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Background: Sarcopenia is a condition characterized by the age-related loss of
skeletal muscle mass and function. The pathogenesis of the disease is influenced
by chronic low-grade inflammation. However, the specific changes in the
immune landscape changes of sarcopenic muscle are not yet fully understood.

Methods: To gain insights into the immune cell composition and interactions, we
combined single-nucleus RNA sequencing data, bulk RNA sequencing dataset,
and comprehensive bioinformatic analyses on the skeletal muscle samples from
young, aged, and sarcopenic individuals. Histological staining was then
performed on skeletal muscles to validate the distribution of immune cells in
clinical samples.

Results: We analyzed the transcriptomes of 101,862 single nuclei, revealing a
total of 10 major cell types and 6 subclusters of immune cell types within the
human skeletal muscle tissues. Notable variations were identified in the immune
microenvironment between young and aged skeletal muscle. Among the
immune cells from skeletal muscle microenvironment, macrophages
constituted the largest fraction. A specific marker gene LYVEL for skeletal
muscle resident macrophages was further identified. Cellular subclasses
included four distinct groups of resident macrophages, which play different
roles in physiological or non-physiological conditions. Utilizing bulk RNA
sequencing data, we observed a significant enrichment of macrophage-rich
inflammation in sarcopenia.
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Conclusions: Our findings demonstrate age-related changes in the composition
and cross-talk of immune cells in human skeletal muscle microenvironment,
which contribute to chronic inflammation in aged or sarcopenia muscle.
Furthermore, macrophages emerge as a potential therapeutic target, thus
advancing our understanding of the pathogenesis of sarcopenia.

KEYWORDS

sarcopenia, skeletal muscle, immune microenvironment, single-cell RNA sequencing,
transcriptomics, cell communication, inflammation

1 Introduction

Sarcopenia is a systemic skeletal muscle disease that occurs with
aging, characterized by the progressive loss of muscle mass and
function (1). It is commonly associated with weakness, immobility,
and premature death (2). Similar to other human tissues, skeletal
muscle degeneration also happens with age (1). The incidence of
sarcopenia increases as individuals get older, with an average onset
age of over 70 years old (3-5). This has made sarcopenia a significant
public health concern in aging societies (6), as it is linked to numerous
adverse outcomes such as falls, fractures, and mortality in the elderly.
Histopathologically, sarcopenia is characterized by reductions in the
number and size of muscle fibers, especially Type-II muscle fibers, as
well as fatty infiltration in skeletal muscle (1, 7). Muscle anabolic
resistance, mitochondrial dysfunction, inflammation, and degenerative
changes in the nervous system are found to be key factors in the
development of sarcopenia (7). However, the exact mechanism
underlying the development of sarcopenia is not yet fully understood.

In recent years, there has been a growing interest in studying the
relationship between sarcopenia, immunity, and inflammation. As
individuals age, they often experience a chronic low-grade pro-
inflammatory state characterized by an elevation in pro-
inflammatory cytokines and a decline in immune cell function (8).
Frail elderly individuals exhibit elevated levels of tumor necrosis factor-
o (TNF-0)) in comparison to healthy young adults, and interleukin-6
(IL-6) is significantly associated with sarcopenia (9, 10). The elevated
expression of these cytokines can contribute to muscle atrophy (11, 12).
Additionally, B cells may have a significant impact on the regulation of
sarcopenia through transcriptional mechanisms (13). Moreover,
Research has shown a correlation between sarcopenia and
autoimmune diseases. For instance, rheumatoid arthritis (RA)
patients are at an increased risk for sarcopenia (14). Other
autoimmune diseases, such as multiple sclerosis, celiac disease, type 1
diabetes, psoriasis, and ulcerative colitis have also been associated with
sarcopenia (15). Therefore, further investigation into the interplay
among sarcopenia, immunity, and inflammation is warranted.

Chronic inflammation in sarcopenia is a complex process
involving various specialized immune cell types. The interactions
between immune cells and native cells in skeletal muscle tissue are
crucial for both the progression of inflammation and the repair of

Frontiers in Immunology

damage. In patients with sarcopenia, T helper 17 (Th17) cells are
down-regulated, while NK cells are up-regulated. Furthermore, certain
key genes regulate the progression of sarcopenia by influencing the
immune microenvironment (16). When muscle is damaged, resident
neutrophils and macrophages become activated, and the cytokines and
growth factors released by activated T cells play a vital role in the
proliferation and migration of muscle satellite cells (17). However, the
number of these cells decreases in aged people, potentially leading to
inadequate muscle repair. Despite several studies focusing on specific
cell populations in sarcopenia, comprehensive analyses of skeletal
muscle immune microenvironment are still lacking.

