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Background: In the ongoing battle against breast cancer, a leading cause of cancer-

related mortality among women globally, the urgent need for innovative prognostic

markers and therapeutic targets is undeniable. This study pioneers an advanced

methodology by integrating machine learning techniques to unveil a vascular

mimicry signature, offering predictive insights into breast cancer outcomes.

Vascular mimicry refers to the phenomenon where cancer cells mimic blood

vessel formation absent of endothelial cells, a trait associated with heightened

tumor aggression and diminished response to conventional treatments.

Methods: The study’s comprehensive analysis spanned data from over 6,000

breast cancer patients across 12 distinct datasets, incorporating both proprietary

clinical data and single-cell data from 7 patients, accounting for a total of 43,095

cells. By employing an integrative strategy that utilized 10 machine learning

algorithms across 108 unique combinations, the research scrutinized 100

existing breast cancer signatures. Empirical validation was sought through

immunohistochemistry assays, alongside explorations into potential

immunotherapeutic and chemotherapeutic avenues.

Results: The investigation successfully identified six genes related to vascular

mimicry from multi-center cohorts, laying the groundwork for a novel predictive

model. This model outstripped the prognostic accuracy of traditional clinical and

molecular indicators in forecasting recurrence and mortality risks. High-risk

individuals identified by our model faced worse outcomes. Further validation

through IHC assays in 30 patients underscored the model’s extensive

applicability. Notably, the model unveiled varying therapeutic responses; low-

risk patients might achieve greater benefits from immunotherapy, whereas high-

risk patients demonstrated a particular sensitivity to certain chemotherapies,

such as ispinesib.
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Conclusions: This model marks a significant step forward in the precise

evaluation of breast cancer prognosis and therapeutic responses across

different patient groups. It heralds the possibility of refining patient outcomes

through tailored treatment strategies, accentuating the potential of machine

learning in revolutionizing cancer prognosis and management.
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Introduction

Breast cancer remains one of the leading causes of

cancer-related mortality among women globally (1, 2),

necessitating continuous advancements in diagnostic and

prognostic technologies (3). Despite significant progress in

understanding and treating breast cancer, the complexity of

tumor biology, particularly the phenomenon of vascular

mimicry (VM), presents ongoing challenges (4). VM, a process

by which aggressive tumor cells mimic endothelial cells

to form vasculogenic-like networks, has emerged as a

critical factor in tumor growth, metastasis, and resistance to

conventional therapies (5). This underscores the urgent need for

innovative approaches to identify and target VM within the

tumor microenvironment.

Recent advances in machine learning (ML) offer unprecedented

opportunities to dissect complex biological processes, such as VM,

through the analysis of large-scale datasets (6, 7). ML-driven models

hold the promise of unveiling hidden patterns within tumor data,

offering insights that could lead to the development of novel

therapeutic strategies (8). However, the application of ML in

understanding VM’s role in breast cancer and its potential as a

prognostic marker remains underexplored.

This research aims to bridge this gap by developing and

validating a novel ML-driven VM signature that can accurately

predict breast cancer outcomes. Our study leverages multi-omics

data to construct a detailed landscape of VM in breast cancer,

highlighting its heterogeneity and pivotal role in tumor progression.

By introducing a robust ML model capable of identifying VM-

related signatures in breast cancer, our research contributes

significantly to the field. In summary, our study not only

addresses a critical gap in the current understanding of VM in

breast cancer but also demonstrates the novel application of ML in

uncovering potential therapeutic targets. As we move forward, it is

imperative to explore these new frontiers in cancer research,

leveraging cutting-edge technologies to combat one of the most

challenging diseases of our time.
02
Methods

Data acquisition

Comprehensive gene expression profiles, mutation information,

and essential clinical data were harvested from breast cancer cases

in the TCGA database, with a focus on cases replete with survival

data to ensure data integrity. Our methodology was further fortified

by incorporating supplemental datasets retrieved from the GEO and

MetaGxData databases (9). These datasets included GSE20685,

GSE131769, GSE20711, GSE24450, GSE202203, GSE21653,

GSE86166, GSE8532, GSE48391, and PNC, allowing for the

substantiation of our VM-model across varied cohorts and

enhancing the credibility of our research. The VM-related genes

were retrieved from published study (10).
Single-cell sequencing technique

Leveraging single-cell information from the GEO dataset

GSE161529 (11), we began by filtering out genes not expressed in

the dataset. Following normalization via Seurat’s “SC Transform,” we

applied PCA and UMAP for dimensionality reduction and clusters

were delineated using Seurat’s clustering functions. To ensure the

quality of the dataset, we used DoubletFinder to identify and remove

potential doublets (12), and stringent criteria were applied to exclude

cells based on mitochondrial content or gene count. After rigorous

quality checks, we retained a pool of 43,095 cells for detailed

examination. The classification of cell types was achieved using

Celltypist (13), which established a solid base for our subsequent

analyses, identifying tumor cells via the copyKAT algorithm (14).
Inter-cellular communication analysis

