a validation cohort (n=27). Based on the outcome of

the treatment, patients were classified as HBeAg seroconversion group (High

responders, Hrp) or the non-remission group (Low responder, Lrp). Our

methodology involved an untargeted analysis of the amine/phenol and

carboxylic acid submetabolomes in the CHB patients under treatment, utilizing

chemical isotope labeling (CIL) techniques with liquid chromatography-mass

spectrometry (LC-MS). Several metabolites were identified as having significant

diagnostic potential for distinguishing Hrp from Lrp, with areas under the receiver

operating characteristic curve (AUC) exceeding those typical clinical indicators.

Notably, four metabolites, namely 2-methyl-3-ketovaleric acid, 2-ketohexanoic

acid, 6-oxo-1,4,5,6-tetrahydronicotinic acid, and a-ketoisovaleric acid,

demonstrated exceptionally high sensitivity and specificity in both cohorts,

nearing 100%. In contrast, the clinical indicators, including HBcAb, log(HBsAg),

and HBeAb, demonstrated lower and inconsistent sensitivity and specificity

between the discovery and validation cohorts. Using HBcAb as a marker, the

sensitivity was 87.5% with 76.9% specificity in the discovery cohort; however, the

sensitivity dropped to 46.7% with 91.7% specificity in the validation cohort. Using

log(HBsAg), the sensitivity was 84.6% with 69.2% specificity in the discovery
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cohort, compared to 85.7% sensitivity and 83.3% specificity in the validation

cohort. For HBeAb, the separation of Hrp and Lrp had a sensitivity of 87.5% with

69.2% specificity in the discovery cohort, while the validation cohort showed

86.7% sensitivity and 91.7% specificity.
KEYWORDS

metabolomics, chronic hepatitis B, antiviral therapy, predictive biomarkers,
immune response
1 Introduction

Chronic hepatitis B (CHB) presents a significant global public

health challenge, affecting an estimated 257 million people

worldwide. It is a leading cause of liver cirrhosis and

hepatocellular carcinoma (HCC) (1). Hepatitis B e-antigen

(HBeAg) seroconversion is recognized as a crucial marker for

achieving HBV suppression and delaying disease progression in

CHB patients (2). The current treatment regimen for CHB includes

nucleoside analogs (NAs) and interferon-alpha (IFN-a). NAs, such
as lamivudine, adefovir, telbivudine, entecavir, and tenofovir, work

by suppressing HBV replication through the inhibition of viral

DNA polymerase. However, these treatments rarely lead to HBsAg

seroconversion (3). IFN-a therapy, on the other hand, has been

shown to induce HBsAg seroconversion in a minority of CHB

patients (4, 5). Combination therapy involving IFN has been found

more effective in treating CHB patients when compared to

nucleoside analog monotherapy, although seroconversion is

achieved in only a limited subset of patients (6–8). To this end,

the pursuit of optimized, individualized treatment and management

strategies becomes crucial for enabling the majority of CHB patients

to achieve a functional cure.

In this retrospective study, we analyzed the outcomes of patients

treated with a combination of interferon (IFN) and nucleos(t)ide

analogs (NA) at our hospital between January 2014 and December

2016. The patients were divided into two groups based on their 48-

week clinical outcomes: those who achieved HBeAg seroconversion

(High Responders, Hrp) and those who did not (Low Responders,

Lrp). The aim of our study was to investigate whether observing

changes in metabolic patterns before or during antiviral therapy

could provide insights into the impact of treatments on metabolic

processes. We hypothesized that identifying patients who are likely

to respond to specific antiviral or immunomodulatory treatments

using efficacy prediction biomarkers, either before or during the

course of therapy, could improve rates of HBeAg and hepatitis B

surface antigen (HBsAg) seroconversion, as well as HBsAg

seroclearance. We believe that the development of personalized

treatment strategies based on these biomarkers is a promising

approach to enhance treatment efficacy and optimize healthcare

resource utilization in the management of chronic hepatitis B. A

targeted treatment strategy, which accurately selects patients who
02
are more likely to respond well to particular treatment regimens, is

expected to increase cure rates compared to a generalized treatment

model. By implementing personalized treatment plans based on

predictive biomarkers, healthcare providers can allocate resources

more effectively and improve overall patient outcomes.

In this work, we utilized a chemical isotope labeling (CIL) liquid

chromatography-mass spectrometry (LC-MS) metabolomics

platform to characterize the amine/phenol and carboxylic acid

submetabolomes. In CIL LC-MS, various labeling chemistries

were employed to profile different submetabolomes, resulting in a

more comprehensive coverage of the metabolome with accurate

relative quantification of individual metabolites (9). Our analysis

encompassed nearly 3000 metabolites through the examination of

these two submetabolomes. Several metabolites were identified to

have substantial diagnostic value in differentiating between Hrp and

Lrp, demonstrating significantly higher areas under the receiver

operating characteristic curve (AUC) than those observed with

clinical markers. A set of metabolites were found to be associated

with HBeAg seroconversion in individuals with chronic hepatitis B.

We observed changes in key metabolites that could potentially

support anti-HBV innate immunity or anti-inflammatory effects,

providing new perspectives for treating and preventing

inflammatory diseases. Patients with favorable treatment

responses exhibited activated immune systems and gradually

controlled inflammation levels over time. Given that the hepatic

inflammatory reaction in CHB patients can lead to sustained

damage and fibrosis of liver tissue, it is critical to understand the

molecular mechanisms and metabolic regulation of the hepatic

inflammatory response during treatment. Gaining these insights

will be crucial for developing new and optimized treatment

strategies and interventions that can help more patients achieve a

functional cure.
2 Materials and methods

2.1 Patient cohort and study design

The study included 56 patients diagnosed with chronic hepatitis

B (CHB) at the First Affiliated Hospital of Zhejiang University in

Hangzhou, China, between December 2013 and March 2016.
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Patients were randomly assigned to a discovery cohort (n=29) and a

validation cohort (n=27). All patients showed clinical, biochemical,

and virological evidence of chronic HBV infection, evidenced by

persistent plasma HBsAg positivity for over six months and anti-

HBcAg antibody positivity. These patients had not received any

prior antiviral treatment and were clinically diagnosed as CHB

patients according to the ‘Guidelines for the Prevention, Care, and

Treatment of Persons with Chronic Hepatitis B Infection’ (10).

Exclusion criteria included patients with cirrhosis, concurrent liver

cancer, metabolic diseases such as diabetes and hyperthyroidism,

co-infection with hepatitis C, other forms of viral hepatitis, HIV

infection, neurological or psychiatric abnormalities, and allergies to

interferon or entecavir. The research protocol was approved by the

hospital’s human ethics committee, and informed consent was

obtained from all participants.

The study involved administering immunotherapy and

interferon drugs to all participants for a duration of 48 weeks.

The treatment plan included the use of the first-line antiviral drug

entecavir (ETV) as a nucleotide analog and the selection of

interferon alpha (IFN-a) as an immunomodulator. The drug

regimen consisted of subcutaneous injections of PegIFNa at a

dose of 180 µg once a week, and entecavir at doses of 0.5 mg/d.