Single-cell RNA sequencing (scRNA-seq) is a powerful
technology that enables precise measurement of gene expression
at a cellular level. It provides valuable insights into the status of
different cells in the body’s microenvironment, something that
traditional transcriptomic technologies are unable to achieve. Due
to challenges with skeletal muscle dissociation and cellular
filtration, there are limited studies on the single-cell atlas of the
skeletal muscle system to date. While some related analyses have
been published recently (18-21), they still have a narrow focus.
Single-nucleus RNA sequencing (snRNA-seq) has been utilized to
capture transcriptomic signatures from mature myofiber nuclei in
myofibers, offering comparable gene detection to scRNA-seq and
reducing dissociation bias (22). The objective of this study was to
investigate the immune microenvironment of skeletal muscle in the
young and aged groups using snRNA-seq data and bulk RNA seq
sequencing (RNA-seq) dataset. We also examined the gene
expression patterns associated with sarcopenia and highlighted
the significant role of immune cells in its development. The
identification of key genes and cell types may provide a potential
therapeutic target for intervening in the progression of sarcopenia.

2 Method

2.1 Tissue samples collection and
cohort description

Patients who underwent surgery due to trauma between June 2023
and January 2024 at the Department of Orthopaedics, Shanghai Ruijin
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Hospital, were included in the study. Adult human skeletal muscle
tissue samples for immunostaining were obtained from 18 patients.
These patients were categorized into three groups: young patients (aged
35 years or younger), aged patients without sarcopenia (aged 60 years
or older), and aged patients with sarcopenia (aged 60 years or older).
Sarcopenia was diagnosed according to the Asian Working Group for
Sarcopenia (AWGS) 2019 Criteria (6). Demographic information,
including age, gender, medical history, and pathological diagnosis
were collected for each patient. All participants have provided the
informed consents and the study was approved by the Ethics
Committee of Ruijin Hospital, Shanghai Jiao Tong University School
of Medicine (IRB number KQ20230608v1.0/2023-06-08).

2.2 Data preparation

Single-nucleus RNA transcriptome, bulk RNA transcriptome
data and corresponding clinical information were obtained from
the Gene Expression Omnibus (GEO) database (https://
www.ncbinlm.nih.gov/geo/). The dataset GSE167186 contained
72 bulk RNA-seq samples from young, aged and sarcopenic
subjects, as well as 17 snRNA-seq samples from young and aged
subjects, with a total of 143,051 nuclei included. The study by Perez
K et al. detailed the sequencing procedures of snRNA-seq and bulk
RNA-seq data used for the muscle biopsy samples (23). LIMMA
package was used to normalize the RNA-seq data (24).

2.3 snRNA-seq data analysis

The quality control and downstream analysis of snRNA-seq
data were performed using the Seurat R package (http://
satijalab.org/seurat/). Low-quality nuclei were filtered using the
following cutoffs: nFeature_ RNA > 500 & nFeature_RNA < 4000
& percent.mt < 18 & nCount_RNA > 500 & nCount_RNA < 10000.
This filtering process resulted in 101,862 cells remaining. Thet-SNE
algorithm was utilized for cell cluster generation (25). Cell types
within the clusters were manually annotated based on cell markers
from original publications and well-known markers using SingleR
(26). Bubble charts and violin charts were employed to visualize the
expression of marker genes in each cluster.

We screened pathways related to functions, metabolism, and
immunity processes in skeletal muscle using the kyoto encyclopedia
of genes and genomes (KEGG) dataset (https://www.kegg jp/kegg/)
and the Gene Ontology (GO) dataset (https://biit.cs.ut.ee/gprofiler/).
Gene set variation analysis (GSVA) was performed using the GSVA
R package to characterize the differentially expressed pathways of
each cluster (27). The average expression values of genes for each cell
type were used as input data. Cell-cell communications (CCCs)
among cell clusters in the skeletal muscle microenvironment,
especially among immune cell clusters were identified and
visualized using the CellChat package.

2.4 Bulk RNA-seq data analysis

The Gene Set Enrichment Analysis (GSEA) (https://www.gsea-
msigdb.org/gsea/) and pathway signal score calculation was
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conducted using KEGG, Hallmark, and WIKI-pathway gene sets.
Differentially expressed pathways with a normalized (NOM) P-
value of <0.05 were kept for further functional analysis. To create
heatmaps based on gene expression in young and aged skeletal
muscle tissues, we utilized the ggplot2 R package (http://
ggplot2.tidyverse.org/) with fragments per kilobase of transcript
per million sequenced reads (FPKM) data. The single-sample gene
set enrichment analysis (ssGSEA) algorithm was then employed to
evaluate the enrichment score of each pathway (28). We used the
pheatmap R package to generate the heatmap for correlation
coefficients of mitochondria-related and muscle-function related
pathways and muscle microenvironment genes. For the correlation
analysis, we used the Spearman correlation test.

The ESTIMATE package was used to calculate ESTIMATE,
immune, and stromal scores for the RNA-seq data of young, aged,
and sarcopenia samples (29), and the enrichment scores calculated
by the ssGSEA analysis were used to evaluate immune-related gene
activity and the relative abundance of infiltrating immune cells. We
then performed deconvolution on our RNA-seq dataset using the
CIBERSORT algorithm (http://cibersort.stanford.edu) to estimate
the relative fraction of immune cells. The correlation analysis
among different immune cell types was conducted using the
ggstatsplot package, and the results were visualized using the
ggplot2 package.

To identify groups of highly correlated genes, we used the
unsupervised method called weighted gene correlation network
analysis (WGCNA) (30). The eigengenes from each module were
used to assess the relationship between the modules and immune
cell types, as well as clinical information. For functional annotation
analyses, we utilized the online tool Metascape (http://
metascape.org) (31). The network of enriched term subsets was
visualized using Cytoscape v3.10.1 (https://cytoscape.org/).
GeneMINIA (http://www.genemania.org) was used to predict the
functional association network of hub genes (32).

