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Parameter optimization for
stable clustering using FlowSOM:
a case study from CyTOF
Weiyang Tao †, Anirban Sinha*†, Khadir Raddassi
and Aridaman Pandit

Immunology Discovery Research, AbbVie Cambridge Research Center, Cambridge, MA, United States
High-dimensional cell phenotyping is a powerful tool to study molecular and

cellular changes in health and diseases. CyTOF enables high-dimensional cell

phenotyping using tens of surface and intra-cellular markers. To utilize the full

potential of CyTOF, we need advanced clustering and machine learning

methodologies to enable automated gating of the complex data. Here we

show that critical modifications to a machine learning based FlowSOM

package and precise parameter optimization can enable us to reliably analyze

the complex CyTOF data. We show the impact of key parameters on clustering

outcomes while addressing bugs within the publicly available package. We

modified the FlowSOM pipeline to fix the bugs, enable scalability to handle

large datasets and perform parameter optimization. We further validated this

modified pipeline on a substantial external immunological dataset demonstrating

the need of data-specific tailored parameter optimization to ensure reliable

definition and interrogation of immune cell populations associated with

immune disorders.
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GRAPHICAL ABSTRACT

Optimized FlowSOM pipeline for reliable clustering of high-dimensional cytometry data.
1 Introduction

CyTOF (Cytometry by Time of Flight) is a cutting-edge

technology in cytometry that utilizes mass spectrometry to

measure cellular markers, enabling the simultaneous detection of

up to ~100 proteins for hundreds of thousands of cells in a single

experiment (1). Unlike traditional flow cytometry, CyTOF

overcomes limitations related to spectral overlap, fluorescence

spillover and autofluorescence, providing high-resolution and

high-throughput analysis of individual cells (2, 3). Its ability to

measure a vast number of markers with minimal signal interference

and superior sensitivity makes CyTOF a very important technology

in multi-dimensional cell phenotyping. By offering a comprehensive

view of cell populations and their functional states, it has become an

invaluable tool in various research areas, including immunology,

oncology, and systems biology, driving advances in understanding

cellular heterogeneity and identifying rare cell subsets with

unparalleled precision (4–6).

Analyzing complex CyTOF datasets is challenging due to the

high dimensionality and inherent noise in the data. As CyTOF can

measure multiple markers simultaneously on individual cells, the

resulting datasets are large and complex, making it difficult to

visualize and interpret the underlying cellular heterogeneity using

conventional gating approaches. Moreover, the data may contain

technical variations, batch effects, and experimental noise. To

unravel meaningful information from such intricate datasets and

identify biologically relevant cell subsets, robust clustering

algorithms are essential (7). These algorithms should be able to

handle high-dimensional data, be resistant to noise and technical

variations, and provide reliable and reproducible cell grouping to

facilitate downstream analyses and biological interpretation (8).

CyTOF data analysis has transitioned from conventional manual

gating to sophisticated clustering algorithms (9–11). Although
Frontiers in Immunology 02
widely used, manual gating is labor-intensive, subjective, and

prone to missing rare cell populations and intricate relationships.

Advanced clustering algorithms, including PhenoGraph (12),

viSNE (13), SPADE (14), and notably FlowSOM (15), have

emerged to address these challenges. FlowSOM stands out in the

list as a highly relevant method for analyzing high-dimensional

biological data, primarily due to its exceptional capacity to automate

and streamline the clustering process (16). FlowSOM efficiently

conducts clustering, yielding standardized and reproducible

analyses with superior accuracy and speed that outperforms other

algorithms (17). Notably visualization techniques, such as

minimum spanning tree etc., implemented in FlowSOM play a

pivotal role in data interpretation. FlowSOM profoundly influences

the analysis and understanding of data, particularly in immunology

research, aiding in the identification, characterization, and study of

immune cell populations and their responses (18–21).

Within FlowSOM, an unsupervised machine learning technique

is applied to conduct clustering for high-dimensional cytometry

data. In essence, FlowSOM follows the principles of Self-Organizing

Maps (SOM) (22, 23) which is an artificial neural network used for

unsupervised learning tasks, such as clustering, encompassing three

main stages: grid node initialization, training, and termination.

Initialization entails a random distribution of nodes across the

feature space. The training process calculates the distance between

each cell to each node in the feature space, followed by positional

updates of nodes through the “attraction” of nearby data points.