Follow-up assessments were conducted at baseline, 24 weeks, and

48 weeks after the initiation of treatment. The main observational

indicators included changes in symptoms and signs, hepatitis B

markers, HBV DNA levels, liver function, kidney function, blood

routine, and the monitoring and recording of relevant

adverse reactions.

Fasting blood samples were collected at designated time points

and stored for subsequent analysis. Virological response was

defined as a reduction in HBV DNA levels to below the detection

limit of 20 IU/mL. HBeAg seroclearance was characterized by a

reduction in HBeAg levels to below the detection threshold, with or

without HBeAg seroconversion (defined as ≤ 1 S/CO),

accompanied by the emergence of HBeAb (hepatitis B e-

antibody). Based on the status of HBeAg seroconversion

following treatment, patients were classified into two groups:

‘High Responder’ (Hrp) for those who achieved seroconversion,

and ‘Low Responder’ (Lrp) for those who did not.
2.2 Biochemical tests

Clinical and laboratory data were retrospectively collected from

outpatient medical records in accordance with standard

biochemical tests and guidelines. Parameters for hepatic and renal

function, including albumin (Alb), alanine aminotransferase (ALT),

aspartate aminotransferase (AST), alkaline phosphatase (ALP),

gamma-glutamyl transferase (GGT), total bilirubin (TB), direct

bilirubin (DBIL), total bile acids (TBA), blood urea nitrogen

(BUN), and creatinine, were measured using an automated

biochemical analyzer. For immunological assessments, markers of

hepatitis B virus (HBV) infection, such as hepatitis B e-antigen

(HBeAg), hepatitis B e-antibody (HBeAb), hepatitis B surface

antigen (HBsAg), hepatitis B surface antibody (HBsAb), and

hepatitis B core antibody (HBcAb), were quantified using an
Frontiers in Immunology 03
automated chemiluminescence analyzer. Quantification of HBV

DNA was performed with a quantitative real-time PCR analyzer.

HBV DNA levels were specifically measured using the Roche

COBAS TaqMan HBV Test, Version 2.0, which has a detection

limit of 20 IU/mL. HBeAg levels were determined using an enzyme

immunoassay capable of detection of as low as 1 S/CO. HBsAg

quantification was conducted with the Elecsys HBsAg II assay

(Roche Diagnostics, Germany), which has a sensitivity of down to

0.05 IU/mL. Complete blood counts, including white blood cell

(WBC) count, platelet (PLT) count, and hemoglobin (HGB) levels,

were analyzed with automated hematology analyzers.
2.3 Metabolomics analysis

Plasma samples stored at -80 °C were thawed at room

temperature for one hour. For each sample, two aliquots of 30 µL

were prepared: one for dansylation and the other for DMPA (p-

dimethylaminophenacyl) labeling. To precipitate proteins, a

threefold volume of ice-cold methanol was added to each aliquot.

The mixtures were then centrifuged at 18,000 g for 30 minutes

at room temperature. The clear supernatant was carefully

transferred to a new 0.5-mL plastic vial and subsequently dried

using a SpeedVac vacuum concentrator in preparation for

chemical labeling.

Dansylation and DMPA labeling were carried out in accordance

with established protocols to profile the amine/phenol (11) and

carboxylic acid submetabolomes (12), respectively. Normalization

of sample amounts was achieved by measuring the total UV

absorbance of the dansyl-labeled metabolites on a Waters

ACQUITY UPLC system (13). Concentrations of labeled

metabolites were quantified for each sample using a calibration

curve based on amino acid standards.

For the LC-MS analysis, an equal molar quantity of each

individual 12C-dansyl or DMPA labeled sample was mixed with a
13C-dansyl or DMPA labeled reference pool. The mixtures were

analyzed using reversed-phase LC-QTOF-MS on a Bruker Impact II

instrument under previously established conditions (14).

Metabolite peak pairs with 12C/13C labels were identified in the

mass spectra, with peak intensity ratios providing a measure of

concentration differences between individual samples and the

reference pool. As the same reference pool was employed for all

samples, the peak ratio values reflected relative concentration

variations among the samples. To ensure quality control, a QC

sample comprising equal moles of 12C- and 13C-labeled pooled

samples was run after every 20 sample analyses.
2.4 Data processing and analysis

In the CIL LC-MS approach, 12C/13C-dansyl or DMPA labeled

metabolites were detected as peak pairs. The extraction of these

metabolite peak pairs, alignment across samples, and retrieval of

missing values were performed using the IsoMS Pro software (15).

Metabolite identification was done in a three-tiered metabolite

identification approach as previously described (16). Volcano plot
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analysis was conducted as an effective and easy-to-understand

graphical method that summarizes both fold-change and

significance. It is a scatter plot that displays the negative log10-

transformed p-values from the t-test against the log2 fold-change.

Additionally, multivariate principal component analysis (PCA) and

partial least squares (PLS) modeling were carried out using the

software SIMCA 12+ and MetaboAnalyst for comprehensive

data interpretation.
3 Results

3.1 Basic clinical characteristics of patients

This study’s discovery cohort, showed in Table 1A, provides a

detailed overview of the demographic and clinical characteristics of

the participants, tracked at the onset of the study at baseline (T0), at

24 weeks (T24), and at 48 weeks (T48). The discovery cohort was
Frontiers in Immunology 04
divided based on the clinical outcomes observed at 48 weeks into

two distinct groups. The Hrp group, with an average age of 31.3 ±

7.0 years, was comprised of 11 men and 5 women, while the Lrp

group had an average age of 29.3 ± 7.5 years, including 11 men and

2 women.

Clinical observations revealed significant decreases in HBeAb,

HBsAg, HBV DNA, ALT, and AST levels at both 24 weeks (T24)

and 48 weeks (T48) of antiviral treatment in the Hrp group when

compared to baseline (T0). It was found that HBV DNA levels

became undetectable by week 24 of treatment in the Hrp group, and

this undetectable status persisted until the end of the treatment

period at week 48. The undetectable HBV DNA levels serve as a

direct measure of effective viral replication suppression, a key

indicator of successful antiviral treatment. Conversely, the Lrp

group showed a significant 3-log reduction but did not reach

undetectable levels, indicating less effective viral suppression. The

initial higher levels of HBeAg observed in the Lrp group suggest a

correlation between elevated baseline HBeAg levels and poorer
TABLE 1 Demographic and clinical characteristics of the study population in (A) discovery cohort and (B) in validation cohort, tracked at the onset of
the study (0 weeks), at 12 weeks (T12), and at 48 weeks (T48).