2.5 Histological analysis

Fresh muscle samples were fixed in 10% neutral buffered
formalin overnight at room temperature. The 4um thick paraffin-
embedded tissue sections were air-dried, followed by additional
drying at 75°C for 2 hours, and then dewaxed. Hematoxylin and
eosin (H&E) staining was carried out using a CoverStainer (Dako,
Germany) following standard procedures. Immunohistochemical
(THC) procedures were performed on an automated Leica Bond RX
staining platform (Leica Biosystems, Welzlar, Germany) following
the selected protocol for the BOND Polymer Refine Detection kit
(DS9800, Leica Biosystems). For a list of primary antibodies, please
refer to Supplementary Table S1. For Periodic acid-Schift (PAS)
staining, the sections were incubated in Periodate solution for 5
minutes, and then stained with Schiff reagent using a PAS Staining
Kit following a protocol suggested by the manufacturer. Images
were captured using a Nikon Eclipse Ni-U microscope equipped
with a Nikon DS-Ri digital camera. Immunofluorescence (IF)
staining was performed on skeletal muscle tissue samples as
previously described (33). Representative fluorescence images

frontiersin.org


https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://satijalab.org/seurat/
http://satijalab.org/seurat/
https://www.kegg.jp/kegg/
https://biit.cs.ut.ee/gprofiler/
https://www.gsea-msigdb.org/gsea/
https://www.gsea-msigdb.org/gsea/
http://ggplot2.tidyverse.org/
http://ggplot2.tidyverse.org/
http://cibersort.stanford.edu
http://metascape.org
http://metascape.org
https://cytoscape.org/
http://www.genemania.org
https://doi.org/10.3389/fimmu.2024.1414387
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shen et al.

were captured on a Leica TCS SP8 MP confocal microscope (Leica
Microsystems, Wetzlar Germany).

2.6 Statistical analysis

All data were expressed as the mean + standard deviation (SD).
R (version 4.2.3) and GraphPad Prism (version 8) were used for
statistical analysis. The t-test or one-way ANOVA test was utilized
for group comparisons, while the Spearman correlation test was
employed to assess the correlation between variables. P-values less
than 0.05 were considered statistically significant.

3 Results

3.1 Cell type composition of skeletal
muscle tissue from young and aged people

The snRNA-seq dataset from GSE167186 included skeletal muscle
tissue samples from 6 young and 11 aged individuals. Through
snRNA-seq analysis, we were able to identify the age-related changes
in the cellular composition of skeletal muscle tissue. After performing
quality control, we retained 101,862 nuclei for further analysis.
Unsupervised classification partitioned the 101,862 nuclei into 17
clusters (Figure 1A). Based on the canonical gene markers, we
manually assigned these clusters to 9 cell types: Type Ila, Type I,
LUM+ Fibro-Adipogenic Progenitor (FAP) Cells, Endothelial Cells,
Type II_2, Is, Pericytes, Immune cells and FBN1+ FAP Cells
(Figures 1B, D, Supplementary Figure S3A). The study identified a
cluster that exhibited characteristics of both Type I and Type II,
referred to as mixed Type I/IL. Differences in the numbers and
distribution of different cell clusters in aged and young muscle, as
well as the expression level and distribution of gene markers of immune
cells, type I and type II muscle fiber were illustrated (Figure 1C). The
volcano diagram displayed the top differentially expressed genes
(DEGs) in each cell type, revealing extensive transcriptomic
alterations in cell function and metabolism in the aging muscle
(Figures 1E, Supplementary Figure S3B; Additional File I:
Supplementary Table S2). The heatmap presented the top-enriched
genes in each cluster (Figures 1F, Supplementary Figure S3C). Type I
and type IT muscle cells were observed to be the main components in
skeletal muscle tissue, although their composition varied between
young and aged individuals (Figure 1G). Notably, the proportion of
type IIa muscle cells showed a general downward trend in the aged
group, and there was a significant decrease in endothelial cells, satellite
cells, and pericytes compared to the young group. While not
statistically significant, there was an observed trend of increasing
immune cell numbers in the aged group. (Figure 1H). The decreased
number and fibrotic transformation of satellite cells in aging muscle
might contribute to a decreased muscle regeneration capacity (34).
Previous studies have demonstrated a decrease in angiogenesis and
blood flow in aged muscle tissue, which is associated with the
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development of sarcopenia (35). Further investigations are needed to
understand the changes in immune cell subsets and metabolism in the
muscle aging microenvironment, considering the role of chronic
inflammation in sarcopenia development.