The termination is performed after the nodes have updated for a

certain number of times that is determined by the number of

iterations (rlen) and the total number of cells that are used

for training.

However, the clustering results obtained from FlowSOM may

vary based on several key parameters that influence the algorithm’s

behavior. One such parameter is “rlen,” which determines the
frontiersin.org
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number of iterations to build the SOM during training. Varying

“rlen” can impact the stability of the clusters, with lower “rlen”

values potentially leading to an unstable SOM, which may result in

unreliable cell clusters. Additionally, the “grid dimension”

parameter, which defines the number of nodes in the SOM grid,

can influence the granularity of the clustering output. Larger grid

dimensions may capture finer details in the data but can also

increase computational complexity. Another crucial parameter is

the learning rate of the training SOM, a low learning rate may lead

to a slow convergence, which, given certain “rlen” value, may result

in unreliable cell clusters as well. Therefore, careful optimization of

these parameters is vital to obtain consistent and biologically

meaningful clustering results with FlowSOM. However, while

these parameters could influence FlowSOM output, little attention

has been given to parameter optimization to date. This is because

most studies utilize the default parameters in FlowSOM, which may

not be optimal for all datasets.

Here, we evaluate the impact of varying “rlen” on the quality of

CyTOF data clustering using FlowSOM, through which we

identified and addressed two bugs in the algorithm. With the

bug-free version of FlowSOM, this study systematically explores

parameters such as “rlen” and “grid dimension” to elucidate their

impact on the stability, reproducibility, and reliability of clustering

results for different sizes of CyTOF datasets. This research seeks to

highlight the importance of optimizing parameters for clustering to

enhance our comprehension of cellular heterogeneity and

phenotypic diversity within high-dimensional CyTOF datasets.

This allows for a better interpretation of data and clear

identification of immune cell population with implication in

immune disorders.
2 Methods

2.1 Data acquisition and preprocessing

We systematically screened the FlowRepository database for

large, high-quality CyTOF datasets (MIFlowCyt score > 0.5)

uploaded within the last 5 years. The largest multidimensional

CyTOF dataset meeting these criteria was utilized for our work

which has been previously published 1 (24). The dataset comprises

of 126,873,075 cells, distributed in 779 human peripheral blood

mononuclear cell (PBMC) samples that were collected from 120

intent-to-treat participants, divided into three different groups

(Peanut stimulated, Unstimulated, and PMA/Ionomycin-

stimulated). Samples were collected at Baseline, week 104, and

week 117 time points. After removing the non-marker channels,

each sample encompasses 39 marker channels, including markers

such as CD3, CD4, CD8, CD19, CD56, TCRgd, and more. Quality

checks were executed using pseudo-color plots with “191Ir_dna1”,

“193Ir_dna2”, and “115In_LiveDead” channels, employed for

filtering cell debris, doublets, and dead cells.
1 available at http://flowrepository.org/id/FR-FCM-Z4MA
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Additionally, to assess the impact of the number of cells on

clustering reliability, we derived four smaller datasets by random

down sampling from the original dataset using “sample” function

without replacement from R base package, resulting in subsets of

27.5 million cells ( 2
30

39 or 27,531,842 cells to be exact), 1 million cells,

100,000 cells, and 10,000 cells (Table 1).
2.2 Pipeline for analysis

In the analysis conducted under the R platform (version 4.2.3),

we utilized the FlowSOM R package (version 2.6.0) independently,

along with our own debugged version (see section 3.1 for more

details). Flow Cytometry Standard (FCS) files were initially read

using the ‘read.flowSet’ function using the flowCore package

(version 2.10.0). Subsequently, the data was transformed using

the arcsinh method with a cofactor of 5. A FlowSOM object was

created using the ‘ReadInput’ function from FlowSOM with the

parameter ‘scale = TRUE.’ Following this, a Self-Organizing Map

(SOM) was constructed, varying dimensions (dim = 10, 12, 14, and

16) of a square grid and numbers of iterations (rlen = 1, 5, 10, 20, 40,

60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340,

360, 380, 400, 600, 800, and 1000) across all cells for the four distinct

sub-datasets mentioned above. FlowSOM involves two learning

rates (alpha) for the nodes in the SOM grid during training, with

the first element in alpha denoting the learning rate for the start of

iteration, and the second for the end of iteration. To assess the

impact of learning rates, we employed four different combinations:

(0.05, 0.001), (0.01, 0.001), (0.1, 0.05), and the default alpha (0.05,

0.01), on the dataset consisting of 1 million cells.
2.3 Metrics for the evaluation of reliability
and stability of clusters

In this study, we used three metrices including Average

Distance to the nearest node, Average Maximum Jaccard Index,

and Percentage of Maximum Jaccard Index Over a Threshold to

evaluate the reliability and stability of clusters during SOM training.

