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Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the

treatment of hematological malignancies, demonstrably improving patient

outcomes and prognosis. However, its application has introduced new

challenges, such as safety concerns, off-target toxicities, and significant costs.

Natural killer (NK) cells are crucial components of the innate immune system,

capable of eliminating tumor cells without prior exposure to specific antigens or

pre-activation. This inherent advantage complements the limitations of T cells,

making CAR-NK cell therapy a promising avenue for hematological tumor

immunotherapy. In recent years, preclinical and clinical studies have yielded

preliminary evidence supporting the safety and efficacy of CAR-NK cell therapy in

hematological malignancies, paving the way for future advancements in

immunotherapy. This review aims to succinctly discuss the characteristics,

significant therapeutic progress, and potential challenges associated with CAR-

NK cell therapy.
KEYWORDS

chimeric antigen receptor, immunotherapy, NK cells, CAR-NK, hematologicalmalignancies
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host disease; hnCD16, high-affinity and non-cleavable CD16; hPSC, human pluripotent stem cell; ICANS,

immune effector cell-associated neurotoxicity syndrome; IFN-g, interferon gamma; IL, interleukin; iPSC,

induced pluripotent stem cell; MDS, myelodysplastic syndromes; MHC-I, major histocompatibility complex-

I; MM, multiple myeloma; MRD, minimal residual disease; NCAM, nerve cell adhesion molecule; NCR,

natural cytotoxicity receptors; NHL, non-Hodgkin’s lymphoma; NK cell, natural killer cell; OR, overall

response; PB, peripheral blood; R/R, relapsed/refractory; TAA, tumor-associated antigens; TCL, T-cell

lymphoma; TCR, T cell receptor; TME, tumor microenvironment; TNF-a, tumor necrosis factor-alpha;

TROG, trogocytic antigen; UCB, umbilical cord blood.
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1 Introduction

Chimeric antigen receptor T (CAR-T) cell therapy has emerged

as a major breakthrough in cancer treatment in recent years.

Notably, CARs targeting B-lineage-specific antigens, such as

CD19 and CD20, have shown particular success (1). As of today,

the Food and Drug Administration (FDA) has approved six CAR-T

cell therapies: four CD19-directed T-cell products (tisagenlecleucel/

KYMRIAH, axicabtagene ciloleucel/YESCARTA, brexucabtagene

autoleucel/TECARTUS, and lisocabtagene maraleucel/

BREYANZI) and two B-cell maturation antigen (BCMA)-targeted

T-cell products (idecabtagene vicleucel/ABECMA and

ciltacabtagene autoleucel/CARVYKTI). This approach has

demonstrably improved outcomes for patients with recurrent/

refractory hematological malignancies. However, significant

challenges remain in the application of CAR-T cell therapy to

solid tumors. These challenges include the scarcity of tumor-specific

antigens and the limited infiltration of immune cells into solid

tumors (2, 3). Despite its remarkable achievements, CAR-T cell

therapy also faces inherent complexities and safety considerations

associated with autologous T-cell therapy. These limitations,

including the cytokine release syndrome (CRS) and the immune

effector cell-associated neurotoxicity syndrome (ICANS),

necessitate the exploration of alternative therapies (4, 5). These

limitations have spurred interest in alternative therapies such as

natural killer (NK) cell therapy.
2 Biological characteristics of NK cells

NK cells, which are derived from CD34+ lymphoid progenitor

cells in the bone marrow, account for approximately 15% of the

lymphocyte population and serve as important components of the

innate immune defense system (6–9). Functionally similar to CD8+

cytotoxic T cells, NK cells lack antigen-specific receptors. This

enables them to recognize and eliminate abnormal cells in an

antigen-independent manner, distinguishing them from T cells

within the lymphocyte lineage (10, 11). Circulating NK cells can

be further categorized into two major subsets based on the surface

expression density of CD56 (neural cell adhesion molecule) and

CD16 (6): immature CD56brightCD16−/low NK cells and mature

CD56dimCD16+ NK cells. The highly proliferative immature subset

plays a critical role in immunoregulation through the production of

cytokines, particularly interferon gamma (IFN-g) (11). Upon

cytokine stimulation, CD56brightCD16−/ low NK cells can

differentiate into cytotoxic CD56dimCD16+ NK cells (9). Notably,

mature NK cells, constituting approximately 90% of peripheral

blood NK cells, exhibit potent cytotoxic activity (12, 13).