With the “CellChat” package in R (15), tailored CellChat

objects were generated for each patient group. Employing
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“CellChatDB.human” as a reference, we proceeded with default

parameters for analysis. The “mergeCellChat” function was

instrumental in collating data to ascertain group-specific

interaction dynamics.
Functional analysis

Our analysis utilized the GO and KEGG databases to probe the

variations in VM-related gene expression (16, 17). The Enrichplot

package and clusterProfiler algorithm supported the Gene Set

Enrichment Analysis (GSEA), focusing on differences between

risk subgroups (18). A false discovery rate under 0.05 demarcated

significant findings.
Calculating the VM-score

Differential expression analysis on the TCGA-BRCA dataset

helped us to discern gene activity distinctions in breast cancer

compared to normal tissue. The ssGSEA and Ucell were employed

on bulk and single-cell data respectively to derive a VM-score from

these differentially expressed genes (DEGs) (19, 20). This score

serves as a surrogate for VM activity in the cancer tissue. It’s

essential to clarify that the VM-score does not directly quantify

vascular structures but rather estimates activity from VM-

associated gene expression. This analysis is pivotal as it juxtaposes

the genetic activity profiles of cancerous and normal tissues,

potentially reflecting the tumors’ vascular characteristics.

Correlation through Spearman analysis with immune cell

presence furnished a detailed insight into the role of the VM-

score in the oncological context.
Developing the VM prognostic model

Adopting the methodology introduced by Liu et al. (21), a VM

prognostic model was created by applying ten diverse

computational algorithms, each contributing uniquely to variable

selection and dimension reduction, particularly RSF, LASSO,

CoxBoost, and Stepwise Cox. The prognostic signature, derived

from the TCGA-BRCA data, was evaluated across multiple datasets

by its average C-index, revealing the model with the strongest

predictive capacity for breast cancer outcomes. Our VM-model,

evaluated through calibration curves, DCA, and multivariate Cox

regression, stands as a testament to the study, acting as a robust

instrument for outcome prediction in breast cancer. The risk scores

were computed as follows:

riskcore =o
n

i=1
(b1 � Expi)

In this equation, ‘n’ represents the total number of VM genes

included in the model, ‘Exp’ denotes the expression levels of the VM

genes, and ‘b’ signifies the coefficients derived from the multivariate

Cox regression model. The stratification of patients into different

risk categories based on these scores allowed for a nuanced survival
Frontiers in Immunology 03
analysis. Utilizing external datasets validated the VM-model’s

applicability across diverse patient populations. Kaplan-Meier

analysis, with statistical significance set at a p-value below 0.05,

was pivotal in establishing the model’s prognostic value across

varied cohorts.
Genomic alteration evaluation

Genetic variations between breast cancer patient groups

stratified by risk level were explored harnessing the TCGA-BRCA

repository to analyze mutation frequencies and copy number

variations (CNA). Our study quantified tumor mutational burden

(TMB) using data from TCGA’s raw mutation files, applying

maftools to map mutations, particularly focusing on the most

frequently altered genes (mutation rate > 5%). Using the

deconstructSigs tool, we dissected patient-specific mutational

patterns, uncovering four significant signatures (SBS1, SBS3,

SBS11, SBS12) prevalent in the breast cancer cohort. Our scrutiny

extended to chromosomal alterations, highlighting the five most

affected regions by amplification or deletion. Particular attention

was paid to four genes within the 3q26.32 and 19q13.32 regions.

Through this detailed examination, we aim to elucidate the genetic

factors that might influence the different risk levels and prognoses

observed in breast cancer patient groups.
Identifying TME disparities

In examining the varying immune cell infiltration in breast

cancer patients stratified by VM-model, we leveraged the IOBR

package to implement a battery of algorithms—MCPcounter, EPIC,

xCell, CIBERSORT, quanTIseq, and TIMER—for a thorough and

multi-perspective analysis (22–28). We further incorporated

the ESTIMATE and TIDE indices to probe the immune

microenvironment within the TME (29, 30). This investigation is

essential for tailoring immunotherapeutic approaches and

anticipating treatment outcomes for individuals with breast cancer.

Additionally, we measured the presence of immune checkpoints to

gain further understanding of the TME’s immune landscape. This

metric is crucial for estimating the likelihood of patient responses to

ICIs, integral to individualized cancer treatment regimens.
Determining therapeutic targets and drugs

After eliminating duplicates, we curated an extensive list of

6,125 substances from the Drug Repurposing Hub (https://clue.io/

repurposing). This endeavor aimed to forecast chemotherapy

reactions and pinpoint potential therapeutic targets, hinging on

Spearman correlations between risk scores and gene expression. We

spotlighted genes linked to breast cancer prognosis, with emphasis

on those presenting a correlation coefficient beyond 0.2 and P-value

under 0.05. Our analysis included scrutinizing CERES scores

against risk scores to isolate genes tied to poor outcomes using

CCLE data (31).
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To refine drug response forecasts, we harnessed the CTRP and

PRISM resources, rich in drug and molecular data across cancer cell

lineages. The pRRophetic package, employing a ridge regression

model, was utilized to anticipate drug reactions using solid cancer

cell line data, underpinned by 10-fold cross-validation (32).