Average Distance (AD) to the nearest node is defined as

AD =  on
i=1

Di

n

where n is the number of cells used for training the SOM, and Di

is the Euclidian distance between the ith cell and centroid of its

closest node in the SOM after training. The smaller the AD value,

the better the SOM nodes represent the clusters in the data. For each

run (rlen = 1, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220,

240, 260, 280, 300, 320, 340, 360, 380, 400, 600, 800, and 1000), the

AD was calculated for monitoring the updates and performance of

the nodes in the SOM. Theoretically, when the SOM is stabilizing

and closely representing the clusters in the data, the curve of AD

would gradually approach a relatively stable low point and slightly

oscillates around the minimum value with the increase of rlen.

Average Maximum Jaccard Index (AMJI), representing the

overall similarity of the SOMs in two runs, is defined as
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AMJI =  ok
i=1

max(Ji,:)
k

where J is a matrix of Jaccard indices between nodes in the first

run N and nodes in the second run M, when comparing the

similarity of nodes from two different runs. k is the product of

two dimensions of the SOM grid. The Jaccard index between ith

node of the first run (Ni) and jth node of the second run (Mj)

represents a statistical metric to measure the degree of overlap

(similarity or diversity) between the cells from the two nodes, and is

defined as

Ji,j =
Ni ∩

 Mj

�� ��
Ni ∪ Mj

�� ��

If the cells in the Ni node are exactly the same as the cells in the

Mj node, then the two nodes from two different runs are exactly the

same, i.e. Ji,j = 1. On the contrary, if none of the cells in the Ni node

is present in the Mj node, then the two nodes from two different

runs are absolutely different, i.e. Ji,j = 0. By pairwise computing the

Jaccard index of the nodes from two consecutive runs, a matrix of

Jaccard indices can be obtained to compare the similarity of nodes

in these runs. AMJI is a metric summarizing the Jaccard index of all

the nodes from two different runs. Theoretically, the curve of AMJI

would gradually approach a plateau and slightly oscillates around

the maximum value over the increase of rlen, providing another

metric to monitor the stability of the SOM while training.

Percentage of Maximum Jaccard Index Over a Threshold

(PMJIOT) is defined as:

PMJIOT = o
k
i=1 I( x∈Ji,:jx > t

� �
)

� �
k

� 100%,

where t is the threshold, which is either 0.5 or 0.7 in the analyses

for assessing the stability of SOM. I is the indicator function, which

is defined as I(A) =
1

0

,  if A is true 

,  if A is false

8<
: .

3 Results

3.1 Debugging FlowSOM package in the
context of large datasets and
extended rlens

The nodes within SOM persistently update and move

throughout a user-specified number of iterations (rlen) during the

training process. This implies that the distances of cells to their

nearest node undergo continuous changes throughout the training

period. We used the down-sampled dataset (see Methods)

consisting of 27.5 million cells to assess how changing the

FlowSOM parameters affects the clustering results. We changed

the number of iterations (rlen; from 1 to 1000) and assessed the

stability of the SOM (see Methods) while maintaining other

parameters at their default values. The Average Distances (AD) of

cells to their nearest node exhibited low values with minor

fluctuations when ‘rlen’ was below ~100 indicating an updating

but stable SOM. However, AD remained constant within the range

of ~100 to ~140 and oscillated dramatically when ‘rlen’ exceeded
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~140 (Supplementary Figure S1A), indicating that the nodes in

SOM were not updated for some runs with ~100< rlen< ~140,

which must not be observed if SOM was trained correctly.

Subsequently, the Average Maximum Jaccard index (see

Methods) was employed to appraise the similarity of SOMs across

different runs. The analysis revealed that the SOMs from the run

with ‘rlen’ values ranging from 80 to 140, and from 240 to 300, were

identical, indicated by the red diagonal line (Figures 1A, B and

Supplementary Figure S1A). Intriguingly, this phenomenon ceased

to manifest when utilizing a smaller dataset (such as 1 million cells),

with ‘rlen’ ranging from 1 to 1000 (figure not shown), implying a

potential bug in the current version of FlowSOM package,

rendering it incapable of analyzing datasets with tens of millions

of cells.