NK cells distinguish abnormal cells from normal cells through a

delicate interplay between the activating and inhibitory surface

receptors. The functional state of an NK cell is ultimately

determined by the balance of the signals received from these

receptors (10, 14). The activating receptors encompass a diverse

group, including partial cytokine-binding receptors (e.g.,

interleukin-2 receptor), natural cytotoxicity receptors (NCRs)
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such as NKp44, NKp30, and CD16, and others such as the SLAM

family receptors and the activated forms of killer cell

immunoglobulin-like receptors (KIRs) (11, 15). NKG2D is a

typical activating receptor whose ligands are only generally

expressed on the surface of abnormal cells such as tumor or

stressed cells and can activate the ability of NK cells to kill

abnormal cells upon binding to the NKG2D ligands (NKG2DL)

(16). This property makes NKG2D an attractive target for cancer

immunotherapy (17). Inhibitory receptors fall into two major

categories: those recognizing the major histocompatibility

complex class I (MHC-I) molecules and those that do not. MHC-

I-specific inhibitory receptors include NKG2A, inhibitory KIRs

(e.g., KIR2DL1/2/3 and KIR3DL1/2), and LLT1. PD-1 and 2B4

are examples of the non-MHC-I-specific inhibitory receptors

(10, 11).

NK cells employ a multifaceted arsenal to eliminate target cells

(Figure 1). Activated NK cells degranulate, releasing cytolytic

granules containing perforin and granzymes. Perforin creates

pores in the target cell membrane, allowing granzymes to enter

and induce cell death (apoptosis) (18, 19). In addition, the activated

NK cells upregulate death ligands, such as the Fas ligand (FasL) and

the tumor necrosis factor (TNF)-related apoptosis-inducing ligand

(TRAIL), on their surface. These ligands can bind to the death

receptors on target cells, triggering apoptosis in a process known as

the death receptor pathway (18, 20). Mature NK cells, characterized

by a high CD16 expression, can also mediate antibody-dependent

cellular cytotoxicity (ADCC). During this process, CD16 binds to

the Fc portion of the antibodies already bound to the target cells,

leading to target cell lysis (21). Finally, the activated NK cells secrete

various cytokines that influence the immune response (22).
3 Construction of CAR-NK

Chimeric antigen receptors (CARs) are engineered proteins

composed of several key domains: extracellular antigen-binding

domains for recognizing tumor-associated antigens (TAAs), flexible

hinge regions, transmembrane domains anchoring the CAR to the

cell membrane, and intracellular signaling domains that directly

activate immune cells to eliminate the target cells (3, 23). The design

of CARs has become increasingly sophisticated with advancements

in research (Figure 2). The current exploration focuses on fifth-

generation CARs, which may incorporate features such as inducible

cytokine production through the inclusion of transcription factor

binding sites. For instance, the integration of an interleukin-2 (IL-2)

Rb signaling domain, which activates STAT3, has been proposed to

enhance T-cell activation and proliferation via both the CD3z/
CD28 and JAK-STAT 3/5 pathways (24). Notably, most CAR-NK

cell studies currently utilize first- or second-generation CAR

structures adapted from CAR-T cell designs (23, 25). Research

efforts are ongoing to improve the efficacy of CARs for targeted

antitumor therapy. These efforts include optimizing the signaling

domains, developing dual/multi-targeted CARs, and selecting less

immunogenic extracellular fragments (26, 27). A recent study

exploring a novel combination of intracellular signaling domains
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FIGURE 2

