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Purpose: Osteoarthritis (OA) stands as the most prevalent joint disorder.

Mitochondrial dysfunction has been linked to the pathogenesis of OA. The

main goal of this study is to uncover the pivotal role of mitochondria in the

mechanisms driving OA development.

Materials and methods: We acquired seven bulk RNA-seq datasets from the

Gene Expression Omnibus (GEO) database and examined the expression levels of

differentially expressed genes related to mitochondria in OA. We utilized single-

sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis

(GSEA), and weighted gene co-expression network analysis (WGCNA) analyses to

explore the functional mechanisms associated with these genes. Seven machine

learning algorithms were utilized to identify hub mitochondria-related genes and

develop a predictive model. Further analyses included pathway enrichment,

immune infiltration, gene-disease relationships, and mRNA-miRNA network

construction based on these hub mitochondria-related genes. genome-wide

association studies (GWAS) analysis was performed using the Gene Atlas

database. GSEA, gene set variation analysis (GSVA), protein pathway analysis,

and WGCNA were employed to investigate relevant pathways in subtypes. The

Harmonizome database was employed to analyze the expression of hub

mitochondria-related genes across various human tissues. Single-cell data

analysis was conducted to examine patterns of gene expression distribution

and pseudo-temporal changes. Additionally, The real-time polymerase chain

reaction (RT-PCR) was used to validate the expression of these hub

mitochondria-related genes.

Results: In OA, the mitochondria-related pathway was significantly activated.

Nine hub mitochondria-related genes (SIRT4, DNAJC15, NFS1, FKBP8,

SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4) were identified. They

constructed predictive models with good ability to predict OA. These genes

are primarily associated with macrophages. Unsupervised consensus clustering

identified two mitochondria-associated isoforms that are primarily associated

with metabolism. Single-cell analysis showed that they were all expressed in
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single cells and varied with cell differentiation. RT-PCR showed that they were all

significantly expressed in OA.

Conclusion: SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH,

and PDK4 are potential mitochondrial target genes for studying OA. The

classification of mitochondria-associated isoforms could help to personalize

treatment for OA patients.
KEYWORDS

osteoarthritis (OA), mitochondria, bulk RNA sequencing (bulk-RNA seq), single-cell RNA
sequencing (scRNA-seq), immune cell infiltration
Introduction

Osteoarthritis (OA) is a chronic and disabling joint disease

characterized predominantly by the progressive destruction of

articular cartilage. It is the leading cause of declining quality of

life among elderly individuals worldwide. According to the latest

statistics from the World Health Organization, OA affects over 500

million people globally (1). The absence of a cure for OA can be

attributed, in part, to an incomplete comprehension of the

underlying pathological mechanisms governing its onset and

progression. Consequently, it becomes imperative to enhance our

understanding of the associated signaling pathways and critical

molecules involved in OA development. This knowledge will

facilitate the identification of therapeutic targets and aid in the

design of effective treatments.

Mitochondria, as organelles within eukaryotic cells, produce

adenosine triphosphate (ATP) through oxidative phosphorylation,

thereby serving as the cell’s energy source (2). Additionally, they

play a crucial role in cellular metabolism and maintaining cellular

homeostasis. Impaired mitochondrial function reduces the capacity

for oxidative phosphorylation, leading to an upsurge in reactive

oxygen species (ROS) production. This accumulation of ROS can

cause cellular damage or apoptosis (3). Mitochondria, as essential

organelles in chondrocytes, play critical roles in cellular

metabolism, proliferation, and apoptosis. Growing evidence

suggests that mitochondrial dysfunction and disrupted energy

metabolism are closely associated with the onset and progression

of OA. However, the exact mechanisms remain unclear at present.

Research indicates that impaired mitochondrial function leads

to increased levels of ROS, resulting in chondrocyte apoptosis and

promoting the development of OA (4). It is noteworthy that

oxidative stress is a key factor in causing mitochondrial DNA

damage, impairing mitochondrial respiratory function, and

activating mitochondria-mediated cell death pathways (5).

Inflammatory cytokines like IL-1b and tumor necrosis factor-

alpha (TNF-a) have been reported to reduce mitochondrial

activity and ATP production, impairing mitochondrial respiration

in chondrocytes and contributing to mitochondrial dysfunction in
02
OA (6). Additionally, the balance between mitochondrial fission

and fusion is essential for preserving proper mitochondrial

function. Increased fission and decreased fusion can cause

mitochondrial fragmentation and functional impairment, leading

to reduced ATP production and increased ROS generation (7).

Disrupted mitochondrial segregation during mitosis has also been

implicated in mitochondrial dysfunction in OA (4). Additionally,

alterations in mitochondrial metabolism may disrupt the cellular

redox balance and contribute to the accumulation of ROS in OA.

During the progression of OA, chondrocytes and synovial cells tend

to shift their mitochondrial metabolism from oxidative

phosphorylation to glycolysis, primarily regulated by the AMPK-

MTOR pathway (8). Increasing evidence suggests that the loss of

mitochondrial quality control homeostasis contributes to cartilage

damage in the onset and progression of OA (9). Mitochondrial

quality control is a crucial mechanism that coordinates various

mitochondrial biological functions. Autophagy, a vital cellular

mechanism for maintaining homeostasis, plays a critical role in

chondrocytes and is closely linked to the pathogenesis of OA.

Mitophagy, specifically, plays a crucial role in degrading, clearing,

and recycling dysfunctional mitochondria, thus controlling

mitochondrial quality and maintaining cellular homeostasis (10).

Animal studies have confirmed that inhibiting mitophagy promotes

cartilage degradation (11). Emerging evidence suggests that

mitophagy plays a significant regulatory role in skeletal disorders,

suggesting that modulating mitophagy levels could be a novel

strategy for treating skeletal-related diseases (12). In summary,

multiple factors, including oxidative stress, exacerbated

inflammation, mitochondrial fission and fusion, disrupted

mitosis, metabolic dysregulation in chondrocytes, and impaired

autophagy, contribute to mitochondrial dysfunction in OA.

Therefore, comprehensive understanding of the mechanisms by

which mitochondrial dysfunction leads to the onset and progression

of OA is crucial for developing effective strategies for its treatment.