Upon examining the source C code of FlowSOM, we uncovered

a significant numerical/coding error. The data type representing the

actual number of node updates (“niter”, calculated as the product of

rlen and the number of cells) is hardcoded as an integer (“int”) data

type. On R platforms, both 32-bit and 64-bit systems, the “int” data

type in C code is typically limited to 32 bits, with a maximum value

of 2,147,483,647 (231-1).

When the product of rlen and the number of cells exceeds 231-1,

the variable “niter” in the C code is assigned a random number

between -231 and 231-1. If this random number is positive, the SOM

nodes are updated that many times after initialization during

training. Conversely, if it’s negative, the SOM nodes remain un-

updated after initialization. A potential solution to this bug would

be replacing the “int” type by “long” or “R_xlen_t” type.

Furthermore, we observed that when analyzing a CyTOF

dataset of dimensions m×n (where m is the number of channels

and n is the number of cells), FlowSOM would generate an error if

m×n > 231-1. This issue stems from FlowSOM’s use of the “.C”

function as the R interface function, which only accepts arrays up to

231-1 in length. The CyTOF data must be coerced into an array of

length m×n before being processed by the C code in FlowSOM for

SOM training. To circumvent this limitation, we implemented the

“.Call” interface to call C functions in the FlowSOM package. After

addressing these bugs (see Supplementary Figure S2 for illustration)

in the FlowSOM package (version 2.6.0), no diagonal red line was

observed, meaning that the nodes from two consecutive runs were

not identical, suggesting that our pipeline can be correctly executed

on the dataset of 27.5 million cells (Figures 1C, D, and

Supplementary Figure S1B).
3.2 The stability of SOM is strongly
dependent on grid dimension, rlens,
learning rate and the size of dataset

To assess if the stability of the Self-Organizing Map (SOM) is

influenced by parameters such as “rlen,” “number of cells,” “grid

dimension,” and “learning rate” (Table 1), we used three metrics

including Average Distance (AD), Average Maximum Jaccard

Index (AMJI), and Percentage of Maximum Jaccard Index Over a

Threshold (PMJIOT), to quantify the SOM stability between

different runs. We conducted analyses with different “rlen” values
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FIGURE 1

Jaccard index (degree of overlap between the cells from the two nodes) and Average Maximum Jaccard Index (AMJI) for the data set comprised of
27.5 million cells. In (A, C), the heatmaps show a representative example of the Jaccard index between grid nodes from two consecutive runs before
(A) and after (C) fixing the bugs in FlowSOM. As an example, the numbers on the X axis are the node indices in the run with rlen = 80, and the
numbers on the Y axis are the node indices in the run with rlen = 100. The color bar indicates the scale of Jaccard index, the highest Jaccard index
is in red and the lowest Jaccard index is in blue. The diagonal red line in (A) indicates a perfect overlap of nodes from the run with rlen = 80 and the
run with rlen = 100. But in (C) no diagonal red line is observed. In (B, D), the heatmaps show AMJI between grid nodes from any different runs
before (B) and after (D) fixing the bugs in FlowSOM. Unlike the Jaccard index comparing the similarity of every pair of nodes between two different
runs, AMJI is a metric summarizing the similarity of all nodes in two different runs.
TABLE 1 The parameters that are used for optimization.

Parameter Explanation Values

Dataset size The numbers of cells are varied in different datasets. This is evaluated by down
sampling the full dataset.

126,873,075 (the full dataset), 27,531,842 (i.e.,
230

39
), 106, 105, and

104 cells.

rlen The number of epochs to train the whole dataset. The product of rlen and the total
number cells in the dataset is the total iteration of the grid nodes in SOM. The
default and frequently used rlen value is 10.

1, 5, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240,
260, 280, 300, 320, 340, 360, 380, 400, 600, 800, and 1000.

xdim The width of the grid in SOM. The default is 10, meaning that the number of
columns of the node grid is 10.

10, 12, 14, and 16. The value is set as the same as ydim.

ydim The height of the grid in SOM. The default is 10, meaning that the number of rows
of the node grid is 10.