Structure of the chimeric antigen receptor (CAR). The design of CARs has evolved through generations, with the first generation incorporating a
single CD3z signaling domain for transient activation, the second generation adding a co-stimulatory molecule (CD28 or 4–1BB) for enhanced
signaling, the third generation incorporating two co-stimulatory molecules for further signal transduction efficiency, and the fourth generation co-
expressing cytokines or suicide genes to improve targeting, efficacy, and the safety profiles.
B

C

A

FIGURE 1

Function of natural killer (NK) cells. Normal cells express MHC-I molecules on their surface. When the inhibitory receptors on NK cells bind to these
molecules, NK cells are inhibited and are unable to exert their cytotoxic potential (panel A) . In contrast (panel B), the expression of MHC-I
molecules is usually downregulated in abnormal cells (e.g., tumor cells), accompanied by the expression of a variety of activating ligands, which
leads to the activation of NK cells. The activated NK cells exert their cytotoxic potential by secreting granules containing perforin and granzyme and
by the death receptor pathway. The activated NK cells can also secrete cytokines that regulate the function of other immune cells, including T cells
and macrophages, thus enhancing the immune response. Furthermore, NK cells can be activated through CD16 recognition of target cell-binding
antibodies, enabling them to exert their cytotoxic potential through ADCC effects (panel C).
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(CD3z-2B4) has demonstrated significant functional improvements

in CAR-NK cells in vitro (28).

NK cells can be derived from various sources (29), including

peripheral blood (PB), umbilical cord blood (UCB), established NK

cell lines (particularly the NK-92 cell line), and human pluripotent

stem cells (hPSCs). This wider range of potential sources makes NK

cells more readily available compared with T cells, with each source

offering distinct characteristics, detailed in Table 1.

Currently, two main approaches are used to introduce genetic

material into NK cells: viral transduction (including lentiviral and

retroviral vectors) and non-viral transduction (encompassing

mRNA electroporation and transposon systems). Of these,

lentiviral vectors represent a classic and widely employed method.

However, their lower efficiency in transducing NK cells can limit the

application of CAR-NK therapy. Strategies to improve the lentiviral

transduction efficiency, such as employing multiple transduction

rounds or co-applying transduction enhancers, have been detailed

in previous reviews (35, 42). A summary of the key characteristics of

the different transduction systems is in Table 2.
4 Potential advantages of CAR-NK

At present, CAR-T cell therapy is expensive and time-

consuming. The use of autologous T cells minimizes the risk of

graft-versus-host disease (GvHD), a serious complication in

allogeneic cell therapy (48, 49). However, this reliance on

autologous T cells presents logistical challenges for large-scale

clinical application due to limitations in T-cell collection and

manipulation (50). NK cells, unlike CAR-T cells, pose a

significantly lower risk of GvHD (51) and are abundantly

available. This inherent accessibility presents a distinct advantage

for NK-based therapies. In addition, the high costs associated with

the currently approved CAR-T products, such as the Kymriah with

a list price of $475,000, limit patient access (52). The study by

Jagannath et al. (53) further highlighted the financial burden of

CAR-T therapy, reporting pre- and peri-infusion healthcare costs

exceeding US $15,000 for relapsed/refractory multiple myeloma (R/

RMM) patients alone. Indeed, these high costs create a barrier for
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many patients and necessitate the exploration of alternative

treatment options.

Despite promising response rates, CAR-T cell therapy carries a

significant risk of CRS and ICANS, a concern that cannot be

disregarded during clinical application (54). In contrast,

preliminary clinical trials suggest a potentially safer profile for

CAR-NK cell therapy (55). This difference may be attributed to

the distinct cytokine profiles released by the activated CAR-T and

CAR-NK cells (3). Upon activation, CAR-T cells release a surge of

inflammatory cytokines, such as IL-2, IL-6, and tumor necrosis

factor alpha (TNF-a), which are known contributors to CRS and

ICANS (54). Conversely, the activated CAR-NK cells primarily

produce IFN-g and granulocyte–macrophage colony-stimulating

factor (GM-CSF) (56), cytokines that lack a demonstrated role in

the pathogenesis of CRS and ICANS (54). Supporting this notion, a

clinical trial using cord blood-derived CAR-NK cells for B-cell

malignancies observed minimal elevation of CRS-associated

inflammatory factors such as IL-6 and TNF-a, suggesting a

potentially safer therapeutic approach (55).