We also embarked on a CMap analysis to discern optimal

therapeutic agents for breast cancer, contrasting gene expression

profiles across risk categories, and processing the top 300 genes

through the CMap portal (https://clue.io/query). The inverse

relationship between CMap scores and potential treatment

efficacy in breast cancer emerged, guiding drug selection efforts.
qRT-PCR and patient stratification

The 30 breast cancer tissues were obtained from patients who

underwent surgery for in situ breast cancer at Guizhou Provincial

People’s Hospital. Total RNA from breast cancer tissues was

extracted with TRIzol (Invitrogen, USA). Subsequent cDNA

synthesis and qRT-PCR were conducted using GoScript reverse

transcriptase and Master Mix (Promega) as per the guidelines

provided. The CFX96 Touch Real-Time PCR Detection System

(BioRad, USA) was utilized for data acquisition. Gene expression

normalization was done using GAPDH as the control, with the 2-

DDCq method determining relative expression levels. Based on gene

expression analysis, patients were classified into low or high-risk

groups in line with the VM-model’s prescribed equation.
Immunohistochemistry experiment

HE staining was performed on our collected breast cancer

samples. Diagnostic assessment of the stained slides was

independently carried out by two pathologists to maintain

objectivity. Additional patient demographics and clinical

attributes are detailed in Supplementary Table S1.

Immunohistochemistry (IHC) was performed on paraffin-

embedded samples, applying techniques described in earlier studies

(33, 34). The antibodies used are detailed in Supplementary Table S2.

Protein expression was quantified using established scoring

systems, with independent assessments made by two pathologists,

mirroring protocols from previous research (34), to guarantee

dependable evaluation.
Results

Deciphering the VM-related genes in
breast cancer

Our integrative heatmap analysis reveals distinct expression

patterns of the first 24 genes associated with VM in breast cancer

patients compared to normal individuals (Figure 1A). To elucidate

the interplay between these VM regulators, we grouped them into

three clusters and depicted their interactions in a regulatory network.

Here, significant associations were uncovered; for example, NOTCH1
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and TFPI from Cluster B exhibited a synergistic effect, in contrast to

TF and MAPK3 from Cluster A, which demonstrated an antagonistic

relationship. A particularly strong positive correlation was identified

between PIK3CA and NOTCH1 (Figure 1B). To probe the

connection between VM and breast cancer (breast cancer)

progression, VM scores for each sample were computed utilizing

the ssGSEA algorithm based on differentially expressed VM

moderators. The compiled data revealed that breast cancer patients

had significantly lower VM scores than those without breast cancer,

corroborated by external datasets GSE93601, GSE70947, and

GSE76250 (Figures 1C–E). Our gene function map highlights the

involvement of VM-related genes in pathways like VEGF signaling,

chemokine signaling, and cell adhesion (Figure 1G). Moreover,

unique correlation pattern between VM-score and 25 infiltrating

immune cells were observed (Figure 1H), as well as significant

correlations with Th1 cells (Figure 1I) and CD8 T cells (Figure 1J)

within the tumor microenvironment. These findings illustrate the

complex regulatory landscape of VM in breast cancer, offering

insights into potential biomarkers and therapeutic targets.
Single-cell dissection of VM activity

In a novel single-cell analysis, we enrolled eight patients and

examined normal and tumor tissues (Figures 2A, B). This led to the

identification of 13 distinct cell clusters, within which we annotated

seven cell types (Figures 2C, D). Representative markers and top

differentially expressed genes (DEGs) for each cell type were

highlighted (Figures 2E, F). An analysis of the cell type proportions

revealed a tumor-associated increase in T cells, B cells, macrophages,

and epithelial cells, alongside a reduction in plasma cells, fibroblasts,

and endothelial cells in tumor tissue (Figure 2G). Utilizing the UCell

algorithm, we computed a VM-score for individual cells (Figure 2H)

and estimated the correlation of VM-scores with the seven annotated

cell types (Figure 2I). To specifically interrogate VM-score dynamics

within cancer cells, we conducted a copyKAT analysis on epithelial

cells, delineating genomic profiles (Figure 2J). Notably, VM scores

were significantly elevated in aneuploid tumors compared to the

normal group within epithelial cells, suggesting a potential link

between aneuploidy and VM activity (Figure 2K).
Elucidating cell-cell interaction dynamics
in breast cancer

A CellChat analysis was undertaken to decipher the intricate

web of cell-cell interactions during breast cancer progression. Our

analysis demonstrated a notable decline in the number and strength

of interactions among tumor cells. In contrast, plasma cells showed

an increase in interaction frequency and intensity, particularly with

B cells and macrophages (Figures 3A, B). We further explored

specific communication pathways and discovered that signaling via

PTPRM, MIF, MK, PECAM1, and SPP1 was markedly more active

in the tumor group compared to the normal group (Figure 3C).

Additionally, fibroblasts displayed a consistent outgoing

interaction intensity in both normal and tumor tissues.
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Intriguingly, epithelial cells showed the highest incoming interaction

intensity in normal tissue, highlighting their potential role in

maintaining tissue homeostasis (Figure 3D). In the context of VM,

our findings reveal a propensity for increased communication

involving IIF and CD74+CXCR4 within each signaling pathway in

the tumor group. Notably, the interaction between COL1A1 and

CD44 emerged exclusively in the tumor group, underscoring a

tumor-specific communication signature (Figure 3E).
Frontiers in Immunology 05
Constructing a VM prognostic model via
machine learning