10, 12, 14, and 16. The value is set as the same as xdim. The grid
dimension in this article is the combination of xdim and ydim
and is denoted as xdim × ydim.

alpha A vector of start and end learning rates. The default is (0.05, 0.01), meaning that
the start learning rate is 0.05, and it is gradually decayed to 0.01 at the end of
iteration during the SOM training.

(0.05, 0.001), (0.01, 0.001), (0.1, 0.05), and (0.05, 0.01).
F
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while keeping other parameters constant. Using a dataset of 27.5

million cells and varying “rlen” from 1 to 1000, FlowSOM

demonstrated stability with different grid dimensions (Figures 1D,

Supplementary Figures S1B, S3A, B). However, as the dataset size

decreased from 27.5 million to 100 thousand cells (and even fewer),

achieving a stable SOM became challenging with small “rlen”

values, evidenced by high AD (Supplementary Figures S1B–E),

and low AMJI (Figures 2A, C and Supplementary Figures S3A, C)

and PMJIOT (Figures 2B, D and Supplementary Figures S3B, D).

This indicates that default parameters, like “rlen = 10” and “grid

dimension = 10 × 10,” do not yield stable clusters for datasets with

fewer than 100 thousand cells, rendering subsequent analyses

unreliable. Moreover, when employing higher grid dimensions

(12 × 12, 14 × 14, and 16 × 16), FlowSOM required even higher
Frontiers in Immunology 06
“rlen” to achieve stability, implying that users aiming for more

detailed cell type granularity by increasing grid dimensions should

adjust “rlen” accordingly, especially with smaller datasets (Figures 2,

Supplementary Figures S1, S3).

Figures 2A, and B depicts the performance of achieving a stable

SOM with varying rlen and grid dimension parameters, alongside

the default learning rate of (0.05, 0.01) in FlowSOM, with a dataset

containing 1 million cells. The results demonstrate that a stable

SOM can be attained using default parameters (rlen = 10, grid

dimension = 10 × 10) under these conditions. However, if users opt

for a grid dimension of ≥ 12 × 12, the default rlen of 10 may be

insufficient to achieve a stable SOM, suggesting that SOMs with

higher grid dimensions required more iterations for stability under

the same learning rate and dataset conditions (Supplementary
FIGURE 2

The heatmaps show Average Maximum Jaccard Index (AMJI) between different runs (with different rlen while maintaining the other parameters fixed)
for the data set comprised of (A) 1 million cells and (C) 10,000 cells. In (B, D), the smooth curves represent the results of a LOWESS (Locally
Weighted Scatterplot Smoothing, a non-parametric regression method used to create a smooth line through a scatterplot to help visualize the
underlying trend in the data) fitting applied to the Percentage of Maximum Jaccard Index Over Threshold (PMJIOT). Two consecutive runs (two
consecutive rlen while maintaining the other parameters fixed) are compared for the data set comprised of (B) 1 million cells and (D) 10,000 cells.
Different panels within (A–D) represent results with different grid dimensions while maintaining other parameters fixed.
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Figure S4). Further stability exploration using different learning

rates, such as (0.05, 0.001), (0.01, 0.001), and (0.1, 0.05), while

keeping other parameters at default (except for rlen), revealed that a

higher learning rate led to rapid SOM stability compared to a lower

learning rate (Supplementary Figure S4). This suggests users can

increase the learning rate as an alternative to rlen for achieving a

stable SOM, with the caution that an excessively high learning rate

may result in an unstable SOM due to large steps in grid node

updates during training. Thus, it is important to perform parameter

optimization to evaluate the stability of SOM for each dataset

considering the number of cells, grid dimensions, rlen, and

learning rate.
3.3 An unstable SOM could lead to
biological misinterpretation

We used the aforementioned peanut allergy study data set, and

down sampled to 100,000 cells, to determine if an unoptimized

SOM could generate heterogeneous cell clusters, potentially causing

biological misinterpretation. Subsequently, we calculated the

Jaccard indices (Supplementary Figure S6) to compare clusters

from two different runs: one with a grid dimension of 12 × 12
Frontiers in Immunology 07
using default parameters (Table 1 and Supplementary Table S1,

with rlen = 10, alpha = (0.05, 0.01), etc.) and another with the same

grid dimension but with an optimized rlen = 140 (cutoff at the

plateau in Supplementary Figure S3D). Heatmaps of markers’