It is now understood that CAR-T cells recognize TAAs through

their CARs. This recognition appears to require a higher TAA density

compared with the activation of T cells via their T-cell receptors

(TCRs) (50, 57, 58). Consequently, antigen escape, where tumor cells

downregulate or lose TAA expression, is a frequent challenge in

CAR-T cell therapy, limiting its in vivo efficacy. In contrast, CAR-NK

cells exhibit a dual killing capacity: CAR-dependent and CAR-

independent pathways. The latter pathway leverages the inherent

cytotoxicity of NK cells, allowing them to eliminate tumor cells even

with partial or complete TAA loss (59). This theoretical advantage

suggests a potentially high antitumor potential for CAR-NK cells.

However, the limited research available directly compares the

antitumor efficacy of CAR-NK and CAR-T cells. A recent study by

Egli et al. (60) compared autologous CD19-CAR-T cells with

allogeneic CD19-CAR-NK cells in vitro and in vivo. The authors

observed stronger antitumor activity with CAR-T cells. Conversely, a

report by Marin et al. suggests that allogeneic CAR-NK cells may

offer better clinical benefits for specific indolent diseases, such as low-

grade non-Hodgkin’s lymphoma (NHL) and chronic lymphocytic

leukemia (CLL) (61). These findings highlight the need for further

clinical trials to definitively understand the differences in the

antitumor efficacy between CAR-NK and CAR-T cells (Table 3).
5 Preclinical research on CAR-NK cells

Preclinical studies have yielded promising preliminary data on

the efficacy and safety of CAR-NK cell therapy, especially in the

context of hematological malignancies. To this end, the following

section provides a brief overview of the recent advancements in CAR-

NK therapy for the treatment of common hematological tumors.
5.1 Leukemia

CD33 is a promising target antigen for CAR-NK cell therapy,

being expressed on the surface of leukemia cells in over 90% of
TABLE 1 Characteristics of natural killer (NK) cells from
different sources.

Source Advantages Disadvantages

PB-NK
Mature phenotype (30)

Excellent killing
capability (23)

Poor amount (31)
Limited proliferation (30)

UCB-NK
Enhanced proliferation (32)
Reassuring security (33)

Less mature (34)

hPSCs
Rich sources (35)

Low immune risk (36)
Uncertain safety (37)

Complex differentiation (33)

NK-92
cell line

Genetic modification (38)
Nice accessibility (39)

Tumorigenicity risk (40)
Lack expression of

CD16 (41)
PB, peripheral blood; UCB, umbilical cord blood; hPSC, human pluripotent stem cells.
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patients with acute myeloid leukemia (AML). In the study by

Albinger et al. (62), lentiviral transduction was used to generate a

CD33-CAR-NK cell model derived from PB-NK cells. These CAR-

NK cells demonstrated potent in vitro and in vivo cytotoxicity

against AML cells. Similarly, another study observed a significant

reduction in tumor burden within a leukemia mouse model treated

with CD33-CAR-PB-NK cells, with no apparent side effects (63).

Building on these findings, Zhang et al. engineered CAR-NK cells

co-expressing CD33-CAR and anti-CD16 antibodies. This

approach achieved dual targeting of AML cells while also

enhancing the activity of NK cells (64). Pediatric AML frequently

exhibits high CD123 expression, making it another attractive target

for CAR-NK therapy. Caruso et al. constructed second-generation

CD123-CAR-NK cells utilizing 4–1BB co-stimulatory domains.

These CAR-NK cells displayed a superior safety profile compared

with CD123-CAR-T cells while maintaining remarkable anti-

leukemia activity in both in vitro and in vivo models (65). The

NPM1 mutation is common in AML and has also been targeted

using CAR-NK cells. Initial studies suggest promising efficacy with

NPM1–cytokine-induced memory-like (CIML) CAR-NK cells (66).

CD38 represents another potential target for AML immunotherapy.