3.2 Immune cell composition in skeletal
muscle tissue

In order to explore the role of immune cells in the aging muscle
microenvironment, we further grouped immune cells into 6
clusters: M2 macrophage, T cell, NK cell, M1 macrophage, mast
cell and dendritic cell (DC) (Figure 2A). The expression profiles of
marker genes for different cell populations were depicted in a violin
plot (Figure 2B). Subsequently, we evaluated the interactions among
immune cells. In the skeletal muscle microenvironment, significant
positive correlations were observed between DCs and M1
macrophages, and between NK cells and T cells, while a negative
correlation was observed between DCs and mast cells (Figure 2C),
which aligned with the proximity depicted in the UMAP.
Furthermore, various functional and metabolic pathways were
found to be enriched in different subtypes of immune cells. GO
and KEGG pathway analysis revealed enrichment for terms such as
collagen fibril organization, DC differentiation, JAK-STAT
signaling pathway, endocytosis and TGF-B signaling pathway in
M1-like macrophages. Similarly, T cells showed enrichment in
terms related to skeletal muscle cell differentiation, fatty acid
metabolism, cysteine and methionine metabolism. The NK cell
population exhibited high enrichment in cytolysis and ribosome,
while DCs showed enrichment in sphingolipid metabolism and
natural killer cell mediated cytotoxicity (Figures 2D, E; Additional
File 2: Supplementary Table S3). The skeletal muscle immune
microenvironment was a complex milieu consisting of several
innate and adaptive immune cells, with innate immune cells
being the majority. Among the innate immune cells, M1 and M2
macrophages were the most abundant (Figure 2F). Furthermore,
the expression levels of some cell-specific marker genes involved in
the immune response and aging process showed differences
between the young and aged groups (Figure 2G). For instance,
the aged group exhibited increased CD226+ and ADAMS58+ cell
presence in DCs, CDKN1A+ cell presence in M1 macrophages, and
NCR1+, CD226+ and KLRDI1+ cell presence in NK cells.
Histological staining revealed an augmentation in immune cells
within the aged samples (Figures 2H-K). H&E staining indicated
that the interstitial tissue of aged muscles exhibited a loose and
fragmented structure, accompanied by a higher distribution of
lymphocytes (Figure 2H), while IHC staining confirmed the
higher presence of T (CD3+), NK (CD56+), and hematopoietic
stem and progenitor (CD117+) cells in the aged skeletal muscle
samples (Figures 2I-K, Supplementary Figures S2A-C). Given the
critical position of the skeletal muscle immune microenvironment,
we next sought to investigate the differences in macrophage
expression and functions between the young and aged groups.
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FIGURE 1

Analysis of the cell composition of young and aged skeletal muscle based on snRNA-seq data. (A) t-distributed stochastic neighbor embedding (t-
SNE) plot of joint analysis of cell composition in young and aged skeletal muscle tissue. 16 unsupervised clusters were generated from 101,862 cell
nuclei after quality control (distinguished by different colors and numbers). (B) Following dimensionality reduction, 10 clusters were manually
annotated based on marker gene expression and visualized with t-SNE. (C) Feature plots (t-SNE) showing expressions of major genes that identify
immune cell subpopulations. (D) Dot plots representing the percentage and average expression of selected marker genes for each cluster.

(E) Differentially expressed genes (DEGs) in each cell type in aged versus young skeletal muscle. (F) Heatmap depicting the expression of the top 10
upregulated genes identified in each cell cluster. Each row represents a single cell, and each column represents a single gene. (G) Bar plot depicting
the proportion of each cell subset in each sample and the proportion of each sample in each cell subset. (H) Cell proportion analysis of satellite
cells, pericytes, endothelial cells, Type Ila and immune cells between the young and aged (*p<0.05; **p< 0.01).

3.3 Macrophage subpopulations in skeletal
muscle tissue

Macrophages were classified into four subgroups based on the
expression levels of the selected marker genes LYVEI, HLA-DRBI,
HLA-DRA and TSPO. These subgroups were LYVE1'’MHC-II",
LYVEI"MHC-II', LYVE1'°MHC-II"® and LYVE1I'’MHC-
II'°TSPO* (36, 37) (Figures 3A, B). A violin plot was used to
visualize the gene signatures expressed by these subpopulations
(Figure 3C). Subsequently, GO and KEGG analyses were conducted
to investigate the functions of the four subpopulations. The results
revealed that pathways related to phagosome, antigen processing and
presentation, and immune cell activation were highly enriched in the
LYVEIMHC-II" subpopulation. This suggests that LYVE1'"MHC-
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" macrophages play an active role in the immune response. In
contrast, LYVEI"MHC-II' showed significant enrichment in
pathways related to endocytosis, amino acid biosynthetic process
and cellular response to glucose starvation. LYVE1"MHC-II'
exhibited upregulation in pathways associated with cardiac muscle
contraction, skeletal myofibril assembly, acetyl CoA metabolic
process and fatty acid metabolic process pathways. On the other
hand, LYVE1I'°MHC-II'*TSPO" displayed upregulation in pathways
related to focal adhesion, protein digestion and absorption, ECM-
receptor interaction, PI3K-Akt signaling pathway, collagen fibril
organization, and response to fibroblast growth factor, indicating a
close connection with muscle fibrosis (Figures 3D, E; Additional File
3: Supplementary Table S4). The significantly altered genes within
each cluster were included as features for further functional
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Analysis of the immune cell subpopulations of young and aged skeletal muscle based on snRNA-seq data. (A) Uniform manifold approximation and
projection (UMAP) plot of 6 immune cell types for joint analysis in young and aged skeletal muscle tissue. (B) Violin plots of expression values for cell
type-specific marker genes. (C) Heatmap of Spearman'’s correlations among immune cell subtypes. Correlation coefficient values are color-coded
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(H) Representative images of hematoxylin and eosin (H&E) staining in young and aged skeletal muscle specimens. (I-K) Representative images of
immunohistochemical (IHC) staining for CD3 (l), CD56 (J) and CD117 (K) (scale bar = 100 um).