pseudo-bulk expression in clusters (mean expression of each

marker in the cells of each cluster) for both default

(Supp lementa ry F igure S7) and opt imized se t t ings

(Supplementary Figure S8) are included in Supplementary

Information. We matched each cluster from the default run with

the cluster from the optimized run with the maximum Jaccard

index, resulting in 144 (12 × 12) pairs of clusters. For example,

clusters 117, 132, and 143 from default run are annotated as CD4+ T

cell clusters, due to their high expression of CD3 and CD4 markers,

and low expression of CD14, CD11c, CD123, and CD19 markers

(Figures 3A–C). According to the maximum Jaccard indices of

these three clusters from the default run, the corresponding clusters

from the optimized run are 56, 107, and 131, respectively

(Supplementary Figure S6). However, the clusters from the

default run showed a bimodal distribution of CD4 expression

(Figures 3A–C) indicating heterogeneity in cell populations. The

biaxial plots (Figures 3E–G) confirmed that the cells in these

clusters were a mixture of CD4+ T cell population and CD8+ T

cell population (or CD4– T cell population). Under optimized
FIGURE 3

Rigid plots and biaxial plots show the different distributions of marker expression for the clusters from the default run (rlen = 10) and the optimized
run (rlen = 140) when the grid dimension of 12 × 12 and data set of 100,000 cells was used. (A, E) are used to compare cluster 117 from default run
and cluster 56 from the optimized run. Similarly, (B, F) are used to compare cluster 143 from default run and cluster 131 from the optimized run. (C,
G) compare cluster 132 from default run and cluster 107 from the optimized run. (D) boxplot shows the percentage of misclustered cells (red and
blue boxes in E–G) in the clusters in default and optimized runs. In (A-C) J denotes Jaccard index between two clusters. The grey points in E-G are
the cells randomly sampled from background cells.
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parameters, the CD8+ T cells significantly decreased, resulting in

more homogeneous CD4+ T cell fractions (Figures 3D–G). More

specifically, after parameter optimization, cluster 131 (rlen = 140)

was more homogenous than its counterpart (cluster 143 when rlen

= 10) in the default settings (Figure 3H). Before parameter

optimization, cluster 143 from the default run had ~16% of cells

coming from CD8+ T cells, while after parameter optimization, the

percentage decreased to less than 1% in its counterpart cluster 131

from optimized run (Figures 3D, F). These clusters (cluster 131

from optimized run or cluster 143 from default run) was annotated

as a subpopulation of naive CD4+ T cells that play an essential role

in peanut allergy as its frequency was decreased during allergic

sensitization (23). Given the differences of the cell percentage

changes between default and optimized runs, immunologists

might formulate a wrong conclusion if the optimized parameters

were not chosen. These results suggest that the parameter

optimization is not only important for SOM stabilization, but also

crucial for correct biological interpretation and accurate monitoring

of cell population changes in health and disease.
4 Discussion

This study highlights the pivotal significance of parameter

optimization when applying FlowSOM to clustering large

biological datasets, focusing on the diverse parameters and their

impact on Self-Organizing Maps (SOMs) stability. Our exploration,

conducted on a public dataset comprising approximately 127

million cells, brought to light two previously unidentified bugs in

FlowSOM version 2.6.0. These bugs, rooted in the use of a 32-bit

integer in the backend C code, hindered the accurate analysis of

datasets with a large number of cells, resulting in inconsistent SOM

outputs. Following thorough debugging and rectification, our

refined pipeline demonstrated the robustness of the algorithm

under appropriate configurations. Its effectiveness was validated

by testing it on three different internal datasets. The data supporting

this validation is not included here and is currently being pursued

for publication in a separate research article. This emphasizes the

crucial necessity of resolving technical constraints in cytometry data

analysis tools, guaranteeing their compatibility with the extensive

datasets commonly encountered in biological research.