A recent study has demonstrated that the combination of CD38-

knockout CAR-NK cells expressing an affinity optimized CD38

with all-trans retinoic acid (ATRA) enhanced the targeting ability

and the cytotoxicity of NK cells against CD38-positive mature

myeloid cells (67). Research on CAR-NK therapy for acute
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lymphoblastic leukemia (ALL) is also progressing. Studies have

explored CD5-CAR-NK cells (68) and CD7-CAR-NK cells (69) for

T-cell acute lymphoblastic leukemia (T-ALL) treatment and FLT3-

CAR-NK cells in B-cell acute lymphoblastic leukemia (B-ALL) (70).

Notably, preclinical experiments using cryopreserved and thawed

cord blood CD34+ cell-derived CAR-NK cells demonstrated potent

and specific antitumor activity against ALL cells (71). The

development of dual-targeted CAR-NK cells holds particular

promise (72), as evidenced by recent reports of CD19/CD20 dual-

targeted CAR-NK cells exhibiting enhanced cytotoxicity against

ALL cells (73).
5.2 Multiple myeloma

BCMA is a highly expressed antigen on multiple myeloma

(MM) cells and represents a promising target for CAR-NK cell

therapy (74). CS1, a glycoprotein overexpressed on the MM cell

membrane, also offers a potential therapeutic target. CAR-NK cells

specifically designed to target CS1 have demonstrated significant

antitumor efficacy in preclinical studies (75). GPRC5D, another

tumor antigen on MM cells, holds promise for CAR-NK therapy.

Yang et al. presented a GPRC5D-targeted CAR-NK product at a

recent American Society of Hematology (ASH) meeting (76). This

product exhibited potent cytotoxicity, with the efficacy maintained

even after cryopreservation and long-distance transport. Dual-

targeted CAR-NK cells offer potential advantages over single-

targeted BCMA-CAR-NK cells. For instance, BCMA/GPRC5D-

CAR-NK cells can effectively lyse BCMA-negative MM cells,

leading to improved antitumor efficacy in in vivo and ex vivo

models. This approach has been shown to prolong the survival of

mice and to reduce the risk of tumor recurrence (77). FT555, a

GPRC5D/CD38-CAR-NK cell product derived from induced

pluripotent stem cells (iPSCs), incorporates several features: a

GPRC5D-specific CAR structure; a high-affinity, non-cleavable

CD16 (hnCD16) domain for enhanced ADCC activity; an IL-15/

IL-15 receptor fusion protein (IL-15RF) for sustained cytokine

signaling; and CD38 knockout. This product has demonstrated

high and persistent killing efficiency, particularly when combined

with daratumumab (78). Limited homing of NK cells to tumor sites

can hinder the therapeutic efficacy. The co-expression of chemokine

receptor 4 (CXCR4) in BCMA-CAR-NK cells has been proposed as

a strategy to overcome this limitation, demonstrating promise in

preclinical models (79).
TABLE 3 Comparison of the characteristics of autologous chimeric
antigen receptor T (CAR-T) and allogeneic chimeric antigen receptor
natural killer (CAR-NK) cell therapies.

Autologous
CAR-T cells

Allogeneic
CAR-NK cells

Antitumor efficacy High High

Persistence Long Short

Risk of GvHD Low Low

Risk of CRS or ICANS High Low

Time and
economic costs

High Low

Off-the-shelf Low potential High potential
GvHD, graft-versus-host disease; CRS, cytokine release syndrome; ICANS, immune effector
cell-associated neurotoxicity syndrome.
TABLE 2 Characteristics of different transduction systems.