enrichment analysis. The results revealed that innate immune II'°TSPO* (Figure 3F). Furthermore, LYVE1™MHC-II"
response was associated with LYVEI'MHC-II", while muscle — macrophages were found to be the predominant component of
structure development was associated with LYVE1'°MHC-IT, and macrophages in the skeletal muscle microenvironment (Figure 3G).
extracellular matrix organization was associated with LYVEI'°MHC- ~ Meanwhile, the LYVEI™MHC-II'® subpopulation exhibits an
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increasing trend in the macrophage composition of aging muscles
(Supplementary Figure S2E).

3.4 Cell-cell communication in muscle
immune microenvironment

The numbers and strength of interactions between major cell types
and immune cells were found to be lower in the aged group, indicating
decreased cellular communication in the microenvironment of aged
skeletal muscle (Figures 4A, B). Specifically, the aged group showed a
decrease in the interactions between endothelial cells and Type II
muscle fibers, while there was a significant increase in the signaling
patterns received by FBN1+ FAP Cells. Additionally, a unique signaling
pathway was discovered, where pericytes sent signals to and received
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signals from immune cells (Figures 4C, E). When focusing on immune
cells, overall interactions among immune cell types decreased in the
aged group, but new communications from M1 macrophages to T cells
and DC cells, and from T cells to M2 macrophages emerged
(Figures 4D, F). Next, we performed IF staining to show the
inflammatory infiltrates in young and aged muscle. The walls of
small blood vessels were labeled with o-SMA. Our findings revealed
a significant increase in the number of CD45-labeled macrophages in
the aged group compared to the young group (Figure 4G;
Supplementary Figure S2D). Furthermore, we observed a close
association between the distribution of these macrophages and small
blood vessels. In general, the interaction between cell populations in
aged muscle exhibited a decrease compared to the young group,
suggesting that the aged microenvironment disrupts normal
intercellular communication.
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FIGURE 4

100pm

Cell-cell communication in muscle immune microenvironment. (A, B) Intercellular ligand-receptor prediction among cell types and immune cells
revealed by CellChat. Bar plot showing the number and strength of intercellular interactions among cell types (A) and immune cells (B). (C, D) Circle

plots demonstrating the overview of cell-ce

[l interactions among cell types (C) and immune cells (D). Arrow and edge color indicate direction and

sender. Edge thickness reflects the number and the strength of interaction between populations. Differential number of interactions in the cell-cell
communication network with red or blue colored edges representing increased or decreased signaling in the aged group compared to the young
group. Line thickness and darkness indicate the relative enrichment value. (E, F) Heatmaps of differential number and strength of intercellular
interactions among cell types (E) and immune cells (F). (G) Representative images of co-IF analysis of immune cells (CD45, green), blood vessels (o-
SMA, red) and nuclei (DAPI, blue) of skeletal muscle tissues from the young and aged (scale bar = 100 um).

3.5 The enrichment of inflammatory
signaling pathways in the sarcopenic
tissue microenvironment

In this study, we utilized bulk RNA-seq analysis to investigate
the functional and metabolic changes between individuals with
sarcopenia and those without. Several pathways were significantly
enriched in patients with sarcopenia, such as linoleic acid
metabolism, TGF-f signaling and cell cycle pathways, indicating
metabolic and immune changes. On the other hand, compared to
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the young group, several pathways were downregulated in the
sarcopenia group, including fructose and mannose metabolism,
galactose metabolism and oxidative phosphorylation pathways
(Figure 5A). To further understand the disease process of
sarcopenia, we performed GSEA on RNA-seq data and identified
additional biological pathways that could contribute to sarcopenia.
The GSEA results confirmed the enrichment of KEGG genes in cell
cycle, JAK-STAT signaling pathway, ERBB signaling pathway and
alpha-linolenic acid metabolism in the sarcopenia group
(Figure 5B). We also observed enrichment of WIKI-pathway
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genes in cell cycle, as well as other pathways such as DNA IRdamage
and cellular response via ATR, oxidative stress response and IL-4
signaling pathway in the sarcopenia group (Figure 5C). Moreover,
we investigated the gene expression of inflammation-related
pathways and pathways related to muscle function. The results
revealed significantly higher expression of genes associated with
ERBB, IL-2, IL-4, oxidative stress response and JAK-STAT signaling
pathway in the sarcopenia group (Figures 5D, E). Interestingly,
these genes were generally down-regulated in the aged group and
up-regulated in the sarcopenic group compared to young
individuals. Furthermore, the correlation analysis revealed that
most genes had a significant negative correlation with FAP cells
and macrophages, while satellite cells, Type IIa, and Type I showed
an overall opposite trend (Figure 5F). In summary, the findings
suggested that sarcopenia was strongly associated with increased
inflammation and impaired muscle function, which was linked to
FAP cells and macrophages.