By integrating bulk RNA, weighted gene co-expression network

analysis (WGCNA), immune infiltration analysis, and molecular

subtyping, we have investigated the potential alterations in

mitochondria-related genes, their impact on pathways, and the
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role of immune cells. Additionally, we have identified targeted

therapies, immune microenvironment, and pathway heterogeneity

within different mitochondrial metabolic subgroups. Furthermore,

we have developed and validated a predictive model for OA using

machine learning and deep learning. Single-cell analysis revealed

single-cell expression distribution patterns and putative temporal

changes of hub mitochondria-related genes. Finally, real-time

polymerase chain reaction (RT-PCR) verified the expression of

hub mitochondria-related genes.
Materials and methods

Data acquisition and pre-processing

We retrieved OA-related chip datasets from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),

which included GSE117999, GSE51588, GSE55235, GSE55457,

GSE57218, GSE82107, and GSE98918. Mitochondria-related genes

were obtained from the MitoCarta3.0 database. Overview of the

information on analyzed datasets is provided in Supplementary

Table 1. During the processing of the data, we excluded ineligible

samples. During the processing of the chip datasets, we matched

probe and gene names based on the annotation information of each

GPL platform. In cases where multiple probes corresponded to the

same gene, we selected the probe with the highest expression level for

retention. Following this, we normalized the expression matrix using

the `normalizeBetweenArrays` function and performed log2

transformation for datasets that required it. Next, we extracted the

common genes shared by all seven datasets. To address batch effects

and platform variations, we employed the ComBat method from the

R package “sva” (13, 14) to normalize expression values across

different batches or platforms. The success of batch effect removal

was evaluated through principal component analysis (PCA).
Differential expression analysis and
enrichment analysis

Differential gene expression analysis was performed using the

limma R package (15, 16) X to compare the expression profiles

between OA samples and normal samples. The criteria for selecting

differentially expressed genes (DEGs) associated with mitochondria

were set as a p-value < 0.05. Next, we evaluated the activity scores of

each pathway using the single-sample gene set enrichment analysis

(ssGSEA) (17) and gene set enrichment analysis (GSEA) (18). Then,

we utilized the clusterprofiler R package (19, 20) to perform

functional and pathway analysis, including Gene Ontology (GO)

(21) and Kyoto Encyclopedia of Genes and Genomes (KEGG), for

the DEGs associated with mitochondria.
WGCNA analysis

In the WGCNA analysis, we used the mitochondria-related

DEGs as the background gene set. We calculated the Gene Set
Frontiers in Immunology 03
Variation Analysis (GSVA) (22) scores for each sample and used

these GSVA scores as traits for the WGCNA analysis. On the basis

of selecting all genes, the determination of the maximum R2 (power

= 4) was conducted using the soft threshold of an unweighted

network. Each module is required to contain at least 30 genes, and

the topological overlap matrix similarity was utilized to evaluate the

distance between gene pairs. Hierarchical clustering analysis was

performed using the average linkage method and dynamic tree cut

algorithm to construct a clustering tree and divide the genes into

different modules. Next, we utilized the clusterprofiler R package

(23) to perform GO and KEGG analysis, on the modules that were

most correlated with the GSVA scores. String database to construct

protein interaction networks for modular genes.
Identification of hub mitochondria-
associated DEGs

To identify hub genes among the mitochondria-related DEGs,

we employed the Lasso regression, ridge regression, and elastic net

regression for feature selection. Additionally, we utilized various

methods such as SVM-RFE, Random Forest, Gradient Boosting

Machine (GBM), and XGBoost to rank the importance of genes. We

selected the top 30 genes based on their importance scores derived

from these methods. The criteria for identifying hub genes among

the mitochondria-related DEGs were set as the genes that appeared

consistently across all seven algorithms mentioned above.
Predictive model and alignment diagram

To determine the best machine learning model for predicting

OA, we selected the expression profiles of hub mitochondria-

associated DEGs as input variables, and built seven machine

learning models including logistic regression, SVM, kknn,

random forest, LDA, Naive Bayes, and decision tree for

prediction using the “mlr3verse” R package. The reliability of the

models was also verified using bootstrap method. The genes were

then evaluated using multifactorial logistic regression analysis, and

the area under the receiver operator characteristic (ROC) curve

(AUC) was calculated using the “ROCR” package to assess the value

of these genes in OA diagnosis. We used a nomogram to predict the

likelihood of OA, and plotted correction curves and decision curves

to analyze the stability of the model.
Deep learning

Deep learning is a type of neural network that has more hidden

layers and can understand more complex information structures in

the data. Multi-Layer Perceptron (MLP) is a common form of

neural network, also known as feedforward neural network. We

compute the confusion matrix and visualize the MLP diagnostic

results, extract the weights and biases of each layer, and finally

generate the network structure and visualization.
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GSEA and ssGSEA analysis of hub
mitochondria-associated DEGs

Using the mitochondrial gene set and KEGG pathway gene set

as the background gene set, we performed GSEA analysis of hub

mitochondria-related DEGs using the clusterprofiler R package.

The ssGSEA algorithm was also utilized to calculate the score of the

hallmark pathway set, and the correlation between the hub

mitochondria-related DEGs and pathways was calculated using

the spearman algorithm.
Immune infiltration analysis

The cibersort (24) algorithm was utilized to calculate the

proportion of immune cells in OA, and subsequently, the

spearman algorithm was employed to assess the correlation

between hub mitochondria-associated DEGs and immune cells.