Considering widespread usage of FlowSOM across numerous

datasets, each characterized by substantial cell counts ranging from

hundreds of thousands to millions, it is noteworthy that FlowSOM

generally functions correctly with default parameters. This

recognition positions FlowSOM as a leading pipeline for the

analysis of cytometry datasets. However, our investigation has

brought to light a potential for the emergence of entirely unstable

clusters when the product of the default “rlen” and cell counts in a

dataset exceeds 231 - 1. This underscores the imperative necessity

for debugging the publicly available FlowSOM package. Despite its

capacity to analyze smaller datasets without errors, default

parameters may predispose instances of unstable clusters, thereby

underscoring the importance of parameter optimization prior to

executing the complete FlowSOM pipeline. Beyond debugging

challenges, our investigation explored the influence of different
Frontiers in Immunology 08
parameters on FlowSOM’s clustering performance, scrutinizing

“rlen,” “grid dimension,” “learning rate,” and “dataset size.” The

FlowSOM clustering outcome is crucial for data interpretation as

different parameter combinations result in distinct performances,

providing evidence for optimization strategies.

The incorporation of metrics assessing clustering stability, such

as the Average Maximum Jaccard Index (AMJI), yielded valuable

insights into the stability and reliability of clustering outcomes.

Elevated AMJI values served as indicators of more robust clustering.

An assessment of AMJI scores across diverse parameter

configurations facilitated the evaluation of each setting’s

effectiveness. The number of training iterations denoted as “rlen”

emerged as a pivotal determinant influencing clustering

performance. Lower “rlen” values correlated with unstable

clustering, while higher values, up to a specific threshold,

contributed to enhanced consistency. The identification of the

optimal number of iterations where clustering stability reached a

plateau, proved essential for ensuring dependable results.

Exploration of various grid dimensions allowed for further

refinement of clustering output. While larger grid dimensions

facilitated more detailed clustering, they concurrently heightened

computational complexity and resource requirements. A

comparative analysis of different grid dimensions, grounded in

AMJI scores, assisted in striking a balance between the

granularity of clustering and faster output time.

As one of the fundamental steps in FlowSOM, metaclustering (a

step to merge similar SOM nodes/clusters into higher-level clusters,

i.e., metaclusters) can merge many small cell clusters into a few

relatively larger metaclusters, which can facilitate cell annotation

and biological interpretation. We explored the impact of the “rlen”

and “grid dimensions” on the number of metaclusters in this study

as well (Supplementary Figure S5), given the maximum number of

metaclusters being 80 and with other default parameters. On one

hand, the analysis of metacluster numbers generated by FlowSOM

with different rlen values for the same grid dimensions revealed an

unpredictable pattern (Supplementary Figure S5). On the other

hand, to some extent, a positive correlation was observed between

the number of metaclusters and grid dimensions. Determining the

appropriate number of metaclusters remains a challenge, which is

subjective and varies across different datasets. One limitation of our

study is that we did not address this challenge. Optimizing the

parameters in FlowSOM analysis, such as rlen and grid dimensions,

can profoundly impact the biological interpretation of CyTOF data.

This optimization process involves a delicate balance between

computational efficiency and biological accuracy. Increasing these

parameters typically results in more refined and stable clusters,

potentially unveiling subtle cell populations that might otherwise be

overlooked. However, this comes at the cost of increased

computational time. Conversely, decreasing these parameter

values might lead to less distinct clusters, potentially merging

biologically relevant populations and oversimplifying the data (i.e.

introducing contaminating CD8+ T cells in cluster 143 as compared

to cluster 131, which would lead to incorrect interpretation). The

choice of parameters influences the resolution and stability of

clusters as we have observed with CD4+ T cells (cluster 132 –

central memory CD4+ T cells) which contains contaminating cells
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coming from the neighboring cluster 143 (activated T cells

producing IFNg) that were misclassified. This issue was resolved

as shown in cluster 107 using the optimized settings in FlowSOM

(Figure 3G). This, in turn, impacts the final clustering and

visualization results. Careful optimization of rlen, grid dimension,

and other parameters is therefore crucial to ensure that the resulting

clusters accurately represent the underlying cellular populations in

the CyTOF data, striking a balance between revealing important

cellular heterogeneity and avoiding oversimplifications.

Although the manuscript focuses on using one public dataset

for optimization of parameters in FlowSOM, we further down

sampled the dataset into 4 smaller datasets, which were used for

evaluating the effect of dataset size on the SOM stability. It

showed that parameter optimization is even more required for

relatively smaller datasets. In addition, we have also tested our

pipeline on three internal datasets (results not shown). FlowSOM

parameter optimization contributed to enhancing robustness of

clustering across these datasets and enabled the identification of

certain rare immune cell populations. By using optimized

parameters, we observed a reduction in heterogeneous clusters

and their misrepresentation. This, in turn, facilitated improved

annotation and biological interpretation, thereby supporting the

generalizability of our approach.