10.3389/fimmu.2024.1414387

3.6 Immune cell infiltration features
of sarcopenia

The enrichment of inflammatory signaling pathways is often
accompanied by the infiltration of immune cell populations. To
gain further insights into the sarcopenia microenvironment, we
categorized samples based on the prevalence of macrophage
subpopulations, enabling us to investigate muscle immune
responses under conditions of both high and low macrophage
abundance within the microenvironment. In the subsequent
analysis, the samples were divided into two groups based on
LYVE1 expression levels: LYVEI-high (above the median) and
LYVEl-low (at or below the median). To investigate the immune
microenvironment in different states, we calculated the percentages
of immune cell types in each sample, and compared the results
among the young, aged and sarcopenia groups as well as between
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the LYVEI-high and LYVE1-low groups (Figure 6A). Overall, there
were no significant differences observed between the LYVEI1-high
and LYVEI-low groups in most immune cell types except B cells
memory, NK cells resting and M2 macrophages, indicating the
activation of NK cells and B cells by high abundance of
macrophages. Additionally, there was an increasing trend in
monocytes in the LYVEI-high group (Figure 6B). To examine the

rtion per Sample

Relative propor
T

Sarcopenia ]

Relative proportion
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variations in immune microenvironment compositions between the
LYVE1-high and LYVEIl-low groups, we utilized the ssGSEA
algorithm to assess the enrichment score of genes associated with
MO0, M1 or M2-like macrophages as well as inflammation, and the
expression of distinct immune cell types (Figure 6C). Our findings
revealed that the majority of aged and sarcopenic individuals
belonged to the LYVEI-high group, with an increase in
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and sarcopenia patients, and further grouped based on high and low LYVE1 expression. (B) Cell proportion analysis of B cells memory, NK cells
resting, monocytes and macrophages M2 between the LYVE1-high (LYVE1+) and LYVE1-low (LYVE1-) group (*p<0.05; **p< 0.01). (C) Heatmap
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inflammation-related gene expression. Additionally, the LYVEI-
high group exhibited an increase in the expression of marker genes
for M0, M1, and M2-like macrophages. LYVE] is identified as a
marker gene for tissue-resident macrophages at various stages of
differentiation, as evidenced by its distinct expression in muscle
macrophages (Supplementary Figure S1). In the LYVEI-high
group, we observed a higher presence of immune cells, FAP cells
and endothelial cells in the skeletal muscle microenvironment. The
correlations among cells in the LYVE1-high and LYVE1-low groups
were found to be different. For instance, we found a negative
correlation between M1 macrophages and NK cells in the
LYVEl-low group, while a positive correlation was observed in
the LYVEI1-high group. Additionally, the correlation between type I
and type Ila cells was stronger in the LYVE1-high group compared
to the LYVEI-low group (Figure 6D). Stromal and basal scores
showed a positive correlation with the expression of LYVEI+
macrophage, indicating an increase in basal cells and extracellular
matrix in the presence of macrophages. Moreover, we investigated
the correlation between LYVEl+ macrophages and FBN1+FAP
cells, as well as myeloid cells (Figure 6E). To validate our
findings, we conducted histological staining (Figures 6F, G). PAS
staining was utilized to visualize the distribution of glycogen in
muscle tissue. The results clearly indicated that elderly individuals
and patients with sarcopenia exhibited lower levels of muscle
glycogen compared to young people, which aligned with previous
studies (38). CD68 antibodies were employed to label macrophages.
IHC analysis revealed a small number of macrophages scattered
within the muscle interstitium of young samples. In contrast, a
larger number of macrophages were found to be distributed in both
aged and sarcopenic samples. These findings strongly suggest a
correlation between macrophages and muscle fibrosis, with bone
marrow-derived monocytes potentially serving as an important
source of LYVE1+ macrophages.

3.7 Gene functional annotation analysis of
modules associated with macrophages

Next, we conducted WGCNA to identify functional modules
that were closely associated with macrophages. A total of 14
modules were detected, with the magenta and blue modules
exhibiting the highest negative correlation with macrophages.
Additionally, we selected two modules, pink and red, which
showed a strong positive correlation with macrophages, for
further investigation (Figures 7A, B). The correlation analysis
revealed that the magenta and blue modules had a negative
correlation with sarcopenia, while the pink and red modules
showed a positive correlation with sarcopenia, indicating
consistency between sarcopenia and macrophages. The pink
module consisted of 299 genes primarily involved in cellular
regulation, signaling pathways, intracellular mechanisms, and
structural regulation (Figure 7C). On the other hand, the red
module was enriched in pathways associated with the
extracellular matrix and fibrosis (Figure 7E). Further analysis of
genes in these two modules demonstrated significant enrichment in
various pathways, including muscle structure development, DNA
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damage response, and cell cycle. The results were visualized using
Cytoscape (Figure 7G). Next, we conducted an analysis on the
modules that displayed a negative correlation with macrophages.
Through Metascape analysis, we found that genes within the blue
module were primarily enriched in pathways related to
mitochondrial metabolism and function, and genes within the
magenta module were found to be involved in various metabolic
pathways and signal transduction pathways (Figures 7D, F). Upon
merging the two modules and conducting enrichment analysis, it
was noticed that genes showing a negative correlation with
macrophages were notably enriched in pathways associated with
mitochondria (Figure 7H).