Additionally, the spearman algorithm was used to determine the

correlation between hub mitochondria-associated DEGs and

immune-related genes.
Constructing gene-disease networks and
mRNA-miRNA networks

The DisGeNET R package (25) was utilized to analyze diseases

associated between genes, while multiple miRAN databases were

integrated to predict the miRAN of genes.
Genome−wide association study

The GeneAtlas database (http://geneatlas.roslin.ed.ac.uk/) serves

as a comprehensive resource that utilizes data from the UK Biobank

cohort to provide extensive information on associations between

hundreds of traits and millions of genetic variations. The database

contains information from the UK Biobank, including data from

452,264 individuals. It covers 778 phenotypes and encompasses a vast

number of genetic loci, totaling approximately 30 million. It offers

valuable genetic and phenotypic data to researchers, facilitating a

deeper understanding of the relationships between genes and traits

and advancing research in related fields.
Consensus clustering

Consensus clustering (26, 27) is a comprehensive clustering

method designed to identify subgroups within a dataset. In this

study, we performed clustering analysis using the K-means

algorithm on the expression profiles of mitochondria-related

DEGs in OA samples. We specified a maximum of 10 clusters

and determined the final number of clusters based on the

consistency matrix and cluster consensus score, which exceeded

0.8. Subsequently, we further analyzed the differential expression
Frontiers in Immunology 04
levels of the mitochondria-related DEGs and immune cells across

different subgroups.
Drug analysis

Utilizing the results from the subtype differential expression as

disease indicators and the drug data in the CMap database as drug

markers, we implemented the eXtreme Sum (XSum) methodology

for feature alignment. This was done to identify drugs that are

suitable for particular subtypes.
GSEA, GSVA and protein function analysis
of subtypes

To look for subtype-related fe and dynamic tree-cutting

methods. This approach facilitated the creation of a dendrogram

and the assignment of genes to their respective modules. After

considering their similarities, we merged the original 11 modules

and ultimately identified six functional modules. To further analyze

the key modules, we utilized the ClusterProfiler R package to

perform GO and KEGG functional analyses.
Analysis of expression levels in normal
human tissues

Expression of hub mitochondria-related genes in human tissues

was analyzed using the harmonizome database (https://

maayanlab.cloud/Harmonizome/).
Single-cell analysis

We used the GSE133449 dataset for single-cell level expression

distribution and pseudotime analysis. We processed the single-cell

RNA sequencing data using the Seurat R package (28). Cells

expressing more than 200 but not exceeding 2,500 genes were

selected. The “FindVariableGenes” function was employed to

identify highly variable genes, followed by PCA. For dimensionality

reduction and visualization of the single-cell data, we utilized

Uniform Manifold Approximation and Projection (UMAP). To

generate a plot of the single-cell data, we used the “DimPlot”

function, and for visualizing gene expression patterns, we employed

the “FeaturePlot” function. Cell type annotation was performed using

the ‘HumanPrimaryCellAtlasData()’ function from the ‘celldex’

package. Subsequently, we calculated senescence scores for each cell

type and evaluated differences in senescence scores between the

normal and OA groups for the same cell types. Further

visualization of these differences can be achieved using the

“FeaturePlot” function. Note: ‘HumanPrimaryCellAtlasData()’ is

not actually a function in the ‘celldex’ package. It is used here as an

example for cell type annotation. Please refer to the appropriate

package or resource for cell type annotation in your specific analysis.
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Pseudotime analysis

We extracted a subset of chondrocyte cells from the single-cell

data for pseudotime analysis. Initially, we performed re-

dimensionality reduction and clustering specifically on the

chondrocyte cells. Next, we utilized the Monocle R package for

pseudotime analysis. We selected cells for subsequent pseudotime

analysis based on average expression greater than 0.1 and empirical

dispersion greater than one-fold of the fitted dispersion. To reduce

dimensionality and order the cells in the pseudotime analysis, we

used the ‘DDRTree’ method from the ‘reduceDimension’ function.

Additionally, We examined the expression variations of

mitochondria-related genes across distinct clusters during the cell

differentiation trajectory.
RT-PCR validation

Human chondrocyte cells were obtained from Wuhan Saos

Technology Co., Ltd. These cells were cultured in DMEM/F12

medium supplemented with 10% fetal bovine serum. To induce

inflammation, the model group’s cells were treated with a culture

medium containing IL-1b at a concentration of 10 ng/ml for 24

hours. Total RNA extraction was performed using the QIAzol

reagent kit, followed by cDNA synthesis through reverse

transcription using oligo-dT primers. Subsequently, gene

amplification of the cDNA was carried out using an RT-PCR

machine, following an initial denaturation at 95°C for 5 minutes,

followed by 40 cycles of denaturation at 95°C for 1 minute,

annealing at the optimal temperature of 60°C for 30 seconds, and

extension at 72°C for 1 minute. The relative expression level of each

specific gene was calculated using the 2-DD method. Please refer to

Table 1 for the primer sequences of the human genes utilized.
Results

Data processing and enrichment analysis

We integrated and processed data from GSE117999, GSE51588,

GSE55235, GSE55457, GSE57218, GSE82107, and GSE98918,

resulting in 66 control samples and 125 OA samples,

encompassing information on 10827 genes. As depicted in

Figure 1A, batch effects were observed across the seven different

datasets. However, after eliminating these batch effects, consistent

results were obtained (Figure 1B). This indicates that we

successfully eliminated batch effects through cross-platform

standardization methods. Differential expression analysis revealed

245 mitochondria-related DEGs, including 72 up-regulated and 173

down-regulated mitochondria-related DEGs (Figure 1C). The

ssGSEA results demonstrated a significant decrease in

mitochondrial activity in OA (Figure 1D), which was further

validated by GSEA analysis (Figure 1E). Enrichment analysis

revealed significant enrichment of mitochondria-related DEGs in

processes such as ribose phosphate metabolic process,
Frontiers in Immunology 05
mitochondrial gene expression, mitochondrial transport,

Pathways of neurodegeneration - multiple diseases, Parkinson

disease, and Prion disease (Figure 1F). WGCNA analysis

indicated a significant correlation between the black module and

mitochondrial scores (Figure 1G). Figure 1H displays the Module

Membership (MM) and Gene Significance (GS) for each gene in the

black module. Both BP and KEGG analyses showed significant

enrichment of genes in the black module in processes such as

cytokine-mediated signaling pathway, positive regulation of cell

adhesion, response to xenobiotic stimulus, Cytokine-cytokine

receptor interaction, Calcium signaling pathway, and Ras

signaling pathway (Figure 1I). The protein-protein interaction

network of genes in the black module is illustrated in Figure 1J.
Machine learning identification of hub
mitochondria-related DEGs

We successfully utilized lasso regression (Figure 2A), ridge

regression (Figure 2B), and elastic regression (Figure 2C) to screen

for important mitochondria-related DEGs. Additionally, we

employed Support Vector Machine - Recursive Feature Elimination

(SVM-RFE) to select the top 30 important mitochondria-

related DEGs (Figure 2D). Moreover, we used random forest
TABLE 1 Primers used in this study.