To capitalize on VM-related genetic markers for prognostication in

breast cancer, we engineered a VM-model by harnessing machine

learning. A comprehensive suite of 108 algorithmic strategies was

deployed, each rigorously vetted through ten-fold cross-validation

within the TCGA-BRCA training cohort and five supplementary
FIGURE 1

Deciphering the VM-related Genes in Breast Cancer. (A) Heatmap displaying differential expression of 24 key VM-related genes across normal
individuals and breast cancer patients. (B) Regulatory network of VM-related genes organized into three clusters, illustrating interactions and
correlations. (C–F) VM scores of breast cancer patients versus non-cancer individuals, calculated using the ssGSEA algorithm, with lower VM scores
observed in patients across TCGA-BRCA and external datasets GSE93601, GSE70947, and GSE76250. ***P < 0.001. (G) Gene function map indicating
the involvement of VM genes in critical pathways. (H) Correlation heatmap showing the relationship between VM scores and 25 types of infiltrating
immune cells in the tumor microenvironment. (I–J) Scatter plots demonstrating significant correlations between VM scores and Th1 cell presence
(I), as well as CD8 T cell presence (J), within the tumor microenvironment. ****P < 0.0001.
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external cohorts. This approach enabled us to distill the algorithmic

efficacy, quantified via the mean C-index across cohorts (Figure 4A).

Subsequently, a Random Survival Forest (RSF) algorithm emerged as

the cornerstone for our VM prognostic model. This model identified

six key genes—TWIST1, TFPI, PIK3CA, TF, NOTCH1, and SNAI1—
Frontiers in Immunology 06
as significant prognosticators of breast cancer outcomes (Figures 4B,

C). Risk stratification, predicated on the expression profiles of these

genes, delineated patients into high-risk and low-risk categories. A

heatmap depicted these genes’ expression levels, which were markedly

elevated in the high-risk cohort (Figure 4D). Kaplan-Meier analysis
FIGURE 2

Single-Cell Dissection of VM Activity. (A, B) t-SNE plots illustrating patient samples and the distribution of normal and tumor tissues from an eight-
patient cohort. (C, D) Identification of 13 unique cell clusters and annotation of seven distinct cell types within the tumor microenvironment.
(E, F) Representative markers and differentially expressed genes for each identified cell type, highlighting the molecular diversity across clusters.
(G) Bar graph comparing the proportion of T cells, B cells, macrophages, epithelial cells, plasma cells, fibroblasts, and endothelial cells in normal
versus tumor tissue, evidencing a shift towards an immunosuppressive and pro-tumorigenic milieu in cancer. (H) Density plot of VM-score
calculated using the UCell algorithm for individual cells. (I) Violin plots demonstrating the correlation of VM-score with seven annotated cell types,
suggesting the differential involvement of these cells in VM processes. (J) Heatmap generated from copyKAT analysis indicating genomic variations.
(K) Distribution of VM-score in epithelial cells comparing normal, tumor-diploid, and tumor-aneuploid groups, revealing the potential mechanistic
links between aneuploidy and VM activity.
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underscored a pronounced survival advantage for the low-risk group

(Figure 4E), while the kernel-smoothing hazard function plot intimated

an escalated recurrence risk among the high-risk faction (Figure 4F).

To corroborate these findings, we constructed a time-dependent

receiver operating characteristic (ROC) curve, assessing the model’s

predictive precision over 3, 5, and 10 years. The area under the curve

(AUC) for these time points were calculated as 0.631, 0.646, and 0.719,

respectively, validating the model’s prognostic strength (Figure 4G).
Evaluating and validating the predictive
efficacy of the VM-model

The VM-prognostic model was rigorously assessed against

established clinical factors using the TCGA dataset, with

univariate and multivariate Cox regression analyses affirming its
Frontiers in Immunology 07
superior predictive performance (Figure 5A). This confirms the

VM-model as a robust, independent prognostic factor for breast

cancer. A nomogram incorporating the VM-model and

clinicopathological factors was developed to forecast survival

probabilities at 1-year, 3-year, and 5-year intervals (Figure 5B).

Calibration curves for the nomogram’s 1-year, 3-year, and

5-year predictions exhibited high concordance with actual

observed survival outcomes, underscoring the model’s accuracy

(Figure 5C). The predictive values of the VM-model chart closely

aligned with ideal observations, indicating no significant statistical

discrepancy (Figure 5D). The model’s predictive graph surpassed

the “Treat All” and “Treat None” benchmark curves, further

confirming its reliable prognostic capabilities (Figure 5E).

In comparative analyses, the AUC value of the VM-model’s risk

score eclipsed those of age, menopause status, lymph node

involvement, progesterone receptor, estrogen receptor, HER2
FIGURE 3

Elucidating Cell-Cell Interaction Dynamics in Breast Cancer. (A, B) Bar graphs illustrating the quantified cell-cell interaction frequencies among
tumor and normal cell populations, revealing a reduced interaction in tumor cells, while plasma cells demonstrate increased connectivity, especially
with B cells and macrophages. (C) Heatmap depicting the relative information flow through communication pathways. (D) Bubble plots representing
the outgoing interaction strength of fibroblasts, which is consistent across conditions, and the prominently higher incoming interaction strength of
epithelial cells in normal tissues. (E) Dot plot highlighting the significant tumor-specific interactions between COL1A1 and CD44, indicative of unique
communication pathways within the tumor microenvironment.
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expression, and TNM stages, in forecasting potential outcomes