3.8 Functional association network analysis
of vital immune cells

We utilized GeneMINIA to predict the protein-protein
interaction network of vital immune cells, particularly
macrophages, in the skeletal muscle (Figures 8A, B). Next, we
performed GO and KEGG analyses to interrogate the biological
processes and pathways these relative genes involved in
(Figures 8C, D). The identified immune cell-related pathways
encompassed various immune system processes, signal
transduction, adaptive immune response, as well as several T-cell
differentiation and activation pathways. Additionally, the GO terms
and KEGG pathways related to macrophages included pathways
associated with cell signaling and tissue development, such
as angiogenesis.

4 Discussion

Age-related decline in skeletal muscle mass and function is a
multifactorial phenomenon, characterized by the loss of muscle
fibers and the atrophy of remaining fibers (39, 40). Previous studies
have highlighted the role of immune function changes in aging
muscle (17, 41, 42), but the specific alterations in the immune
microenvironment of skeletal muscle with age have yet to be fully
understood. In this study, we utilized snRNA-seq analysis in
combination with bulk RNA-seq to investigate the differences in
cell composition and immune microenvironment between young
and aged skeletal muscle tissue. Since macrophages were found to
be the predominant immune cell population, we further identified a
specific marker gene LYVEIL for macrophages and clustered them
into subgroups. Additionally, we explored changes in cell-cell
interactions between aged and young muscle. Furthermore, by
analyzing bulk RNA-seq data, we examined the gene expression
signature, functional differences, and infiltration characteristics of
the young, aged, and sarcopenia groups, as well as the LYVE1-high
and LYVE1-low groups. Our findings offered valuable insights into
potential therapeutic strategies for sarcopenia, including targeting
specific immune cell populations or modulating their activity.
Notably, our results suggested a close association between
macrophages and metabolic and functional alterations, as well as
injury repair, in aging muscle.
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Weighted correlation network analysis (WGCNA) revealed unigue functional gene modules associated with LYVE1+ macrophages. (A) Heatmap
demonstrating the Pearson correlation coefficients of eigengenes of co-expressed gene modules. A total of 14 modules were identified with highly
correlated gene expression patterns. (B) Correlations between WGCNA modules and microenvironment cell type and age and disease state. Each
cell represents Person's correlation coefficient and p-value. (C—F) The results of Metascape for genes in the pink (C), blue (D), red (E) and magenta
(F) modules were represented using a horizontal bar chart. (G, H) Enrichment clustering network analysis in the Metascape database of red and pink

merged modules (G) and blue and magenta merged modules (H).

Our analysis revealed that the sarcopenia group exhibited
upregulation of several immune-related pathways, such as JAK-
STAT, ERBB, and IL-2/4 signaling pathways, in comparison to
young controls. Previous studies have also linked these pro-
inflammatory pathways to age-related muscle atrophy (43, 44). We
also discovered a crosstalk between immune cells and various non-
immune cells within the muscle microenvironment. The results
indicated that immune cells received signals from fibroblasts,
endothelial cells and other cell types, underscoring the significance of
immune cells in the skeletal muscle microenvironment. Macrophages
were found to be the predominant immune cell type in damaged
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muscles and played a crucial role in both the inflammation process and
its resolution, contributing significantly to muscle repair (45, 46). In
response to anti-inflammatory cytokines, M1 macrophages transform
into M2 macrophages in the later stages of skeletal muscle injury repair.
Subsequently, these M2 macrophages along with resident M2
macrophages, facilitate the repair and regeneration processes by
enhancing myoblast differentiation and vascularization, and
stimulating FAP to generate extracellular matrix. But macrophages in
aged muscle are inclined to be polarized to a proinflammatory-
phenotype, thereby negatively impacting the repair and regeneration
capabilities of damaged muscle (47). Zhang C et al. identifled and
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characterized a unique macrophage subpopulation that specifically
expressed IFN-responsive genes in mice, which could promote the
proliferation and differentiation of satellite cells (48). A recent study has
further shown that aging leads to a decrease in the expression of MANF
in macrophages, which in turn affects the regeneration ability of
muscles (49). In our study, snRNA-seq analysis revealed that the
skeletal muscle immune microenvironment consisted of a diverse
range of innate and adaptive immune cells, with macrophages
comprising the largest proportion. Additionally, other immune cells
were also involved in chronic muscle inflammation. Our research has
revealed a significant correlation between DCs and macrophages.
Similar to macrophages, DCs also function as potent antigen-
presenting cells. When confronted with injury, DCs are activated to
induce adaptive immunity, while macrophages initiate an
inflammatory response (50). Abnormal accumulation of DC has
been reported in inflammatory myopathic muscles (51). Within the
muscle microenvironment, various immune cells exhibit distinct
metabolic pathways and biological functions. M1 macrophages, for
instance, are associated with the synthesis of collagen fibers and play a
role in the TGF-beta signaling pathway. DCs are primarily involved in
cell killing and sphingolipid metabolism signaling pathways. NK cells
are predominantly enriched in the cytolysis pathway, while T cells are
closely associated with skeletal muscle differentiation. Treg cells have
been reported to enhance repair in chronically injured muscle because
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the depletion of Treg promotes the macrophages to switch from a pro-
inflammatory to an anti-inflammatory phenotype (52). Rebalancing
the interactions between immune cells and other tissue cells, as well as
among immune cells, may offer potential benefits for patients
with sarcopenia.