In summary, optimizing parameter combinations in FlowSOM

proves instrumental in identifying tailored settings for clustering

biological datasets. A thorough evaluation of iterations, grid

dimension, and learning rate ensures reliable and meaningful

clusters, emphasizing clustering stability. FlowSOM emerges as an

automated, data-driven approach for high-dimensional cell

phenotyping, making a significant contribution to the ongoing

discourse on CyTOF/Flow data analysis. From debugging technical

limitations to unraveling intricate parameter dependencies, our

findings underscore the need for vigilant algorithmic development

and verification, emphasizing the importance of understanding

parameter interactions for robust and reproducible cytometry

data analysis. While the debugged version of FlowSOM can

effectively handle large datasets exceeding 50 million cells with

default parameter settings, datasets with fewer than 1 million cells

require careful parameter optimization to achieve stable and

reliable clustering.
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SUPPLEMENTARY FIGURE S1

(A) The line plots represent Average Distance (AD) of cells to the nearest node
in different runs with different rlen for the dataset comprised of 27.5 million

cells using FlowSOM before fixing the bugs. Different panels in (A) represent
different grid dimensions, while maintaining other parameters fixed, shown

on the top of each panel. After fixing the bugs in FlowSOM, Average Distance
of cells to the nearest node is similarly shown in (B–E), which are the plots for

the datasets comprised of 27.5 million, 1 million, 100,000, and 10,000

cells, respectively.

SUPPLEMENTARY FIGURE S2

The illustration of changes in the debugged version of FlowSOM package.

Red color highlights the earlier version of the code, and the blue highlights
the debugged version. The code in the orange box is C code.

SUPPLEMENTARY FIGURE S3

The heatmaps show the Average Maximum Jaccard Index (AMJI) for the data

set comprised of (A) 27.5 million cells and (C) 100,000 cells. In (B, D), the
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smooth curves represent the results of a LOWESS (Locally Weighted
Scatterplot Smoothing) fitting applied to the Percentage of Maximum

Jaccard Index Over Threshold (PMJIOT). Two consecutive runs (two

consecutive rlen while maintaining the other parameters fixed) are
compared for the data set comprised of (B) 27.5 million cells and (D)
100,000 cells. Different panels within (A–D) represent results with different
grid dimensions while maintaining other parameters fixed.

SUPPLEMENTARY FIGURE S4

The smooth curves represent the results of a LOWESS (Locally Weighted
Scatterplot Smoothing) fitting applied to the Percentage of Maximum Jaccard

Index Over Threshold (PMJIOT) in the dataset comprised of 1 million cells

using (A) learning rate = (0.05, 0.001), (B) learning rate = (0.01, 0.001), and (C)
learning rate = (0.1, 0.05), while maintaining other parameters fixed. Different

colors represent different thresholds in the PMJIOT formula in the Methods.
Different panels within (A–C) represent results with different grid dimensions

while maintaining other parameters fixed.

SUPPLEMENTARY FIGURE S5

The number of metaclusters varies in different runs given different grid
dimensions (10, 12, 14, and 16 represented in different colors), while
Frontiers in Immunology 10
maintaining other parameters fixed for a data set comprised of (A) 27.5
million cells, (B) 1 million cells, (C) 100,000 cells, and (D) 10,000 cells.

SUPPLEMENTARY FIGURE S6

Jaccard index between the nodes from the run with default parameters (rlen

= 10) and the nodes from the run with optimized rlen (140) under grid

dimension = 12 × 12 setting.

SUPPLEMENTARY FIGURE S7

Heatmap showing markers’ pseudo-bulk expression in clusters (mean

expression of each marker in the cells of each cluster) with the default
parameter setting (rlen = 10). The color scale indicates median cluster

expression ranged from blue (lowest) to red (highest).

SUPPLEMENTARY FIGURE S8

Heatmap showing markers’ pseudo-bulk expression in clusters (mean
expression of each marker in the cells of each cluster) with the optimized

parameter setting (rlen = 140). The color scale indicates median cluster
expression ranged from blue (lowest) to red (highest).

SUPPLEMENTARY TABLE S1

The parameters that remained at default setting.
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