Table 1(A) Discovery set, Hrp (n=16) Discovery set, Lrp (n=13)

Age, mean ± SD 31.3 ± 7.0 29.3 ± 7.5

Age, range 20–46 19–43

Males,n(%) 11(69) 11(85)

Week 0 Week 24 Week 48 Week 0 Week 24 Week 48

HBsAb(MIU/mL) 3.7 ± 4.7 12.9 ± 36.5 15.9 ± 55.9 0.4 ± 0.6 0.5 ± 0.5 1.8 ± 5.3

HBcAb (S/CO) 13.4 ± 2 11.1 ± 2.5* 11 ± 3.1* 11.2 ± 1.1 10.6 ± 1.5 11.3 ± 1.7

HBeAg(PEIU/mL) 173.1 ± 162.9 11.8 ± 40.1* 0.2 ± 0.2* 315.9 ± 213.4 95.9 ± 105.2* 641.3 ± 2049.2

HBeAb(IU/mL) 27.9 ± 23.8 2.8 ± 6.8* 0.5 ± 0.6* 54.3 ± 22.8 26 ± 20.1* 15.7 ± 16.5*

log(HBsAg) IU/mL 3.6 ± 1.2 2.4 ± 1.5* 2.6 ± 1.1* 4.4 ± 0.5 3.9 ± 0.5* 3.8 ± 0.4*

log(HBV) IU/mL 6.9 ± 1.4 Not detect* Not detect* 7.9 ± 0.9 4.4 ± 0.9* 4.5 ± 1.4*

Alb (g/L) 47.4 ± 4.2 47.4 ± 3.9 46.3 ± 3.7 45.8 ± 3 47.8 ± 2.3 47.1 ± 2.5

Glob (g/L) 28.5 ± 4.4 28.5 ± 4.1 28.2 ± 3.7 26.4 ± 1.8 28.1 ± 2.5 28.1 ± 3

ALT(U/L) 203.4 ± 257.9 35.2 ± 26.2* 25.3 ± 12.8* 132.5 ± 107.2 35.2 ± 16* 35.8 ± 17.1*

AST(U/L) 118.6 ± 144.5 26.2 ± 11.4* 22.1 ± 6.5* 67.1 ± 35.7 26.8 ± 10.5* 28.1 ± 11.2*

ALP(U/L) 83.3 ± 23.2 67.2 ± 15.4* 64.7 ± 14.7* 76.4 ± 23.7 72.8 ± 17.5 63.8 ± 13.7

GGT(U/L) 61.3 ± 47.1 26.4 ± 22.5* 25.3 ± 16.5* 49.8 ± 35.1 32.2 ± 17.6 27.2 ± 17.4

TBIL(µmol/L) 15.1 ± 5 9.4 ± 3.7* 9.2 ± 3.3* 12.8 ± 3.1 10 ± 3.2* 9.1 ± 2.9*

TBA(µmol/L) 14.4 ± 29 10.4 ± 14.3 15.1 ± 33.5 6.5 ± 4.7 7 ± 9.1 9.2 ± 11.2

BUN(mmol/L) 4.7 ± 0.9 4.2 ± 0.9 4.4 ± 0.9 3.9 ± 1 3.9 ± 0.8 4.1 ± 0.9

CR(µmol/L) 70.5 ± 14.2 70.6 ± 11.8 68.1 ± 14.4 68.4 ± 11.6 65.2 ± 11 64 ± 11.2

WBC(10 E9/L) 5.7 ± 1.7 5.3 ± 2.1 4.8 ± 1.5 5.7 ± 0.9 4.6 ± 1.8 4.4 ± 1.4

PLT(10 E9/L) 187.3 ± 61.4 160.7 ± 55.6 145.3 ± 51.2 192.8 ± 30.1 144.5 ± 27.7 167 ± 47.5

HGB(g/L) 145 ± 15.8 139.9 ± 17.6 133.9 ± 17.6 150 ± 16.4 140.4 ± 22.4 133.8 ± 21.5
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treatment responses. Similarly, the lower HBeAg levels in the Hrp

group before starting therapy could indicate a lower viral disease

burden, which may have potentially contributed to their more

favorable treatment outcomes. These findings suggest a

relationship between baseline HBeAg levels and treatment

efficacy, with lower pre-treatment HBeAg levels associated with

better responses to therapy. In the later discussion, we will

separately compare the clinical indicators and metabolic markers

to predict differences in responses to antiviral therapy, with the goal

of identifying sensitive and specific markers to predict

treatment efficacy.

At the 24-week, both groups experienced significant reductions

in HBeAg levels, with the Hrp group showing a more pronounced

decrease (93% reduction in Hrp versus 70% in Lrp). This

demonstrates a stronger response to therapy in the Hrp group in

terms of both viral suppression and antigen level reduction.

Additionally, the continuous decline in ALT levels throughout the

treatment in both groups signifies a substantial reduction in liver
Frontiers in Immunology 05
inflammation among chronic hepatitis B (CHB) patients. However,

the Lrp group saw an increase in HBeAg levels during the later

stages of treatment, with no further reduction in HBV DNA levels,

indicating a plateau in the treatment’s effectiveness. Despite these

challenges, the initial 24 weeks of antiviral immune therapy yielded

positive therapeutic effects for both groups, highlighting the

potential for early intervention and tailored treatment strategies

in managing CHB. The demographic and clinical characteristics of

patients of the validation cohort (Table 1B) were, in general, quite

similar to those described for the discovery cohort.
3.2 Metabolome data analysis

We applied CIL LC-MS for the targeted screening of the amine/

phenol and carboxylic acid submetabolomes in patients with

chronic hepatitis B (CHB) during treatment, considering that

metabolites containing amine, phenol, or acid functional group(s)
Table 1(B) Validation set, Hrp (n=15) Validation set, Lrp (n=12)

Age, mean ± SD 28.3 ± 4.2 30.1 ± 5.1

Age, range 22–35 22–36

Males,n(%) 9(60) 10(83)

T0 T24 T48 T0 T24 T48

HBsAb(MIU/mL) 0.8 ± 1.4 1.0 ± 1.4 1.0 ± 1.1 0.4 ± 0.5 0.4 ± 0.4 1.4 ± 3.7

HBcAb (S/CO) 12.9 ± 1.5 11.9 ± 1.0* 11.6 ± 1.1* 11.4 ± 1.7 11.3 ± 1.1 11.2 ± 1.9

HBeAg(PEIU/mL) 80.8 ± 124.4 0.8 ± 0.9* 0.2 ± 0.3* 446.6 ± 370.6 127 ± 124.7* 148.6 ± 122.6*

HBeAb(IU/mL) 13.6 ± 18.2 0.6 ± 0.6* 0.3 ± 0.6* 64.9 ± 23.9 26 ± 20.7* 23.7 ± 16.7*

log(HBsAg)
IU/mL 4.0 ± 0.6 3.0 ± 0.7* 3.1 ± 0.9* 4.7 ± 0.4 3.9 ± 0.5* 3.8 ± 0.4*

log(HBV) IU/mL 7.3 ± 1.0 Not detect* Not detect* 7.6 ± 1.9 4.8 ± 1.4* 5.1 ± 1.7*

Alb (g/L) 46.6 ± 3.7 48 ± 2.8 45 ± 2.6 47.2 ± 2.3 48.1 ± 2.6 45.5 ± 3.2

Glob (g/L) 27.7 ± 3.1 27.6 ± 3.1 27.4 ± 4.9 28.2 ± 3.9 27.8 ± 4.0 28.6 ± 5.5

ALT(U/L) 177.5 ± 123.3 40.9 ± 35.4* 30.5 ± 26.2* 150.9 ± 107.2 45.2 ± 28.7* 40.3 ± 49.2*

AST(U/L) 94.3 ± 54.7 29.9 ± 18.4* 23.1 ± 8* 69.2 ± 42.2 30.0 ± 13.0* 24.2 ± 16.1*

ALP(U/L) 81.6 ± 22.8 67.1 ± 13.1* 59.4 ± 10.6* 83.9 ± 32.6 69.9 ± 19.3 64.5 ± 22.3

GGT(U/L) 52.3 ± 23.4 36.1 ± 39.7 25.4 ± 23.9* 50.8 ± 38.9 45.6 ± 47.9 32.6 ± 37.0

TBIL(µmol/L) 18.5 ± 6.4 11.7 ± 2.9* 11.5 ± 4.8* 14.8 ± 4.4 11.5 ± 4.7 11.3 ± 3.6*