(Figure 5F). Extensive comparisons utilizing the C-index across the

10 cohorts further demonstrated the VM-model’s superior accuracy

against 100 other signatures. Our VM-model consistently

outperformed other models, ranking first in most cohorts, validating

its exceptional robustness and prognostic relevance (Figure 5G).
Multi-omics dissection of genetic variability
through the lens of the VM-model

We embarked on a multi-omics interrogation of genomic

diversity within the context of the VM-prognostic model,

scrutinizing mutation profiles and copy number variances

(Figure 6A). Our study highlighted the significant difference in

TMB between the two VM groups, with the high-risk group

exhibiting a markedly elevated TMB (p = 0.00099). This

increased TMB is indicative of a higher genetic instability in

high-risk tumors, which may contribute to their aggressive
Frontiers in Immunology 08
behavior and poor prognosis (Figure 6B). Our findings further

elucidated that tumor suppressor genes TP53 and PIK3CA

underwent mutations with a greater rate in the high-risk group

than in the low-risk cohort. Additionally, our comparative analysis

of copy number alterations (CNAs) underscored a significant

amplification or deletion in the high-risk group, notably at

chromosomal hotspots such as 3q26.32, 20q13.2, and 10p15.1,

coupled with deletions at 5q21.3, 11p15.5, 19p13.3, and 19q13.32.

These variations were substantiated by the conspicuous

amplification of oncogenes ZMAT3, KCNMB2, and PIK3CA at

3q26.32, and the pronounced deletion of tumor suppressor genes

TLE2, TJP3, ZFR2, and ATCAY at 19q13.32. The high-risk group

was then characterized by a significantly augmented tumor

mutational burden (TMB), with TP53 mutations presenting a

marked increase compared to the low-risk group, reinforcing its

genetic susceptibility (Figure 6C).

The heatmap analysis unveiled differential expression patterns

of six pivotal VM modulators, among which TF and TFPI2 were

distinctly upregulated in the high-risk category (Figure 6D).
FIGURE 4

Constructing a VM Prognostic Model via Machine Learning. (A) The mean C-index values for 108 machine learning algorithms evaluated through ten-
fold cross-validation across the TCGA-BRCA cohort and additional external cohorts, displaying the predictive accuracy of each model. (B) RSF variable
importance plot demonstrating error rate in several different trees. (C) The importance of enrolled VM genes. (D) Heatmap detailing the expression
patterns of the six prognostic genes across high-risk and low-risk patient groups, with notable overexpression in the high-risk category. (E) Kaplan-Meier
survival curves contrasting the high-risk and low-risk groups, with a marked survival benefit observed for low-risk patients. (F) Kernel-smoothing hazard
function plot indicating the differential recurrence risk over time between the high-risk and low-risk groups. (G) Time-dependent ROC curves assessing
the predictive performance of the VM-model over 3, 5, and 10-year survival probabilities, with AUC values supporting the model’s prognostic utility.
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Assessing risk in relation to patient age and survival status disclosed

a trend where higher risk scores were associated with advanced age

and decreased survival (Figures 6E, F). Through functional

annotation and gene enrichment assessments, we discerned an

inhibited immune response concurrent with an activation of cell
Frontiers in Immunology 09
cycle and extracellular matrix organization pathways in the high-

risk group (Figures 6G, H). This comprehensive analysis provides a

nuanced understanding of the molecular underpinnings that could

be instrumental in the progression of breast cancer, laying a

foundation for potential therapeutic interventions.
FIGURE 5

Evaluating and Validating the Predictive Efficacy of the VM-Model. (A) Forest plots from univariate and multivariate Cox regression analyses showing
hazard ratios that establish the VM-model as a significant independent predictor of breast cancer prognosis. (B) A comprehensive nomogram
integrating the VM-model with clinical factors to predict 1-year, 3-year, and 5-year survival probabilities, providing a personalized risk assessment
tool. (C) Calibration curves for the nomogram demonstrating alignment with actual survival outcomes at 1, 3, and 5 years, validating the nomogram’s
predictive accuracy. (D) DCA illustrating the clinical utility of the VM-model by comparing the net benefits of different treatment strategies.
(E) Comparison of the VM-model’s predictive graph with ‘Treat All’ and ‘Treat None’ strategies, confirming the model’s utility in guiding clinical
decisions. (F) ROC curves displaying the AUC for the VM-model’s risk score against other clinical factors, indicating superior prognostic
performance. (G) A lengthy chart comparing the C-index of the VM-model with 100 other prognostic signatures across various cohorts,
demonstrating the model’s top-ranking accuracy and robustness. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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FIGURE 6

Multi-Omics Dissection of Genetic Variability through the Lens of the VM-Model. (A) A detailed heatmap showcasing the mutation profiles and copy
number variations across the genome of high-risk and low-risk breast cancer patient groups. (B) Boxplots indicating TMB stratified by risk groups,
with the high-risk group exhibiting a significantly elevated TMB. (C) Proportion charts showing the percentage of TP53 mutation occurrence within
the high-risk and low-risk groups, emphasizing the genetic vulnerability of the high-risk group. (D) Heatmap representing the expression levels of six
key VM modulator. (E, F) Violin plots correlating patient risk scores with age and survival status, suggesting an association between higher risk
scores, advanced age, and poorer survival. ***P < 0.001. (G, H) GSEA plots illustrating the differential activation of various biological pathways
between the risk groups, with the high-risk group showing suppression of immune response-related genes and an upregulation of genes involved in
the cell cycle and extracellular matrix organization. *P < 0.05, **P < 0.01, ****P < 0.0001.
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Delineation of the immune infiltration
landscape in breast cancer

We embarked on a detailed exploration of the immune infiltrate

landscape within breast cancer, employing a suite of computational

algorithms—MCPcounter, EPIC, xCell, CIBERSORT, quanTIseq,

and TIMER. This analysis illuminated distinct immune profiles

between high and low-risk groups. The high-risk group was

characterized by a pronounced infiltration of CD8 T cells and M2

macrophages, while the low-risk group displayed a notable presence

of M1 macrophages and plasma cells (Figure 7A).