Primer Sequence

SLC25A37-F AGAAAATCATGCGGACCGAAG

SLC25A37-R TGGTGGTGGAAAACGTCATTTA

MTHFD2-F AGGACGAATGTGTTTGGATCAG

MTHFD2-R GGAATGCCAGTTCGCTTGATTA

SIRT4-F GCTTTGCGTTGACTTTCAGGT

SIRT4-R CCAATGGAGGCTTTCGAGCA

DNAJC15-F TTGCAGGTCGCTACGCATTT

DNAJC15-R CCAGCTTCTCGCCTACTCATT

ETFDH-F TACTGTGCCTCGAATTACTACCC

ETFDH-R ACAGCCAACTGTTTTAGACGAA

PDK4-F GGAAGCATTGATCCTAACTGTGA

PDK4-R GGTGAGAAGGAACATACACGATG

CARS2-F AAGCCGCCTCCTGGTATAG

CARS2-R CTTCCTCATAAAGACTGGCGAG

FKBP8-F GACTTCGAGGTACTGGATGGG

FKBP8-R CTTCTTCCTCAACAGCCCGTT

NFS1-F TGGATGTGCAAGCTACAACTC

NFS1-R GATCAGCTCCAATCAGAGATGC

GAPDH-F TCAAGATCATCAGCAATGCC

GAPDH-R CGATACCAAAGTTGTCATGGA
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(Figures 2E, F), Xgboost (Figure 2G), and GBM (Figure 2H) to

independently identify the top 30 mitochondria-related DEGs.

Subsequently, we obtained the intersection of these seven machine

learning results, resulting in nine hub mitochondria-related DEGs,

namely SLC25A37, MTHFD2, SIRT4, DNAJC15, ETFDH, PDK4,

CARS2, FKBP8, and NFS1 (Figure 2I). The heatmap displayed the

expression patterns of SLC25A37, MTHFD2, SIRT4, DNAJC15,

ETFDH, PDK4, CARS2, FKBP8, and NFS1 in OA and control

samples (Figure 2J). Box plots illustrated the expression levels of

these genes in OA and control samples (Figure 2K). The correlation

and protein-protein interaction information of these genes are

presented in Figures 2L and M, respectively. Functional similarity

analysis revealed that PDK1 holds a significant position among these

genes (Figure 2N). The chromosomal locations of these genes are

shown in Figure 2O.
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Column chart and neural network
model construction

After comparing seven machine learning models, we found that

the random forest model exhibited the highest AUC value

(Figure 3A). Additionally, the random forest model demonstrated

good sensitivity and specificity (Figure 3B). The AUC of the random

forest model was 0.968 (Figure 3C), indicating its ability to

accurately identify OA patients. Internal validation further

confirmed the reliability of the model (Figure 3D). In the column

chart, each feature variable corresponds to a specific score, and the

sum of all feature scores represents the probability of having OA

(Figure 3E). The calibration curve validated the accuracy of the

column chart in diagnosing OA (Figure 3F). Decision Curve

Analysis (DCA) showed that the column chart provided certain
B C D

E

F

G H

I

J

A

FIGURE 1

Data processing and enrichment analysis. (A) Data before batch effect removal. (B) Data after batch effect removal. (C) Volcano plot for differential
expression analysis. (D) ssGSEA analysis and (E) GSEA analysis reveal a significant decrease in mitochondrial activity in OA. (F) Gene Ontology
Biological Process (BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for mitochondria-related DEGs. (G) WGCNA analysis for
mitochondrial scoring. (H) Module Membership (MM) and Gene Significance (GS) values for genes in the black module. (I) Gene Ontology BP and
KEGG analysis for genes in the black module. (J) Protein-protein interaction network analysis for genes in the black module.
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FIGURE 2

Machine learning to identify hub mitochondria-associated DEGs. (A) Lasso regression, (B) Ridge regression, (C) Elastic Net regression, and (D) SVM-
RFE were utilized to select mitochondria-related DEGs. (E, F) Random Forest analysis, (G) Xgboost analysis, and (H) GBM analysis identified the top
30 mitochondria-related DEGs. (I) A Venn diagram illustrated that nine hub mitochondria-related DEGs were identified by the seven machine
learning methods. Heatmap (J) and boxplot (K) displayed the expression levels of these nine hub mitochondria-related DEGs (**p < 0.01, ***p <
0.001, ****p < 0.0001). Correlation analysis (L), protein-protein interaction analysis (M), functional similarity analysis (N), and chromosomal loci
information analysis (O) were conducted for the hub mitochondria-related DEGs.
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FIGURE 3

Column line graphs and neural network building. (A) Comparison of the AUC (Area Under the Curve) for the seven machine learning models.
(B) Comparison of the ROC (Receiver Operating Characteristic) curves for the seven machine learning models. (C) AUC for the random forest model
and (D) internal validation. (E) Detailed information in column plot format. (F) Calibration curve for the diagnostic model. (G) Model evaluation
curves. (H) Accuracy and loss obtained at different iteration counts during model training. (I) Confusion matrix. (J) Actual prediction capability.
(K) Structure of the neural network. (L) Prediction effect of the deep learning model constructed.
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benefits for OA patients in clinical applications (Figure 3G). During

the construction of the neural network model, Figure 3H displayed

the accuracy and loss rate for each of the 100 training iterations. As

indicated by the Kappa test (Figure 3I), the confusion matrix

exhibited good consistency. Figure 3J presented a comparison

between the predicted and actual results. The structure of the

neural network model is depicted in Figure 3K. The model

achieved an AUC of 0.961, demonstrating high diagnostic

performance (Figure 3L).
Enrichment analysis of hub mitochondria-
related DEGs

Except for SLC25A37, MTHFD2, SIRT4, DNAJC15, ETFDH,

PDK4, CARS2, FKBP8, and NFS1 were significantly activated in

mitochondrial pathways (Figure 4A). Figure 4B provides detailed

information on the top six pathways that showed significant

enrichment when using the KEGG pathway gene set as the

background gene set for hub mitochondria-related DEGs.