TBA(µmol/L) 11.7 ± 11.5 6.3 ± 4.2 5.9 ± 5.0 4.4 ± 3.8 4.4 ± 3.0 5.4 ± 3.7

BUN(mmol/L) 4.3 ± 1.3 3.9 ± 1.3 4.0 ± 0.8 4.6 ± 1.3 4.5 ± 1.4 4.4 ± 1.0

CR(µmol/L) 63.7 ± 16.5 66.4 ± 14.7 66.1 ± 16.2 79.1 ± 12.1 77.8 ± 16.7 78.5 ± 20.2

WBC(10 E9/L) 5.8 ± 1.4 5.0 ± 1.1 4.9 ± 1.2 6.3 ± 2.2 5.0 ± 1.3 4.9 ± 1.4

PLT(10 E9/L) 198.1 ± 66.4 145.5 ± 47.2 152.8 ± 40.2 189.8 ± 45 138.1 ± 52.5 156.4 ± 49.5

HGB(g/L) 148.7 ± 12.9 140.5 ± 17.3 130.8 ± 18.8 159.8 ± 10.2 149.8 ± 9.9 146.2 ± 14.5
This table includes patient data on the following clinical indicators: HBsAb, Hepatitis B Surface Antibody; HBcAb, Hepatitis B Core Antibody; HBeAg, Hepatitis B e-Antigen; HBeAb, Hepatitis B
e-Antibody; HBsAg, Hepatitis B Surface Antigen; HBV DNA, Hepatitis B Virus DNA; Alb, Albumin; Glob, Globulin; ALT, Alanine Aminotransferase; AST, Aspartate Aminotransferase; ALP,
Alkaline Phosphatase; GGT, Gamma-Glutamyl Transferase; TBIL, Total Bilirubin; TBA, Total Bile Acid; BUN, Blood Urea Nitrogen; CR, Creatinine; WBC, White Blood Cell count; PLT, Platelet
count; HGB, Hemoglobin.
*P < 0.05 compared with control (T0).
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are involved in many metabolic pathways. This technique was

preferred for its ability to mitigate matrix effects and ion

suppression, which often complicate conventional LC-MS

analyses (17). The incorporation of differential isotope labeling

enhances the measurement of metabolic changes with improved

accuracy and precision. We included peak pairs that appeared in

over 80% of the samples within each group for statistical analysis.

Combining the two cohorts’ metabolome data, we identified 1,398

peak pairs or metabolites within the amine/phenol submetabolome

and 1,506 peak pairs or metabolites within the carboxylic acid

submetabolome. Detailed results are presented in Supplementary

Table S1. A tier 1 and tier 2 approach facilitated the positive

identification of 658 metabolites. Additionally, matches were

found for 658, 1,008, and 310 peak pairs within the zero-, one-,

and two-reaction MyCompoundID libraries, respectively. Thus, out

of the 2,904 peak pairs detected, 2,634 (90.7%) were either positively

identified or matched. This extensive coverage enabled us to

monitor metabolic changes throughout the treatment process,

offering the potential to discover biomarkers that could be used to

refine personalized treatment strategies and enhance the likelihood

of achieving a functional cure for a broader segment of patients with

chronic hepatitis B (CHB).
3.3 Multivariate comparison of metabolic
changes during antivirus-therapy

Principal component analysis (PCA) offers an unsupervised

approach to investigate multivariate differences among sample

groups at specific time points. Supplementary Figure S1 displays

PCA scores plots for the discovery cohort (A) and the validation

cohort (B), demonstrating the multivariate distribution of sample

groups at distinct time intervals: baseline (T0), after 24 weeks (T24),

and after 48 weeks (T48), along with quality control (QC) samples.

The tight clustering of the QC samples underscores the

methodological consistency throughout the analyses. After

excluding QC samples, the partial least squares discriminant

analysis (PLS-DA) plots were generated and presented

in Figures 1A, B, illustrating the metabolomic data-driven

separation and clustering of two distinct patient cohorts: Hrp and

Lrp observed at three different time intervals, baseline (T0), 24

weeks (T24), and 48 weeks (T48). These two plots effectively

demonstrate how, over the course of treatment, the Hrp groups

form tight clusters within a specific region, whereas the Lrp groups

are more widely dispersed in a neighboring area, with some overlap

observed between the two groups. The Hrp groups are denoted

by a bright color scheme, while the Lrp groups are represented by

a darker palette. This color differentiation provides a clear visual

distinction that mirrors the metabolic variances observed between

the CHB patient groups. Panels C and D of Figure 1 show the

plots for the Hrp group across baseline (T0), 24 weeks (T24), and

48 weeks (T48) time points in the discovery and validation sets,

respectively. This allows visualization of clustering and separation

of the Hrp group samples at different stages of treatment in the two

independent cohorts. Similarly, Panels E and F of Figure 1 illustrate
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the plots for the Lrp group across the same time intervals in the

discovery and validation sets, respectively. These four panels trace

the metabolic trajectories of the Hrp and Lrp groups in both cohorts

throughout the antiviral therapy and provide a graphical

representation of the metabolic evolution in response to

the treatment.
3.4 Cross-sectional and
longitudinal analysis

We will divide the subsequent analysis into two parts. Part one

(Cross-sectional study) focuses on searching for predictive

biomarkers of antiviral treatment efficacy by analyzing the

differences in the metabolome of patients with varying levels of

immune response before receiving antiviral treatment (T0),

selecting potential biomarkers related to treatment efficacy, and

drawing ROC curves to evaluate the accuracy and reliability of the

model. Part two (Longitudinal study) focuses on the analysis of the

dynamic changes in the metabolome during antiviral treatment by

studying the dynamic changes in the metabolome of patients with

different levels of immune response during antiviral treatment,

understanding the relationship between changes in the

metabolome and treatment efficacy, and drawing a new

perspective for treatment monitoring.

3.4.1 Cross-sectional study: searching for
predictive biomarkers of antiviral
treatment efficacy

In this part, binary comparisons between the two treatment

groups were conducted using a fold-change threshold of either ≥1.5

or ≤0.67, controlling the false discovery rate at 5% (q-value ≤0.05).

In the discovery cohort, this analysis identified significant

differences in the number of metabolites at baseline (0 weeks),

mid-treatment (24 weeks), and end–treatment (48 weeks), with

counts of 227, 96, and 548 significant metabolites, respectively, in

the Hrp group compared to the Lrp group. Similarly, in the

validation cohort, the analysis uncovered significant differences in

the number of metabolites at the same time points, with 162, 54, and

352 significant metabolites, respectively, in the Hrp group

compared to the Lrp group. These results are depicted in Figure 2

using a Venn diagram. While there were differences in the

metabolome level between the two groups before the start of

treatment in both cohorts (227 vs. 162), by week 24, the

difference in the number of differential metabolites between the

two groups was more than halved in both cohorts (96 vs. 54).