Furthermore, we charted the cytokine milieu associated with

these immunoinfiltrates, discerning an increased expression of PD-

1 within the low-risk group, which denotes a potential for a broader

spectrum of therapeutic targets and possibly superior treatment

outcomes (Figure 7B).

To validate and deepen our understanding of the TME, we

conducted IHC staining of pivotal cellular markers and immune

checkpoints. The representative staining of these IHC samples

provided visual confirmation of the immune cell distributions

(Figures 7C). The findings here reinforce the significance of

immune cell profiles in determining patient risk stratification and

underscore the potential for targeted immunotherapy approaches

based on individual risk group categorizations.
Forecasting immunotherapy outcomes
with the VM-model

The potential of the VM-model to predict responses to

immunotherapy was probed. Differential levels of TIDE suggested

higher levels of immune evasion in the high-risk group, though this

did not extend to the exclusion metric (Figure 8A). Prognostically,

patients with higher TIDE scores yet lower risk scores showcased

the most favorable outcomes (Figure 8B). Additionally, there was a

significant positive correlation between the risk score and

proliferation, homologous recombination defects, and TGF-beta

response, while lymphocyte infiltration signatures were inversely

related (Figure 8C).

The probability of survival following PD-1 blockade therapies

was higher in the low-risk group, suggesting an inverse relationship

with the VM-based risk score (Figure 8D). Exploring the

therapeutic outcomes further, a lower risk score correlated with a

therapeutic benefit, particularly in response to PD-1 inhibitors

(Figure 8E). The high-risk group fared poorly in terms of

treatment efficacy, whereas the low-risk group showed a clear

treatment advantage (Figure 8F). The risk score showed a positive

correlation with PD-1 expression, suggesting its utility in

identifying potential beneficiaries of PD-1 blockade therapy

(Figure 8G). A distribution map pinpointed the differences in

PD-1 immunotherapy responses between individual patients,

underlining the variability within the cohort (Figure 8H). Over

the past years, immune checkpoint inhibitors targeting PD-1, such

as pembrolizumab and nivolumab, and CTLA-4, like Tremzumab,

have been integrated into the immunotherapeutic landscape.
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However, their efficacy in solid tumors, breast cancer included,

has been modest.

To evaluate the prognostic value for immune checkpoint

blockade response, we employed SubMap algorithms stratified by

VM-model. Notably, patients with low-risk appeared more

responsive to PD-1 blockade (Bonferroni corrected p = 0.029)

(Figure 8I). Furthermore, the low-risk group manifested a

markedly enhanced potential for response to both anti-PD-1/PD-

L1 and anti-CTLA-4 treatments (Figure 8J).
Strategic selection of therapeutic targets
and agents for high-risk VM patients

In our quest to discover actionable therapeutic targets for high-

risk breast cancer patients with poor prognoses, we embarked on a

methodical compilation of target data for 6,125 compounds. A two-

phased analytical process ensued to discern viable candidates.

Initially, we calculated the correlation coefficients to gauge the

interplay between druggable gene expression levels and VM-based

risk scores, isolating 246 gene targets with coefficients exceeding

0.20 (p < 0.05). Subsequently, correlation analyses on high-risk

breast cancer cell lines honed in on 74 targets with poor prognostic

dependencies, as evidenced by their CERES scores aligned with risk

scores. As a result, a total of six gene targets were generated that met

the two conditions of the appeal (Figure 9A).

This approach spotlighted five genes as prime therapeutic

targets, suggesting that disruptions in these genes might offer

clinical benefits to breast cancer individuals. Evaluations of drug

sensitivity further distilled the list to five genes, markedly responsive

to therapeutic agents (Figure 9B). Drug response analyses indicated

four compounds—paclitaxel, SB-743921, leptomycin B, and

ispinesib—garnered lower estimated AUC values in high-risk

cohorts, hinting at a greater ameliorative potential for these

patients (Figures 9C, D).

We undertook a comprehensive analysis encompassing clinical

status and experimental evidence, referencing PubMed, to ascertain

the most viable therapeutic options among the candidates.

Enhanced fold changes in gene expression levels hinted at these

compounds’ therapeutic potency for breast cancer treatment.