Figure 4C illustrates the correlation between hub mitochondria-

related DEGs and hallmark pathway gene sets.
Immune infiltration analysis

The heatmap in Figure 5A depicts the correlation between hub

mitochondria-related DEGs and immune cells. Subsequent

selection of results with significant correlations is presented in the

scatter plot, providing a detailed visualization of the correlation

between each hub mitochondria-related DEG and individual

immune cells (Figure 5B). SIRT4 exhibits positive correlation

with Dendritic cells resting and T cells CD4 naive. DNAJC15

displays positive correlation with Macrophages M2, NK cells

activated, and T cells gamma delta, while exhibiting negative

correlation with NK cells resting and T cells regulatory (Tregs).

NFS1 demonstrates positive correlation with Plasma cells and

negative correlation with Mast cells resting and Dendritic cells

resting. FKBP8 exhibits negative correlation with Dendritic cells

resting and T cells gamma delta. SLC25A37 shows positive

correlation with Neutrophils, Monocytes, NK cells resting, and

Plasma cells, while demonstrating negative correlation with

Dendritic cells resting, Macrophages M2, and T cells gamma

delta. CARS2 exhibits negative correlation with T cells CD8.

MTHFD2 shows negative correlation with NK cells resting.

ETFDH displays positive correlation with Monocytes and NK

cells resting, while showing negative correlation with Mast cells

resting. PDK4 demonstrates negative correlation with Macrophages

M1, Monocytes, and T cells CD8, while displaying negative

correlation with Macrophages MO. Further analysis reveals the

correlation between hub mitochondria-related DEGs and immune-

related genes, as depicted in Figure 5C.
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Gene-disease network and
mRNA-miRNA network

By analyzing the associations between genes and diseases, we

constructed a gene-disease network (Figure 6A). For hub

mitochondria-related DEGs, we selected five databases that

encompassed the maximum number of miRNAs (Figure 6B) and

successfully constructed an mRNA-miRNA network (Figure 6C).
GWAS analysis of hub mitochondria-
related genes

Through the analysis of GWAS data, we have identified the

disease-associated regions for eight hub mitochondria-related genes

in OA (Figures 7A, B). The plot also displays the single nucleotide

polymorphism (SNP) disease-associated regions corresponding to

CARS2, DNAJC15, ETFDH, FKBP8, MTHFD2, NFS1, PDK4,

SIRT4, and SLC25A37 (Figures 7C–K).
Consensus clustering analysis

We performed classification of OA samples based on hub

mitochondria-related DEGs. Using the consensus matrix as a

similarity matrix, we determined the final subtypes. Based on the

consensus clustering results, cumulative distribution function

(CDF) plot, relative changes in CDF curves, and consensus

clustering scores, we selected k=2 as the optimal value, dividing

the OA samples into two distinct subtypes (Figures 8A–D). In

subtype 1, CD8 T cells showed significantly lower expression, while

M0 macrophages exhibited significantly higher expression

(Figure 8E). Drug analysis revealed that STOCK1N.35696, fasudil,

MK.886, and X4.5.dianilinophthalimide were among the top five

potential drugs for treating subtype 1 patients (Figure 8F), whereas

clofibrate, MS.275, NU.1025, imatinib, and butein were among the

top five applicable drugs for treating subtype 2 patients (Figure 8G).

Figures 8H and 8I respectively illustrate some biological processes

and KEGG pathways involved in the subtypes.
Protein-level enrichment analysis and
GSVA analysis of Subtypes

Protein pathway analysis revealed that subtype 1 was primarily

enriched in the PI3K-Akt signaling pathway (Figure 9A), while

subtype 2 showed enrichment in transcription factors (Figure 9B).

GSVA analysis indicated that both subtype 1 and subtype 2

were associated with numerous metabolic functions or pathways

in terms of biological processes (BP) (Figure 9C) and KEGG

pathways (Figure 9D).
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WGCNA analysis of subtypes

Using the information from subtype 1 and subtype 2, we

conducted WGCNA analysis. The soft-thresholding power was set

to 4 (Figure 10A), with a correlation coefficient threshold of 9. This

resulted in the generation of 27 modules (Figure 10B). Among these
Frontiers in Immunology 10
modules, the blue module exhibited the strongest correlation with the

subtypes (Figure 10C). Inter-module correlations are illustrated in

Figure 10D. Module-trait analysis focused on the blue module,

displaying the distribution of MM and GS for genes within this

module (Figure 10E). Regarding BP, enrichment within the module

primarily involved signal release, response to peptide hormone, and
B C

A

FIGURE 4

Enrichment analysis of hub mitochondria-associated DEGs. (A) GSEA analysis for SLC25A37, MTHFD2, SIRT4, DNAJC15, ETFDH, PDK4, CARS2,
FKBP8, and NFS1 using the mitochondria gene set as the background gene set. (B) GSEA analysis for SLC25A37, MTHFD2, SIRT4, DNAJC15, ETFDH,
PDK4, CARS2, FKBP8, and NFS1 using the KEGG pathway gene set as the background gene set. (C) ssGSEA analysis for SLC25A37, MTHFD2, SIRT4,
DNAJC15, ETFDH, PDK4, CARS2, FKBP8, and NFS1 using the hallmark pathway gene set as the background gene set.
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second-messenger-mediated signaling (Figure 10F). In terms of

KEGG pathways, the module genes were predominantly enriched

in Neuroactive ligand-receptor interaction, cAMP signaling pathway,

and Cytokine-cytokine receptor interaction (Figure 10F).
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Human tissue expression atlas

Utilizing the Harmonizome database, we analyzed the

expression of hub mitochondria-related DEGs in human
B
C

A

FIGURE 5

Immune infiltration analysis. (A) Correlation heatmap between hub mitochondria-related DEGs and immune cells. (B) Scatter plot detailing the
correlation between each hub mitochondria-related DEGs and each immune cell. (C) Correlation between hub mitochondria-related DEGs and
immune-related genes (*p < 0.05, **p < 0.01, ***p < 0.001).
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tissues (Figures 11A–I),with a particular focus on bone and

cartilage cells.
Single-cell expression and
pseudotime analysis

Figure 12A depicts the distribution and expression of hub

mitochondria-related genes in different cell types. We found that

SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2,
Frontiers in Immunology 12
ETFDH, and PDK4 were expressed in single cells. During the

process of cell differentiation, the expression patterns of SIRT4,

DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH,

and PDK4 underwent changes (Figure 12B).
RT-PCR validation results

The OA group exhibited higher expression levels of DNAJC15,

FKBP8, NFS1, and SIRT4 genes compared to the control group.
B

C

A

FIGURE 6

Gene-disease networks and mRNA-miRNA networks. (A) Gene-disease network (red circles represent hub mitochondria-related genes; blue circles
represent diseases). (B) Venn diagram displaying the miRNA sets for each hub mitochondria-related DEGs. (C) mRNA-miRNA network (purple shapes
represent hub mitochondria-related genes; blue shapes represent miRNAs).
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Conversely, the OA group showed lower expression levels of

CARS2, ETFDH, MTHFD2, PDK4, and SLC25A37 genes in

comparison to the control group (Figure 13).
Discussion

OA is typically caused by abnormal metabolism and death of

chondrocytes. The functionality of mitochondria is crucial for

maintaining a stable intracellular environment in chondrocytes.