As the most abundant type of immune cell in skeletal muscle,
macrophages play a crucial role in maintaining muscle homeostasis.
Resident macrophages in various tissues have unique chromatin
landscapes and transcriptional profiles, which depend on their
microenvironment and functional condition (53). For this reason,
there is currently no standardized macrophage signature. In the
past, CD68 and F4/80 were established markers for resting MO
macrophages. Macrophage activation is triggered by extracellular
and intracellular stimuli, leading to two main phenotypes:
inflammatory (M1 and M2b) and wound resolution (M2a, M2c,
and M2d) (54). These phenotypes exhibit distinct functional and
metabolic characteristics. M1 macrophages are characterized by
high expression levels of CD40 and CD86 and low expression levels
of CD163, while functional phenotype of M2 macrophages are
characterized by low expression levels of CD86 and high expression
levels of CD163. Since macrophages in different tissues have
different functions and secrete different factors, this study
identified LYVEL as a marker for specific expression in
macrophages within the skeletal muscle microenvironment.
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Similar findings were also reported by Krasniewski LK et al. in
mouse muscles (55). In this study, we performed bulk RNA-seq
analysis and utilized LYVE] as a macrophage marker. We divided
the samples into high and low expression groups for LYVEL, and
observed that the LYVE1+ macrophage enrichment group exhibited
elevated expression levels of the classic M0, M1 and M2
subpopulation. Further transcriptomic analysis revealed that the
populations with high expression levels of LYVE1l+ macrophages
displayed increased expression of genes related to fibrosis and
muscle development, indicating the significant role of
macrophages in the repair process of injured muscle.

Our study has also identified four distinct macrophage
subpopulations based on marker gene expression, which may
potentially serve different functional roles in the muscle immune
environment and have diverse origins. The LYVE1'MHC-II"i
subpopulation exhibits enrichment in pathways associated with
innate immune responses and antigen presentation, indicating a
stronger pro-inflammatory phenotype. On the other hand, the
LYVE1I"MHC-II' subpopulation demonstrates upregulation of
metabolic pathways, suggesting its involvement in tissue
remodeling. The LYVEI'°MHC-II'"TSPO+ subpopulation,
characterized by an enrichment of extracellular matrix tissue
genes, has been identified as closely linked to muscle fibrosis and
may contribute to the pathological accumulation of fibrosis seen in
sarcopenia. Among these subpopulations, we noticed an increase in
the expression of LYVE1™MHC-II'® subpopulation in aged muscle.
In a study conducted on mice, it was discovered that the
LYVE1'MHC-II" cells originated entirely from hematopoietic
stem cells (HSCs), while the LYVEI™MHC-II subpopulation
consisted of an equal proportion of cells derived from HSCs and
non-HSCs (56), which may suggest their different origins.

Currently, targeting immune cell-related pathways within the
microenvironment has emerged as a crucial therapeutic strategy for
sarcopenia. For instance, supplementing MANF protein can
promote the transformation of macrophages from a pro-
inflammatory phenotype to a repair phenotype, thus facilitating
aging muscle regeneration and regulating inflammation and tissue
homeostasis (49). IL-15 has also been identified as a promising
therapeutic target for mitigating inflammation-induced skeletal
muscle atrophy (57). Further understanding the distinct functions
and origins of macrophage subpopulations could offer valuable
insights for developing treatments that target specific pro-
inflammatory or fibrotic phenotypes.

This study has a few limitations. Firstly, the sample size could be
increased to provide more robust results. In particular, the sample
size for snRNA-seq needs to be expanded. Additionally, further
experiments are needed to verify the efficiency of LYVEI as a
marker gene for skeletal muscle macrophages. While macrophages
in the skeletal muscle microenvironment have been categorized, the
specific subpopulations that are closely associated with the
development of sarcopenia and their corresponding targets still
require further investigation. Moreover, human muscle
transcriptome exhibits sex-specific changes with aging (58, 59). In
addition, a correlation between the incidence of sarcopenia and age
is observed as previously reported (5, 60). In this study we were
unable to exclude the effect of gender on our results, and our study
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lacked an age-matched group to compare sarcopenia in younger
adults versus young individuals, which will be addressed in our
subsequent research.

5 Conclusion

In this study, we have identified LYVE1 as a marker gene for tissue-
resident macrophages in the skeletal muscle microenvironment across
different ages and disease states. Our findings suggest a correlation
between LYVE1+ macrophage expression and sarcopenia, as well as
significant functional and metabolic differences between the high and
low LYVELI expression groups. Furthermore, our snRNA-seq analysis
has uncovered new clustering patterns in human skeletal muscle
macrophages. Additionally, we have observed variations in the
skeletal muscle microenvironment among aged and young
individuals and those with sarcopenia. Overall, our research provides
valuable insights into potential strategies for treating sarcopenia by
targeting macrophages.
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