However, a significant increase was observed at the subsequent 48

weeks in both cohorts (548 vs. 352). This aligns with clinical

treatments. Both groups showed improvement in clinical

indicators at 24 weeks, but the improvement was more

pronounced in the Hrp group. A possible explanation for this is

that at 24 weeks of antiviral therapy, both groups exhibited a decline

in HBV DNA, HBeAg, and HBsAg levels, mitigating the

metabolomic differences between the groups. However, in the

later stages of treatment, the Lrp group experienced a rebound.
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In clinical practice, there is still no effective clinical predictive

indicator for predicting the antiviral treatment efficacy in chronic

hepatitis B patients. It is indeed desirable to identify indicators that

can predict the efficacy of antiviral treatment in patients before the

therapy begins. By comparing the differences between the two

groups at T0 (baseline), it may be possible to find potential

predictive biomarkers. As shown in the volcano plots generated

for this comparison (Figures 3A, B), a total of 227 and 162

significant metabolites were altered in the discovery and

validation cohort, respectively. We focused on the tier 1 and tier

2 metabolites, as shown in Supplementary Table S2. The most

abundant metabolite families found to be altered in both cohorts

were carboxylic acids and derivatives, keto acids and derivatives,

and fatty acids, as shown in Figures 3C, D. We concentrated on

metabolites predictive of treatment efficacy. Figure 4 shows the five

metabolites with AUC values of greater than or equal to 0.9, with

high sensitivity and specificity, that exhibited changes in the
Frontiers in Immunology 07
discovery cohort (Figure 4A) and validation cohort (Figure 4B).

Among them, four metabolites, namely C_1055 (2-methyl-3-

ketovaleric acid), C_1141 (2-ketohexanoic Acid), C_260 (6-oxo-

1,4,5,6-tetrahydronicotinic acid), and C_1012 (a-ketoisovaleric
acid), demonstrated exceptionally high sensitivity and specificity

in both cohorts, nearing 100%. Figure 4C shows the boxplots for

each of the five metabolites, separately for the discovery and

validation cohorts. However, C_1117 (leukotriene E4) stands out

as an anomaly. Its specificity in the validation cohort dropped from

100% to 66.7%, although the AUC value for leukotriene E4

remained significantly high, surpassing 0.9 (Figure 4D).

Similarly, to compare the predictive ability of metabolites with

clinical indicators, we selected the top three clinical indicators based

on their AUC values and evaluated their sensitivity and specificity

in predicting treatment outcomes, as shown in Figure 5. Compared

with clinical predictive indicators, the metabolites exhibit a more

robust predictive ability compared to clinical indicators. For
B

C D

E F

A

FIGURE 1

PLS-DA plots demonstrating the data-driven separation and clustering of two patient cohorts, discovery (A) and validation (B), at three time intervals,
excluding QC samples. Time-point specific plots for the Hrp group in the discovery (C) and validation (D) sets, and for the Lrp group in the discovery
(E) and validation (F) sets.
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instance, the sensitivity of HBcAb decreased from 87.5% in the

discovery cohort to 46.7% in the validation cohort. The specificity of

HBsAg increased from 69.2% in the discovery cohort to 83.3% in

the validation cohort, while the specificity of HBeAb increased from

69.2% in the discovery set to 91.7% in the validation set, indicating

the inconsistency and unreliability of clinical indicators in

predicting treatment outcomes.

The above comparison of the performance of metabolite

predictors and clinical indicators indicates that metabolic

biomarkers possess not only high sensitivity and specificity in

predicting therapeutic efficacy, but also exhibit superior
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robustness, stability, and reproducibility, compared to the use of

clinical indicators as predictive biomarkers.

3.4.2 Longitudinal study: analyzing the dynamic
changes in the metabolome during
antiviral treatment

We have examined the temporal changes in metabolic profiles

within a cohort undergoing antiviral treatment, tracking the

evolution of these profiles from the initial baseline to the end of

the treatment period. Figure 6 presents a Venn diagram illustrating

the metabolites within each group that exhibited significant changes
B

A

FIGURE 2

Venn diagrams showing the count of significantly differentially expressed metabolites between the Hrp and Lrp groups at baseline (T0), 24 weeks
(T24), and 48 weeks (T48) for both the discovery (A) and validation (B) cohorts. The metabolites were considered significant if they met the following
criteria: a fold change of ≥ 1.5 or ≤ 0.67 and a false discovery rate controlled at 5% using a q-value ≤ 0.05.
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at different time points (T0 vs T24, T0 vs T48, T24 vs T48) for two

groups in both cohorts. The analysis applied a fold-change

threshold of either ≥ 1.5 or ≤ 0.67, with a false discovery rate set

at 5% (q-value of ≤ 0.05).

In the discovery cohort, intra-group analysis revealed that the

Hrp group exhibited 334 differential metabolites throughout the

course of treatment, in contrast to the 482 metabolites identified in

the Lrp group. In the validation cohort, intra-group analysis showed

that the Hrp group exhibited 531 differential metabolites

throughout the course of treatment, in contrast to the 703

metabolites identified in the Lrp group. Notably, a more

pronounced intra-group alteration in the metabolite profile was

observed in the Lrp group in both cohorts, signifying a significant

shift in the plasma metabolic pattern of patients with chronic

hepatitis B (CHB) within this group during the stages of

antiviral therapy.

We also focused on the metabolites identified within each group

over time, as detailed in Supplementary Table S3. We compared

metabolites that changed significantly during the treatment in both

cohorts to distinguish shared and unique metabolic alterations. In

our analysis of the Hrp group during antiviral treatment, we

identified 34 differential common metabolites present in both the

discovery and validation sets, with their heatmap displayed in

Figure 7A. Similarly, in the Lrp group, we found 48 common

differential metabolites common to both sets, with their heatmap

displayed in Figure 7B. Among them, five metabolites, (7S,8S)-

DiHODE, octadec-9-ene-1,18-dioic acid, prostaglandin J2 (PGJ2),

9-oxoODE, and 15d-PGJ2, were identified as their common
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significantly changed metabolites. At week 24 of the treatment,

the levels of these metabolites were higher in the Hrp group than in

the Lrp group, with a fold change of greater than 2, while their levels

continued to decrease in the Lrp group. Supplementary Figure S2

displays the bar diagrams for these five significant metabolites

within both the discovery and validation cohorts at various

time points.
4 Discussion

The integration of metabolomic analysis into clinical practice

holds promise for improving personalized treatment strategies and

achieving better clinical outcomes. In this work, we used CIL LC-

MS to conduct the metabolomic analysis which provided a

comprehensive overview of the metabolic changes in CHB

patients during antiviral treatment. The identification of 2,904

peak pairs, with 90.7% being either positively identified or

matched, highlights the robustness of this approach in

monitoring metabolic alterations. The PCA and PLS-DA analysis

of the metabolome data clearly differentiated the metabolic profiles

of the Hrp and Lrp groups over time, indicating distinct metabolic

trajectories in response to therapy.