Impaired mitochondrial function, a significant factor in cellular

metabolic abnormalities, contributes to the onset and progression of

OA. Recent studies have also reported that dysfunctional

mitochondria in chondrocytes can lead to the generation of ROS,

oxidative stress, inflammation, and cell apoptosis (29). Therefore,

alterations in mitochondrial function are associated with the

pathological processes of OA.
Frontiers in Immunology 13
In this study, we systematically analyzed genes associated with

mitochondrial metabolism in OA. Through differential expression

analysis, we identified a set of differentially expressed genes linked to

mitochondrial metabolism. Furthermore, employing the SsGSEA

algorithm, we evaluated the expression levels of the mitochondrial

metabolism-related gene set and observed significant downregulation

in OA. This finding highlights the influence of mitochondrial

metabolic dysfunction on the development of OA. Through

enrichment analysis, we discovered that the main biological

processes involving mitochondrial metabolism-related genes

included mitochondrial gene expression, mitochondrial transport,

mitochondrial translation, mitochondrial transmembrane transport,

and mitochondrial membrane organization. Furthermore, we

identified significant signaling pathways associated with

mitochondrial metabolism-related genes, including cytokine-

mediated signaling pathway, positive regulation of cell adhesion,

response to xenobiotic stimulus, cytokine-cytokine receptor
B

C D E

F G H

I J K

A

FIGURE 7

GWAS analysis results. (A) Q-Q plot for GWAS (Genome-Wide Association Study). (B) Manhattan plot for GWAS. (C–K) Chromosomal regions of
CARS2, DNAJC15, ETFDH, FKBP8, MTHFD2, NFS1, PDK4, SIRT4, SLC25A37.
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interaction, calcium signaling pathway, Ras signaling pathway,

cGMP-PKG signaling pathway, hematopoietic cell lineage, and

HIF-1 signaling pathway. These findings serve as a theoretical

foundation for further exploring the underlying mechanisms of

mitochondrial metabolism in OA.

Through the use of seven machine learning algorithms, we

identified nine mitochondrial metabolism-related genes, namely

SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2,

ETFDH, and PDK4, which are closely associated with the

occurrence of OA. Based on these nine genes, we constructed a

prediction model for OA, which can be utilized for diagnosis and

treatment purposes. Previous studies have confirmed that sirtuins

(SIRT) play a crucial role in the regulation of cellular metabolism and

are associated with various diseases. SIRT4, a member of the SIRT

protein family, is specifically localized within mitochondria and

maintains mitochondrial function and homeostasis (30).

Overexpression of SIRT4 contributes to the inhibition of
Frontiers in Immunology 14
inflammation and oxidative stress in OA (31). SIRT4 shows a

positive correlation with the transcriptional activity of hypoxia-

inducible factor-2a (HIF-2a) in chondrocytes. HIF-2a
transcription upregulates NAMPT in articular chondrocytes,

leading to the development of OA in mice. The interplay between

HIF-2a and the NAMPT-NAD(+)-SIRT axis in chondrocytes is

associated with HIF-2a or NAMPT-induced cartilage destruction in

OA (32). Overexpression of SIRT4 in chondrocytes enhances

mitochondrial autophagy, preventing cellular senescence and

degradation (33). DNAJC15, also known as methylation-controlled

J protein (MCJ), is an inner mitochondrial membrane protein serving

as an endogenous inhibitor of respiratory chain complex I. Its

depletion results in enhanced mitochondrial respiration and

elevated reactive oxygen species levels (34). It is part of the

mitochondrial protein transport mechanism and is involved in cell

death processes (35). Lack of MCJ affects the pathological physiology

resulting from alterations in mitochondrial metabolism (36). NFS1
B C D
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FIGURE 8

Identification of molecular clusters and characterization of subtypes based on hub mitochondria-related DEGs in OA. (A) Consensus clustering
matrix for k = 2. (B) Cumulative distribution function (CDF) curves for clustering. (C) CDF delta area curves. (D) Tracking plot. (E) Differential analysis
of immune cells between subtype 1 and subtype 2 (*p < 0.05, ***p < 0.0001). Drug analysis results for treating patients of subtype 1 (F) and subtype
2 (G). GSEA analysis between subtypes, including BP (H) and KEGG (I) levels.
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(cysteine desulfurase) provides persulfide for the biosynthesis of iron-

sulfur (FeS) clusters in mitochondria (37). FeS clusters are essential

for the activity of many cellular proteins. FKBP8 belongs to the

FK506-binding protein (FKBP) family and is a membrane-associated

protein typically found in mitochondria. FKBP8 regulates autophagy

by interacting with the VPS34 lipid kinase complex (38). Solute

carrier family 25 member 37 (SLC25A37), also known as

mitochondrial iron transporter-1, is a member of the solute carrier

family located in the inner mitochondrial membrane (39). It mediates

the uptake of mitochondrial iron. Persulfides are sulfur-containing

organic compounds that possess diverse physiological functions. The

synthesis of persulfides is primarily mediated by mitochondrial

cysteinyl-tRNA synthetase (CARS2). Persulfides mediate

mitochondrial biogenesis and bioenergetics. The function of

mitochondria in biogenesis and bioenergetics is also supported and

upregulated by persulfides derived from mitochondrial cysteinyl-

tRNA synthetase (CARS, also known as CARS2) (40).