Complementary to this, Connectivity Map (CMap) analysis was

employed to filter for compounds exhibiting gene expression

profiles antithetical to breast cancer-specific patterns. Notably,

ispinesib manifested a CMap score surpassing -35, delineating it

as a particularly potent candidate (Figure 9E). This integrative

approach ensures that the highlighted therapeutic agents not only

demonstrate strong in vitro efficacy but also possess substantial

clinical and preclinical backing.
Discussion

Breast cancer has a high incidence and mortality rate

worldwide, especially among women, is the most common cancer,

and current treatments for breast cancer include targeted therapy,
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hormone therapy, and radiation therapy (35, 36). Surgery is an

important treatment strategy for individuals whose breast cancer

has not yet spread to other parts of the body (37). But in most

women, the absence of breasts can lead to feelings of asexuality and

loss of self-image, which can lead to depression (38). So clinicians

and surgeons focus not only on the tumor-specific characteristics of

breast cancer, but also on patient function, tolerance, comorbidities,

and life expectancy to determine the best treatment (39). Therefore,

it is necessary to find new factors to predict the prognosis of breast
Frontiers in Immunology 12
cancer patients. The integration of ML techniques to unravel the

complexity of VM in breast cancer marks a pivotal advancement in

our understanding of tumor biology. Our findings underscore the

significant potential of ML-driven models to predict breast cancer

outcomes by identifying a VM signature. This approach not only

enhances our grasp of VM’s role in cancer progression but also

opens new avenues for targeted therapy development.

Our study focused on identifying VM-associated genes, which

are critical for the formation of vascular mimicry structures within
FIGURE 7

Delineation of the Immune Infiltration Landscape in Breast Cancer. (A) Heatmap generated using various computational algorithms (MCPcounter,
EPIC, xCell, CIBERSORT, quanTIseq, TIMER) showing the immune cell infiltration landscape across low-risk and high-risk breast cancer groups.
(B) Bar graph representation of cytokine profiles linked to immunoinfiltrating cells. (C) IHC staining panels of key immune markers. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.
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tumors. Using machine learning algorithms on multi-omics data

from over 6,000 breast cancer patients, we identified six key genes

significantly associated with VM and patient risk scores: EP300,

PIK3CA, DMXL1, LS, ABL2, and CDK4. These genes serve as
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potential biomarkers for high-risk patients, indicating a more

aggressive cancer phenotype.

In the context of previous research, our findings align with

studies highlighting the role of PIK3CA and EP300 in tumor
FIGURE 8

Forecasting Immunotherapy Outcomes with the VM-model. (A) Box plots depicting levels of TIDE, demonstrating increased immune evasion in the
high-risk group compared to the low-risk group. (B) Kaplan-Meier survival curves illustrating the impact of TIDE and risk score on patient prognosis,
with low-risk and lower TIDE scores associated with better outcomes. (C) Scatter plots showing the correlation of the risk score with various cellular
processes. (D) Survival analysis of patients treated with PD-1 blockade therapy, highlighting improved outcomes in the low-risk group. (E, F) Violin
plots and bar graphs assessing therapeutic benefits associated with PD-1 inhibitors, indicating a lower risk score is correlated with better therapeutic
responses, especially in the low-risk group. (G) A ROC curve analysis presenting the relationship between PD-1 expression and VM-model risk score,
suggesting the potential for identifying likely responders to PD-1 blockade therapy. (H) A horizontal bar chart visualizing the differential response to
PD-1 immunotherapy across the patient cohort, emphasizing the diversity in treatment response. (I) Heatmap derived from SubMap algorithm
analysis, revealing that low-risk patients are more responsive to PD-1 blockade treatments. (J) Bee-swarm plots showcasing the enhanced potential
for response to anti-PD-1/PD-L1 and anti-CTLA-4 therapies in the low-risk group.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1414450
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1414450
progression and VM formation. PIK3CA mutations are known to

activate the PI3K/AKT signaling pathway, promoting cell

proliferation and survival, which are crucial for VM structures

(40, 41). EP300, a histone acetyltransferase, regulates gene

expression involved in cell cycle and differentiation, further

supporting its association with VM (42).

Our analysis further revealed significant differences in the tumor

microenvironment between high-risk and low-risk groups. High-risk

patients exhibited altered interactions, particularly involving
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macrophages and plasma cells, which are known to influence

tumor progression and immune evasion. These findings emphasize

the role of immune cells in the tumor microenvironment, with

macrophages (especially tumor-associated macrophages or TAMs)

contributing to an immunosuppressive environment that promotes

tumor growth and metastasis (43, 44). High-risk patients displayed a

higher TMB compared to low-risk patients. This is significant as

increased TMB is often associated with better responses to

immunotherapy due to higher neoantigen load and potential
FIGURE 9

Strategic Selection of Therapeutic Targets and Agents for High-Risk VM Patients. (A) Scatter plots detailing the correlation between VM risk scores
and the expression levels of potential druggable genes, with a focus on those exceeding a correlation coefficient threshold of 0.20 (p < 0.05),
indicating a significant relationship with prognostic risk. (B) Network graph of the identified targets, overlaid with drug sensitivity data, showing which
genes are most responsive to existing therapeutic compounds, thereby spotlighting five key genes as high-value targets for therapeutic intervention.
(C) Bubble chart from the CTRP demonstrating the correlation between gene targets and drug sensitivity, with larger bubbles representing a
stronger relationship indicative of potential drug efficacy. *P < 0.05, **P < 0.01. (D) Box plots comparing the estimated area under the dose-
response curve (AUC) for four selected compounds between high-risk and low-risk groups, revealing lower AUC values for the high-risk group,
suggesting these patients may derive more benefit from these drugs. *P < 0.05. (E) Bar chart juxtaposing clinical trial status and experimental
evidence from literature with CMap scores, where ispinesib shows a highly negative CMap score, suggesting a significant potential for reversing
breast cancer-specific gene expression patterns.
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immune recognition (45). The differential expression patterns of

VM-related genes in high-risk groups underscore the aggressive

nature of these tumors and highlight the importance of targeting

these molecular alterations for effective treatment.