The cross-sectional study revealed significant differences in

metabolite levels between the Hrp and Lrp groups at baseline, 24

weeks, and 48 weeks. The identification of key metabolites, such as

2-methyl-3-ketovaleric acid and a-ketoisovaleric acid, with high

sensitivity and specificity as potential predictive biomarkers is
B

C D

A

FIGURE 3

The volcano plots and pie charts visualize the differences in plasma metabolic profiles between patients with high immune response (Hrp) and low
immune response (Lrp) at baseline (T0). Panels (A, B) present the volcano plots for the discovery and validation cohorts, respectively. These plots
display the -log10(P-value) on the y-axis and the log2(fold change) on the x-axis between the two groups. Panels (C, D) show the percentage
distribution of metabolite classes that are significantly different in the plasma of Hrp patients compared to Lrp patients for the discovery and
validation cohorts, respectively.
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particularly noteworthy (see Figure 4D). These metabolites showed

superior predictive ability compared to traditional clinical

indicators, which exhibited inconsistency and lower reliability

(see Figure 5D).

The longitudinal analysis provided valuable insights into the

dynamic metabolic changes during antiviral therapy. The Hrp

group exhibited fewer intra-group metabolic alterations compared

to the Lrp group, suggesting a more stable metabolic response to

treatment. The identification of common differential metabolites,

such as prostaglandin J2 and 15d-PGJ2, which displayed significant
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changes over time, highlights their potential role in monitoring

treatment efficacy. The more pronounced metabolic shifts observed

in the Lrp group may indicate a need for alternative or adjunctive

therapeutic strategies to enhance treatment effectiveness. The

significant changes in metabolites related to fatty acid and

carboxylic acid pathways further suggest that these metabolic

pathways could be targeted to improve antiviral responses.

Among the significant metabolites, (7S,8S)-DiHODE and 9-

oxoODE are lipid molecules derived from linoleic acid, an essential

w-6 fatty acid. They are formed through the action of lipoxygenase
B

C

D

A

FIGURE 4

The five metabolites with AUC values greater than or equal to 0.9, demonstrating high sensitivity and specificity, are shown for the discovery cohort
(A) and the validation cohort (B). Box plot diagrams for each of these five metabolites are presented separately for the discovery and validation
cohorts in (C). The AUC value, sensitivity, and specificity for each metabolite in distinguishing between Hrp and Lrp groups are provided in (D).
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enzymes, which catalyze the oxidation of linoleic acid. Both have been

demonstrated to possess anti-inflammatory properties and to

modulate the immune response (18). Prostaglandin J2 (PGJ2)

belongs to the cyclopentenone prostaglandin family, derived from

the cyclooxygenase (COX) pathway of arachidonic acid metabolism.

PGJ2 and its derivatives are known to have anti-inflammatory

properties, capable of inhibiting the expression of inflammatory

cytokines and chemokines, thus potentially serving as modulators

of inflammatory responses (19). PGJ2 has been observed to regulate

cell proliferation and induce apoptosis in various cell types, including

cancer cells (20). 15d-PGJ2 is a natural ligand of PPARg, a nuclear

receptor that plays a crucial role in the regulation of lipid metabolism,

glucose homeostasis, and inflammation. Through the activation of

PPARg, PGJ2 derivatives can impact a wide array of metabolic and

inflammatory processes (21). One study demonstrated that 15d-PGJ2
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inhibits neutrophil infiltration during the resolution phase of

inflammation, suggesting that 15d-PGJ2 may exert its effects by

promoting the death of neutrophils during the resolution process

of inflammation (22). Octadec-9-ene-1,18-dioic acid is a long-chain

dicarboxylic acid that belongs to the class of fatty acids, specifically to

the group of unsaturated dicarboxylic acids. Although some long-

chain unsaturated fatty acids and their derivatives have shown

beneficial physiological effects on human health, such as anti-

inflammatory properties and regulation of the immune system

(23), there are no clear research reports in the current public

literature regarding the specific physiological functions of octadec-

9-ene-1,18-dioic acid within living organisms.

Overall, these metabolites share similar physiological functions

related to anti-inflammatory properties, immune modulation, and

regulation of metabolic processes. Their increased levels indicate a
B

C

D

A

FIGURE 5

Diagnostic potential of the top three clinical indicators, shown by AUC values and sensitivity and specificity in predicting treatment outcomes in the
discovery (A) and validation (B) cohorts. Box plot diagrams for these indicators across both cohorts are shown in (C). The AUC, sensitivity, and
specificity values for each clinical indicator in distinguishing between Hrp and Lrp groups are detailed in (D).
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positive immune response in CHB patients undergoing antiviral

treatment. It typically also portends a favorable physiological

environment as well as an antiviral effect.

Additionally, the heatmap in Figure 7B also displays several

other metabolites that are significantly different and quite

interesting, as they may be related to immunity and

inflammation. Supplementary Figure S3 shows bar diagrams of

the trends of these metabolites such as (C-48, thiocysteine), (C-515,

tyrosine), (C-2079, retinoic Acid), (C-1278, alpha-muricholic Acid),

and (C-1803, 3beta-hydroxy-delta5-cholenic Acid).

Among them, the levels of thiocysteine and tyrosine were

significantly higher in the Lrp group compared to the Hrp group

at the end of treatment. Thiocysteine is a sulfur-containing amino

acid derivative that is structurally similar to the amino acid cysteine,

with the primary difference being the substitution of a sulfur atom

for the oxygen atom in the cysteine thiol group, resulting in a thiol-

thione group. This modification imparts unique chemical

properties to thiocysteine compared to cysteine, especially in

terms of its reactivity with metals and other compounds.

Mishanina et al. (24) indicated that thiocysteine is a potential

precursor of reactive sulfur species (RSS). Under oxidative stress

conditions, cysteine may participate in the generation of reactive

sulfur species (RSS), such as thiols and sulfur-based free radicals.

These reactive sulfur species also play important roles in cellular
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signaling and regulation (25). Additionally, there tends to be an

increase in tyrosine levels as liver fibrosis progresses through its

stages (26). This correlation between tyrosine levels and the stage of

liver fibrosis has led to the proposal of tyrosine as a potential

biomarker for assessing the severity of liver fibrosis. Thus, the

elevated levels of tyrosine and thiocysteine in the Lrp group may

suggest more advanced stages of fibrosis or inflammation, making

the measurement of these metabolites a potentially valuable tool for

clinicians in evaluating the progression of liver disease.