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a

mitochondrial enzyme that participates in one-carbon metabolism.

It plays a crucial role in maintaining the integrity of the mitochondrial

respiratory chain and preventingmitochondrial dysfunction (41). The
Frontiers in Immunology 15
electron transfer flavoprotein (ETF), consisting of a and b subunits

(ETF a and ETF b, respectively), functions as a mitochondrial matrix

protein. It facilitates electron transfer between various mitochondrial

dehydrogenases and the primary respiratory chain through the action

of electron-transferring flavoprotein dehydrogenase (ETFDH) (42).

Pyruvate dehydrogenase kinase 4 (PDK4) inhibits the development of

OA through activation of the PPAR pathway (43). Overexpression of

PDK4 is also sufficient to promote mitochondrial fission. The PDK4-

SEPT2-DRP1 axis has been identified as a regulator of mitochondrial

function, bridging the gap between cellular bioenergetics and

mitochondrial dynamics (44). However, apart from SIRT4 and

PDK4, no other studies have been found examining the remaining

seven genes in relation to OA. Our study further confirms the

association between mitochondrial metabolism and the progression

of OA. Additionally, This study sheds light on the involvement of

these mitochondrial metabolism-related genes in the

pathophysiological processes of OA, offering valuable insights for

the future development of targeted therapeutic strategies for

this condition.

We further analyzed the correlation between these nine

mitochondrial metabolism genes and hallmark signaling
B

C D

A

FIGURE 9

Enrichment analysis of subtypes. Protein pathway analysis of subtype 1 (A) and subtype 2 (B). GSVA analysis of BP (C) and KEGG (D).
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pathways. The results revealed significant associations with various

signaling pathways, including unfolded protein response, TNFa
signaling via NF-kB, TGF-beta signaling, reactive oxygen species

pathway, PI3K-AKT-mTOR signaling, peroxisome, p53 pathway,

oxidative phosphorylation, notch signaling, mTORC1 signaling,

mitotic spindle, and DNA repair. Mitochondrial unfolded protein

response (UPR) is a signaling pathway from mitochondria to the

nucleus that is activated to maintain mitochondrial function when

misfolded proteins accumulate within the mitochondria. Studies

have found that enhanced activation of mitochondrial UPR can

reduce chondrocyte death, alleviate joint pain, and lower

inflammation levels in synovial fluid (45). TNF-a, a key

inflammatory factor in OA pathogenesis, induces chondrocyte

death. Research by M J López-Armada et al. demonstrated that

TNF-a and interleukin-1 (IL-1) decrease complex I activity and

ATP production, ultimately resulting in mitochondrial

depolarization and contributing to cartilage degradation (46).

TGF-b3, another growth factor present in OA-affected joints, has
Frontiers in Immunology 16
shown significant potential in promoting chondrocyte growth and

metabolism (47). Specifically, TGF-b3 enhances mitochondrial

biogenesis by stimulating mitochondrial fission. TGF-b3-induced
mitochondrial fission is mediated by the AMPK signaling pathway.

ROS leads to chondrocyte apoptosis, reduced synthesis and

activation of matrix metalloproteinases, cartilage degradation, and

mitochondrial DNA damage (48). Mitochondria-generated ROS

contribute significantly to the pathogenesis of OA. In an OA rat

model, artemisinin has been found to activate mitochondrial

autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway

in IL-1b-induced chondrocytes, leading to the amelioration of

disease progression (49). Maintaining a normal number and

function of mitochondria relies on the crucial process of

mitochondrial biogenesis, which is governed by the central

regulator peroxisome proliferator-activated receptor g coactivator-
1a (PGC-1a). Sestrin2 (Sesn2), a novel stress-inducible protein,

activates AMPK/PGC-1a-mediated mitochondrial biogenesis, thus

relieving pain in an OA rat model (50). Curcumin improves OA
B
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FIGURE 10

WGCNA analysis of subtypes. (A) The optimal soft threshold value is determined to be 4. (B) Merged modules after merging process. (C) Correlation
analysis between modules and traits. (D) Heatmap showing the correlation between modules. (E) Scatter plot displaying Module Membership (MM)
and Gene Significance (GS) for genes in the grey60 module. (F) BP and KEGG analysis for genes in the module.
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cartilage degradation by regulating iron death through the P53

signaling pathway (51). Oxidative stress damage can lead to chronic

and persistent mitochondrial dysfunction. Oxidative stress is

critically involved in the development of certain characteristics of

osteoarthritis, including synovial inflammation, cellular senescence

and apoptosis, impaired autophagy, and extracellular matrix
Frontiers in Immunology 17
degradation (52). PGC-1a, a master regulator of mitochondrial

biogenesis, plays a protective role in cartilage. PGC-1a delays the

onset and progression of OA by influencing mitochondrial

biogenesis, oxidative stress, mitochondrial autophagy, and

mitochondrial DNA replication in chondrocytes (53). Studies

have found that mitochondrial DNA damage is present in
B C
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A

FIGURE 11

Expression profiles of nine hub mitochondria-related genes, including CARS2 (A), DNAJC15 (B), ETFDH (C), FKBP8 (D), MTHFD2 (E), NFS1 (F), PDK4
(G), SIRT4 (H), and SLC25A37 (I) in human tissues.
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chondrocytes of OA patients, accompanied by reduced DNA repair

capacity (54). The NOTCH signaling pathway is involved in the

metabolic processes of cartilage (55). mTORC1 selectively promotes

translation of nuclear-encoded mitochondrial mRNA by inhibiting

eukaryotic translation initiation factor 4E (eIF4E) binding protein

(4E-BP), thereby controlling mitochondrial activity and biogenesis

(56). Thus, mitochondria-related genes may play a role in the

development of OA through these signaling pathways

mentioned above.

Recent research indicates that alterations in inflammation and

the immune system contribute to the pathogenesis of OA (57, 58).

Moreover, mitochondrial metabolism plays a pivotal role in the

metabolism and activation of immune cells. Consequently, we

investigated the relationship between mitochondrial metabolism-

related genes and immune cells, identifying significant associations
Frontiers in Immunology 18
primarily with macrophages, neutrophils, T cells, and dendritic

cells. Reprogramming the mitochondrial metabolism of pro-

inflammatory M1 macrophages towards an anti-inflammatory M2

phenotype has emerged as a promising strategy for mitigating OA

progression. Through modifications in the mitochondrial

metabolism of M1 macrophages, repolarization into M2

macrophages can be achieved, effectively suppressing synovial

inflammation and impeding early-stage OA progression (59).