Method Characteristics References

Viral transduction

Retroviral vectors Long-term expression in dividing cells, insertional mutagenesis, and immune response (25, 33, 43, 44)

Lentiviral vectors
Lower immunogenicity and lower risk of insertional mutagenesis than retrovirus, non-

cell cycle dependent
(25, 45–47)

Non-viral transduction

mRNA electroporation
High efficacy, low cost, low risk of insertional mutagenesis and immune response,

transient expression, risk of cell death
(43, 46, 47)

Transposon
Moderate transduction rate, stable expression and low cost, risk of

insertional mutagenesis
(45, 47)
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5.3 Lymphomas

CAR-NK cell therapy has demonstrated continuous progress in

the treatment of lymphomas. Gang et al. (80) developed CD19-

CAR-CIML-NK cells. These CAR-NK cells exhibited significantly

enhanced cytotoxicity against NK-resistant B-cell lymphoma (BCL)

cells and improved the overall survival in mouse models. MHC class

I chain (MIC)-related proteins act as ligands for NKG2D, effectively

activating NK cells. Based on the NKG2D–NKG2DL interaction,

Liu et al. designed a unique soluble CAR structure for NK cells

named MS-Ig. This molecule comprises a MICA extracellular

domain (MICA-ECD) for NKG2D binding, an anti-CD20 single-

chain variable fragment (ScFv) for CD20 recognition on tumor

cells, and a human IgG Fc fragment. During co-culture with CD20-

positive lymphoma cells, the anti-CD20 ScFv binds to CD20

antigens, while MICA-ECD interacts with NKG2D on NK cells,

directly triggering the cytotoxicity of NK cells (81). Studies have

shown that the combination of anti-CD20 or anti-CD79 antibodies

with NKTR-255 (a polymer-conjugated, IL-15Ra-dependent,
recombinant human IL-15 agonist) can significantly enhance the

in vitro cytotoxicity of CD19-CAR-NK cells against Burkitt’s

lymphoma (BL) cells (82). CD70, which is predominantly

expressed on lymphocytes, has emerged as a potential target for

CAR-NK therapy (83). Given the high expression of CD70 on T-cell

lymphomas (TCLs), Rafei et al. presented a study at ASH 2023 on a

CD70-CAR-NK product for TCL treatment (84). Their findings

suggest CD70 as a viable target for CAR-NK therapy against TCLs.

Recent reports have further highlighted the excellent efficacy of

CD70-CAR-NK cells in CD19-negative BCLs (85).
6 Clinical research on CAR-NK cells

Several clinical trials are underway to evaluate the efficacy and

safety of CAR-NK cell therapy, with some demonstrating promising

initial results. Liu et al. conducted a first-in-human clinical trial of

CD19-CAR-UCB-NK cells for CD19-positive CLL or BCL in 11

patients. This trial demonstrated an encouraging overall response

(OR) rate of 73% (8/11) and a complete response (CR) rate of 64%

(7/11) with no severe side effects, suggesting favorable safety and

efficacy (55). The updated follow-up data by Marin et al. (61)

showed sustained positive outcomes, with OR rates of 100% for

low-grade NHL, 67% for CLL without transformation, and 41% for

diffuse large B-cell lymphoma (DLBCL). Notably, high CR rates

were observed in indolent diseases (mainly low-grade NHL and

CLL). This study also suggests that UCB-NK cells collected within

24 h and with low nucleated red blood cell content (≤8 × 107 cells)

may have superior clinical value. Another ongoing clinical trial is

evaluating FT596 (CD19-CAR-iPSC-NK cell therapy) for relapsed/

refractory (R/R) BCL in 20 patients (86). Early results have

indicated an OR rate exceeding 50% (9/17) after the first

treatment cycle, with sustained clinical benefit observed in five

patients who received a second cycle [four maintained CR and one

achieved a deeper partial response (PR)]. The updated data

presented at ASH 2021 included 13 patients treated with FT596

monotherapy and 19 treated with FT596 combined with rituximab.
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The trial also explored different cell doses (30 × 106, 90 × 106, 300 ×