The metabolites of the second pattern showed higher levels in

the Hrp group compared to the Lrp group throughout the entire

treatment process, represented by retinoic acid (C-2079), alpha-

muricholic Acid (C-1278), and 3beta-hydroxy-delta5-cholenic Acid

(C-1803). Retinoic acid (RA) serves as a metabolic intermediate of

vitamin A. RA deficiency is associated with the development of

various liver diseases, including nonalcoholic fatty liver disease,

chronic hepatitis, liver fibrosis, and liver tumors (27). As the

treatment progressed, the RA content in the Hrp group gradually

exceeded that in the Lrp group and remained higher until the end of

treatment. RA supplementation has shown potential in preventing

or treating these conditions by regulating relevant signaling

pathways, oxidative stress, and cell differentiation (28). Recent

research has demonstrated a substantial correlation between

vitamin A levels and the onset and progression of liver injury
B

C D

A

FIGURE 6

Venn diagrams illustrate the count of significantly altered metabolites from binary comparisons at treatment time points (T0 vs T24, T0 vs T48, T24
vs T48) for high (Hrp) and low (Lrp) immune response groups: (A) for Hrp and (B) for Lrp in the discovery cohort, followed by (C) for Hrp and (D) for
Lrp in the validation cohort. Each circle in the Venn diagram represents a binary comparison between two time points (T0 vs. T24, T0 vs. T48, and
T24 vs. T48), and the overlapping regions indicate the number of metabolites that are significantly changed in multiple comparisons. The analysis
applies a fold change threshold of ≥ 1.5 or ≤ 0.67 and controls the false discovery rate (FDR) at 5% with a q-value ≤ 0.05.
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(29). All-trans retinoic acid treatment reduces bile acid synthesis

and potentially hepatic inflammation in PSC patients (30).

Furthermore, the observation that alpha-muricholic Acid and

3beta-Hydroxy-delta5-cholenic acid, both related to bile acid

metabolism, are present in higher concentrations in chronic

hepatitis B patients with a high level of immune response

compared to those with a poor immune response, and that this

trend becomes more pronounced over the course of treatment, may

reflect a close association between bile acid metabolism and the

immune response in patients with chronic hepatitis B. Bile acids are

involved in lipid digestion and absorption but also have roles in

regulating immune functions. For example, In a reported study

(31), the authors demonstrated that bile acids, including cholic acid

and chenodeoxycholic acid, can induce the differentiation of

monocytes into dendritic cells that produce high levels of

interleukin-12 (IL-12), a pro-inflammatory cytokine. This effect

was mediated through the activation of the G protein-coupled

receptor TGR5, which is expressed on innate immune cells. Other

authors (32) also found that increased levels of isoalloLCA in feces

were associated with decreased circulating IL-17A, suggesting that

bile acid metabolites can influence immune responses by

modulating the gut microbiota. Although these studies do not

directly mention a-MCA and 3b-HCA, they provided evidence

that bile acids and their metabolites can influence immune

responses by modulating the gut microbiome and the function of
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immune cells. These findings suggest that a-MCA and 3b-HCA, as

bile acids, may also indirectly regulate the immune system through

similar mechanisms.

There are some limitations in this study. The study’s small

cohort sizes restrict the statistical robustness of the results.

Although potential biomarkers were identified, the study’s

retrospective design and absence of prospective validation also

hinder the conclusive establishment of these markers as

predictive. To address this, future research should include

prospective studies in larger cohorts, including samples collected

by multiple centers, allowing for enhancing the statistical power and

generalizability of our findings and drawing more definitive

conclusions. Additionally, longer-term monitoring would enhance

understanding of treatment responses. Finally, the mechanistic

understanding of how identified metabolites correlate with

treatment response remains preliminary, necessitating further

investigation into the involved biological pathways.

We recognize that achieving a functional cure, defined by sustained

HBsAg loss and undetectable HBV DNA, is the ultimate goal of CHB

treatment. We also acknowledge the potential for grouping by

functional cure and non-cure followed by serological metabolomics

analysis to provide deeper insights into the metabolic profiles

associated with different treatment outcomes. However, our

retrospective analysis revealed that while most patients could

effectively suppress viral DNA and achieve e-antigen seroconversion
BA

FIGURE 7

(A) Heatmap displays metabolites with significant changes consistent across both discovery and validation cohorts in the high immune response
(Hrp) group during antiviral treatment. (B) Heatmap shows metabolites consistently altered in both cohorts for the low immune response (Lrp) group
throughout the treatment period.
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following antiviral therapy, only a minority attained HBsAg surface

antigen conversion, indicating functional cure. Among the 31 enrolled

samples in our study (HRP, n=31), only 2 achieved functional cure,

while the remaining 29 achieved e-antigen seroconversion.

Consequently, our study utilized e-antigen seroconversion and DNA

negativity as positive prognostic indicators, highlighting the challenges

associated with achieving functional cure and the importance of

monitoring these markers for treatment efficacy assessment.

Building upon this experimental foundation, CHB patients with

low HBeAg levels are often more likely to achieve clinical cure. We are

currently conducting a prospective clinical study where enrolled CHB

patients with low HBeAg levels will receive antiviral therapy. We will

continue to investigate the plasma metabolomic changes in CHB

patients who achieve clinical cure and those who exhibit suboptimal

treatment responses. Based on the findings from these studies, we plan

to carry out subsequent biological validation experiments.

5 Conclusions

In this study, we employed a chemical isotope labeling liquid

chromatography-mass spectrometry metabolomics approach to

comprehensively profile the amine/phenol and carboxylic acid

submetabolomes in patients with chronic hepatitis B. This

platform allowed for the quantitative analysis of nearly 3000

metabolites and their changes over the course of antiviral

treatment. Several metabolites were identified that could

differentiate between patients with high and low response to

treatment, demonstrating diagnostic potential. Additionally, a set

of metabolites were found to be associated with HBeAg

seroconversion. Patients exhibiting favorable treatment responses

showed metabolic signatures indicative of activated immune

systems and gradually controlled inflammation. These findings

provide insights into the molecular mechanisms regulating the

hepatic inflammatory response during antiviral treatment. A

better understanding of metabolic regulation in this context could

help the development of optimized treatment strategies helping

more chronic hepatitis B patients achieve functional cures.

While this study was limited to the group treated with ETV and

IFN-a, the methodology should be applicable to other treatment

groups subjected to different regimens. In future research, we will

consider comparing various antiviral treatment regimens (antiviral

therapy alone, interferon therapy alone, and combined antiviral and

interferon therapy) to assess the specificity of the identified metabolites

in predicting treatment outcomes across different therapies.

Data availability statement

The data presented in the study are deposited in the

MetaboLights repository, accession number MTBLS10401.
Ethics statement

The studies involving humans were approved by Human Ethics

Committee of the First Affiliated Hospital of Zhejiang University,
Frontiers in Immunology 14
Hangzhou, China. The studies were conducted in accordance with

the local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

DC: Conceptualization, Methodology, Writing – original draft,

Writing – review & editing, Data curation, Formal analysis,

Investigation, Validation. YL: Data curation, Formal analysis,

Investigation, Writing – review & editing. JL: Data curation,

Formal analysis, Investigation, Writing – review & editing. JY:

Data curation, Formal analysis, Investigation, Writing – review &

editing. LL: Writing – review & editing, Conceptualization, Funding

acquisition, Methodology, Supervision, Writing – original draft.