Neutrophils are the first immune cells to enter the synovium after

joint injury, and their activity is an indispensable prerequisite for

the progression of OA (60). Research has revealed that neutrophil

elastase (NE) induces chondrocyte apoptosis and promotes the

development of OA through the cysteine cathepsin signaling

pathway (61). NE, the primary inflammatory protease released by

neutrophils, is a key factor in OA. Elevated expression levels of
B

A

FIGURE 12

Distribution of hub mitochondria-related genes in OA based on single-cell RNA sequencing data. (A) Violin plot showing the distribution of 9 hub
mitochondria-related genes in different cell types. (B) The 9 hub mitochondria-related genes produced expression changes in the proposed
time series.
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various T cell subtypes, including CD4+ and CD8+ T cells, have

been observed in OA patients, indicating their potential role in the

pathogenesis of the disease (62). Dendritic cells (DCs) in OA

patients also exhibit heightened levels of inflammatory cytokines,

suggesting their involvement in the pathogenesis of OA (63). While

these immune cell types have been implicated in OA pathogenesis,

their precise roles in disease initiation and progression remain

poorly understood. Therefore, identifying and comprehending the

specific immune cell subtypes involved in OA will provide valuable

insights into the disease’s etiology and aid in the development of

effective treatment strategies.

Inflammation has been shown to play a crucial role in the

pathogenesis of OA, particularly through the action of

inflammatory cytokines (64). In our study, we identified multiple

cytokines that are closely associated with the nine mitochondrial

metabolism-related genes. Previous research has reported that

interleukin-1b (IL-1b) induces chondrocyte apoptosis by

inhibiting SIRT3 expression and mitochondrial autophagy.

Mitoquinone (MitoQ5) protects chondrocytes against IL-1b-
induced oxidative stress and promotes cell survival by

upregulating the SIRT3/Parkin-associated autophagy signaling

pathway (65). IL-1b increases mitochondrial iron levels to trigger
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chondrocyte ferroptosis, leading to inflammatory damage (66). In

recent years, many studies have demonstrated that alleviating

disease progression in OA can be achieved by inhibiting

inflammatory cytokines. Artemisinin (AT) has been reported to

activate mitochondrial autophagy and alleviate OA by reducing

TNFSF11 expression and inhibiting the PI3K/AKT/mTOR

signaling pathway (49). Curcumin (CAD) can mitigate

inflammation, cartilage degradation, and ferroptosis induced by

IL-1b (51). Nodakenin, in an OA mouse model, reduces

chondrocyte degradation and inflammatory responses by

inhibiting the expression of inflammatory cytokines such as

COX-2, IL-1b, and TNF-a (11). Hydrogen sulfide may counteract

IL-1b-induced inflammation and mitochondrial dysfunction-

related cellular apoptosis in chondrocytes by inhibiting the PI3K/

Akt/NF-kB and MAPK signaling pathways (67).

In recent years, researchers have discovered that miRNAs play

important roles in the pathogenesis of OA by mediating processes

such as extracellular matrix metabolism, chondrocyte proliferation

and apoptosis, oxidative stress, and inflammatory responses (68).

Therefore, we analyzed the miRNAs associated with the nine

mitochondrial metabolism-related genes (SIRT4, DNAJC15,

NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and
FIGURE 13

Experimental validation of key gene expression. Relative mRNA expression of SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH,
and PDK4.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1414301
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1414301
PDK4) in OA. Previous studies have found that miR-483-5p

promotes extracellular matrix degradation in chondrocytes,

thereby accelerating the progression of OA (69). Additionally, in

OA cartilage, miR-558 promotes chondrocyte catabolism by

targeting COX-2 and regulating IL-1b (70). Upregulated miR-

126-5p in OA chondrocytes activates mitochondrial autophagy by

downregulating PGC1a expression, leading to chondrocyte

degradation and apoptosis (71). Knockdown of miR-222-3p and

miR-766-3p exacerbates apoptosis, inflammatory response,

extracellular matrix degradation, and oxidative stress in IL-1b-
induced OA chondrocytes (72, 73). Downregulation of miR-214-

3p accelerates ECM metabolism and apoptosis in chondrocytes by

activating the NF-kB signaling pathway, thereby promoting OA

development (74). The circFNDC3B/miR-525-5p/HO-1 signaling

pathway may alleviate extracellular matrix degradation in OA

chondrocytes by mitigating oxidative stress and modulating the

NF-kB pathway (75). These findings highlight the potential of

miRNAs as biomarkers for evaluating disease progression and

prognosis in OA.

In our study, we acknowledge that there are certain limitations

that need to be addressed. Firstly, although we utilized publicly

available data for analysis, the reliability of the data could be a

potential concern. While efforts were made to ensure data quality

and consistency, it is important to note that the original data

sources were not generated specifically for our study. Further

validation using independent datasets or experimental verification

would enhance the robustness of our findings. Secondly, while our

pre-modeling approach showed promising results, clinical

validation is required to establish the utility and accuracy of the

predictive model we developed. Incorporating clinical data and

conducting prospective studies would provide valuable insights into

the real-world applicability and performance of the model. Lastly, as

this study focused on bioinformatics analysis, it is essential to clearly

define the directions for future experimental studies. Identifying key

genes and pathways associated with mitochondria in osteoarthritis

opens up avenues for experimental validation, functional

characterization, and mechanistic investigations. Future

experimental studies should aim to elucidate the biological

relevance of these genes, explore their interactions within cellular

processes, and investigate potential therapeutic targets.

In conclusion, the involvement of mitochondrial metabolism in

the onset and progression of OA is significant. Targeting

mitochondrial dysfunction presents a promising therapeutic

approach for OA cases associated with impaired mitochondrial

function. However, there is currently a lack of identified drugs that

specifically target mitochondrial metabolism in OA. Further

research is necessary to comprehend the complex interplay

between mitochondrial metabolism and OA. Mitochondrial-

targeted therapies hold potential in providing effective preventive

and treatment strategies for OA.
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