In the second phase of our study, we evaluated the sensitivity

of VM-related genes to various compounds. This analysis

identified four drugs—paclitaxel, SB-743921, leptomycin B, and

ispinesib—as promising candidates due to their significant efficacy

in targeting high-risk breast cancer cells. Notably, ispinesib

emerged as the most promising candidate due to its high

specificity and therapeutic potency. Ispinesib’s mode of action as

a kinesin spindle protein (KSP) inhibitor effectively targets rapidly

proliferating tumor cells involved in VM. This mechanistic insight

aligns with previous studies demonstrating the efficacy of KSP

inhibitors in reducing tumor growth and enhancing apoptosis

(46). The CMap analysis further validated ispinesib’s potential,

revealing a gene expression profile antithetical to breast cancer-

specific patterns. To validate our findings, we conducted an

extensive literature review and performed CMap analysis. The

CMap scores for ispinesib and other compounds confirmed their

potential as effective treatments for high-risk VM patients. The

integration of clinical trial data from PubMed further reinforced

the therapeutic relevance of these drugs, highlighting their

potential to improve patient outcomes. Paclitaxel is widely used

in clinical settings, while ispinesib and SB-743921 have shown

promise in preclinical and early clinical trials, underscoring their

potential for clinical application (47).

While our model demonstrates robust predictive power, it’s

essential to acknowledge the limitations inherent in our study. First,

the reliance on single-cell RNA sequencing data, while providing

unparalleled resolution of tumor heterogeneity, may not capture the

entire spectrum of VM characteristics. Factors such as tumor

microenvironmental variations and the dynamic nature of VM

over the disease course pose challenges to model generalization.

Additionally, the performance of ML models, including ours, hinges

on the quality and diversity of the training data. Thus, our model’s

applicability to broader patient populations requires validation

across diverse datasets.

Another critical consideration is the assumption that VM’s

genomic signature remains constant across different stages of

breast cancer. This assumption, while necessary for model

development, may oversimplify the dynamic interplay between

tumor cells and their environment. Future iterations of our model

should incorporate temporal data to capture the evolution of VM

signatures over time.

In our previous work (6), we developed a predictive model for

breast cancer prognosis based on endoplasmic reticulum (ER)

stress-related genes. This study highlighted the critical role of ER

stress in tumor progression and response to therapy. The current

study advances this field by focusing on VM, a distinct mechanism

by which tumor cells mimic endothelial cells to form vasculogenic-

like networks, contributing to tumor growth and metastasis. The

novel VM model demonstrates robust predictive power, with a

significant improvement over traditional prognostic method. The

model’s ability to stratify patients based on VM activity provides a
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nuanced understanding of tumor biology, leading to more

personalized treatment approaches.
Conclusion

Our study represents a significant leap forward in the

application of ML to cancer research, specifically in the context of

VM in breast cancer. While acknowledging the limitations and

assumptions of our current model, we emphasize the vast potential

of this research to impact future diagnostic and therapeutic

strategies. The road ahead calls for collaborative efforts across

computational and clinical disciplines to refine, validate, and

translate these findings into clinical practice, ultimately aiming to

improve outcomes for breast cancer patients worldwide.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

The studies involving humans were approved by the Ethics

Committee of Guizhou Provincial People’s Hospital (2023-070).

The studies were conducted in accordance with the local legislation

and institutional requirements. The participants provided their

written informed consent to participate in this study.
Author contributions

XL(1st author): Data curation, Formal analysis, Investigation,

Visualization, Writing – original draft. XL(2nd author): Investigation,

Resources, Visualization, Writing – original draft. BY: Methodology,

Resources, Writing – original draft. SS: Investigation, Resources,

Writing – original draft. SW: Investigation, Resources, Writing –

original draft. FY: Conceptualization, Methodology, Supervision,

Writing – review & editing. TW: Conceptualization, Formal analysis,

Investigation, Methodology, Resources, Validation, Visualization,

Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Talent Fund of Guizhou Provincial People’s

Hospital ((2022)-33), Guiyang Bureau of Science and Technology

major special program ((2022)-4-1), Doctor Fund of Guizhou

Provincial People’s Hospital (GSYSBS(2016)-1), and the

Foundation of Health and Family.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1414450
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1414450
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Immunology 16
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1414450/full#supplementary-material
References
1. Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-
Kalbolandi S, et al. Breast cancer: Biology, biomarkers, and treatments. Int
Immunopharmacol. (2020) 84:106535. doi: 10.1016/j.intimp.2020.106535

2. Yuan Z, Zhou Y, Gao S, Cheng Y, Li Z. Homogeneous and sensitive detection of
microRNA with ligase chain reaction and lambda exonuclease-assisted cationic
conjugated polymer biosensing. ACS Appl Mater Interfaces. (2014) 6:6181–5.
doi: 10.1021/am500883q

3. Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of
breast cancer. Biol Res. (2017) 50:33. doi: 10.1186/s40659-017-0140-9
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