LJL: Writing – review & editing, Conceptualization, Funding

acquisition, Supervision.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The research

work at the First Affiliated Hospital, College of Medicine, Zhejiang

University was supported by the Independent Project Fund of the

State Key Laboratory for Diagnosis and Treatment of Infectious

Disease (No. ZZ202323) and the National Natural Science

Foundation of China (No. 21804118). This work was also

supported by a visiting professorship to LL by Zhejiang

University. The research work at the University of Alberta was

supported by the Natural Sciences and Engineering Research

Council of Canada, the Canadian Institutes of Health Research,

the Canada Foundation for Innovation, and Genome Canada.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414476/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414476/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1414476/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1414476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1414476
References
1. Hsu YC, Huang DQ, Nguyen MH. Global burden of hepatitis B virus: Current
status, missed opportunities and a call for action. Nat Rev Gastroenterol Hepatol. (2023)
20:524–37. doi: 10.1038/s41575-023-00760-9

2. Liaw YF. HBeAg seroconversion as an important end point in the treatment of
chronic hepatitis B. Hepatol Int. (2009) 3:425–33. doi: 10.1007/s12072-009-9140-3

3. Xing T, Xu H, Cao L, Ye M. HBeAg seroconversion in HBeAg-positive chronic
hepatitis B patients receiving long-term nucleos(t)ide analog treatment: A systematic
review and network meta-analysis. PloS One. (2017) 12:e0169444. doi: 10.1371/
journal.pone.0169444

4. Woo ASJ, Kwok R, Ahmed T. Alpha-interferon treatment in hepatitis B. Ann
Transl Med. (2017) 5:159. doi: 10.21037/atm

5. Ye J, Chen J. Interferon and hepatitis B: current and future perspectives. Front
Immunol. (2021) 12:733364. doi: 10.3389/fimmu.2021.733364

6. Fonseca MA, Ling JZJ, Al-Siyabi O, Co-Tanko V, Chan E, Lim SG. The efficacy of
hepatitis B treatments in achieving HBsAg seroclearance: A systematic review and
meta-analysis. J Viral Hepat. (2020) 27:650–62. doi: 10.1111/jvh.13283

7. Qiu K, Liu B, Li SY, Li H, Chen ZW, Luo AR, et al. Systematic review with meta-
analysis: Combination treatment of regimens based on pegylated interferon for chronic
hepatitis B focusing on hepatitis B surface antigen clearance. Aliment Pharmacol Ther.
(2018) 47:1340–48. doi: 10.1111/apt.14629

8. Pang X, Zhang L, Liu N, Liu B, Chen Z, Li H, et al. Combination of pegylated
interferon-alpha and nucleos(t)ide analogue treatment enhances the activity of natural
killer cells in nucleos(t)ide analogue experienced chronic hepatitis B patients. Clin Exp
Immunol. (2020) 202:80–92. doi: 10.1111/cei.13486

9. Zhao S, Li H, Han W, Chan W, Li L. Metabolomic coverage of chemical-group-
submetabolome analysis: group classification and four-channel chemical isotope
labeling LC-MS. Anal Chem. (2019) 91:12108–15. doi: 10.1021/acs.analchem.9b03431

10. World Health Organization. Guidelines for the Prevention, Care and Treatment of
Persons with Chronic Hepatitis B Infection. Geneva: World Health Organization (2015).

11. Peng J, Li L. Liquid-liquid extraction combined with differential isotope
dimethylaminophenacyl labeling for improved metabolomic profiling of organic
acids. Anal Chim Acta. (2013) 803:97–105. doi: 10.1016/j.aca.2013.07.045

12. Zhou R, Li L. Quantitative metabolomic profiling using dansylation isotope
labeling and liquid chromatography mass spectrometry. Methods Mol Biol. (2014)
1198:127–36. doi: 10.1007/978-1-4939-1258-2_9

13. Wu Y, Li L. Development of isotope labeling liquid chromatography-mass
spectrometry for metabolic profiling of bacterial cells and its application for bacterial
differentiation. Anal Chem. (2013) 85:5755–63. doi: 10.1021/ac400330z

14. Chen D, Han W, Huan T, Li L, Li L. Effects of freeze-thaw cycles of blood
samples on high-coverage quantitative metabolomics. Anal Chem. (2020) 92:9265–72.
doi: 10.1021/acs.analchem.0c01610

15. Zhou R, Tseng CL, Huan T, Li L. IsoMS: automated processing of LC-MS data
generated by a chemical isotope labeling metabolomics platform. Anal Chem. (2014)
86:4675–79. doi: 10.1021/ac5009089

16. Guo K, Li L. Differential 12C-/13C-isotope dansylation labeling and fast liquid
chromatography/mass spectrometry for absolute and relative quantification of the
metabolome. Anal Chem. (2009) 81:3919–32. doi: 10.1021/ac900166a
Frontiers in Immunology 15
17. Chen D, Han W, Su X, Li L, Li L. Overcoming sample matrix effect in
quantitative blood metabolomics using chemical isotope labeling liquid
chromatography mass spectrometry. Anal Chem. (2017) 89:9424–31. doi: 10.1021/
acs.analchem.7b02240

18. Mercola J, D’Adamo CR. Linoleic acid: A narrative review of the effects of
increased intake in the standard american diet and associations with chronic disease.
Nutrients. (2023) 15:3129. doi: 10.3390/nu15143129

19. Scher JU, Pillinger MH. The anti-inflammatory effects of prostaglandins. J
Investig Med. (2009) 57:703–8. doi: 10.2310/JIM.0b013e31819aaa76

20. Figueiredo-Pereira ME, Corwin C, Babich J. Prostaglandin J2: A potential target
for halting inflammation-induced neurodegeneration. Ann N Y Acad Sci. (2016)
1363:125–37.

21. Li J, Guo C, Wu J. 15-deoxy-D-12,14-prostaglandin J2 (15d-PGJ2), an
endogenous ligand of PPAR-g: function and mechanism. PPAR Res. (2019)
2019:7242030. doi: 10.1155/2019/7242030

22. Kim W, Jang JH, Zhong X, Seo H, Surh YJ. 15-deoxy-D^12,14-prostaglandin J2
promotes resolution of experimentally induced colitis. Front Immunol. (2021)
12:615803. doi: 10.3389/fimmu.2021.615803

23. Jalili M, Hekmatdoost A. Dietary w-3 fatty acids and their influence on
inflammation via toll-like receptor pathways. Nutrition. (2021) 85:111070.
doi: 10.1016/j.nut.2020.111070

24. Mishanina TV, Libiad M, Banerjee R. Biogenesis of reactive sulfur species for
signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol. (2015) 11:457–64.
doi: 10.1038/nchembio.1834

25. Olson KR. Reactive oxygen species or reactive sulfur species: why we should
consider the latter. J Exp Biol. (2020) 223:jeb196352. doi: 10.1242/jeb.196352

26. Kawanaka M, Nishino K, Oka T, Urata N, Nakamura J, Suehiro M, et al.
Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty
liver disease. Hepat Med. (2015) 7:29–35. doi: 10.2147/HMER

27. Jia W, Bi Y. Retinoic acids and nuclear receptor signaling in liver development:
Pathogenic roles in liver diseases. Pediatr Discov. (2023) 2:e29. doi: 10.1002/pdi3.29

28. Lavudi K, Nuguri SM, Olverson Z, Dhanabalan AK, Patnaik S, Kokkanti RR.
Targeting the retinoic acid signaling pathway as a modern precision therapy against
cancers. Front Cell Dev Biol. (2023) 11:1254612. doi: 10.3389/fcell.2023.1254612
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