106, and 900 × 106) and demonstrated consistent clinical efficacy

(NCT04245722). CNTY101, a CD19-CAR-iPSC-NK cell product,

achieved its first human dose in February 2023 to assess its safety

and efficacy in patients with R/R CD19-positive BCL. A case report

presented at the 2023 ASH meeting indicated initial safety and

efficacy (NCT05336409). A new PB-CAR-NK cell therapy targeting

CD19, NKX019 (NCT05020678), recently reported results at the

European Hematology Association (EHA) meeting in a trial

involving 19 patients with R/R CD19-positive BCL. In the phase I

dose-escalation study, 10 evaluable patients received doses of 1

billion or 1.5 billion CAR-NK cells. The final OR rate was 80% (8/

10), with seven patients achieving CR. Importantly, no cases of

GvHD or other serious adverse events were observed. While the

trial included five patients with ALL/CLL, the therapeutic effect in

these patients was less promising. This may be attributed to the

limited sample size or the underlying disease mechanisms. Another

product from the same company, NKX101 (NKG2D-CAR-NK,

NCT04623944), is being evaluated in a clinical trial for AML. The

phase I follow-up data presented at ASH 2023 showed a CR/CRi

(complete remission with incomplete count recovery) rate as high

as 67% (4/6). Additional ongoing clinical trials in AML are also

yielding positive outcomes (87). Trials are also underway to assess

CAR-NK cell therapy in MM. FT576, a BCMA-CAR-NK cell

therapy derived from iPSCs, demonstrated excellent safety and

tolerability in patients with R/RMM, both as a monotherapy and

in combination with daratumumab. No cases of CRS, neurotoxicity,

or GvHD were reported (88). The updated safety data, as of October

7, 2022, and presented at ASH 2022, confirmed no occurrence of

serious adverse events (NCT05182073).

A search on ClinicalTrials.gov using the keyword “CAR-NK”

identified 44 ongoing clinical trials evaluating CAR-NK cell therapy

for hematological malignancies (Table 4). The majority of these

trials are currently in phase I or II, suggesting that CAR-NK therapy

remains in the early stages of clinical investigation.
7 Current challenges

Despite the promising preclinical and clinical data on the efficacy

and safety of CAR-NK cell therapy for hematological malignancies,

several limitations need to be addressed before its widespread clinical

application. These limitations are summarized in Table 5.
7.1 Improving the targeted
antitumor efficacy

Ideally, the CAR targets should exhibit high specificity, a broad

coverage of tumor cells, and stable expression on malignant cells.

However, achieving all these characteristics simultaneously is

challenging, and few targets in clinical application fully meet these

criteria (110). To enhance the antitumor efficacy, the development of

dual- or multi-specific CARs has emerged as a promising strategy

(111). A clinical trial using CD19/CD22-CAR-T cells for refractory

ALL has demonstrated the potential of dual-CARs. All patients
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TABLE 4 Clinical trials of chimeric antigen receptor natural killer (CAR-NK) cell therapy.

NCT no. Study title Disease
NK
cell

source
Target Phase

NCT05110742
Phase I/II study of CD5 CAR engineered IL15-transduced cord blood-derived NK
cells in conjunction with lymphodepleting chemotherapy for the management of

relapsed/refractory hematological malignances
T-cell malignances UCB CD5

Phase 1/
phase 2

NCT05645601 CAR-NK targeted CD19 for R/R B-cell malignancies R/R B-cell malignancies PB CD19 Phase 1

NCT04623944 NKX101, intravenous allogeneic CAR NK cells, in adults with AML or MDS R/R AML/MDS PB NKG2D Phase 1

NCT06045091
To evaluate the safety and efficacy of human BCMA targeted CAR-NK cells

injection for subjects with R/R MM or PCL
R/R MM/plasma
cell leukemia

Unknown BCMA
Early_Phase

1

NCT02742727 CAR-pNK cell immunotherapy in CD7 positive leukemia and lymphoma
CD7-positive leukemia

and lymphoma
NK-92 CD7

Phase
1/phase2

NCT05182073 FT576 in subjects with multiple myeloma MM iPSC BCMA Phase 1

NCT05574608
Allogenic CD123-CAR-NK cells in the treatment of refractory/relapsed acute

myeloid leukemia
R/R AML PB CD123

Early_Phase
1

NCT06206902 F01 in the treatment of relapsed/refractory non-Hodgkin’s lymphoma B-cell NHL Unknown CD19 Phase 1

NCT06006403
Safety and efficacy of CD123-targeted CAR-NK for relapsed/refractory acute

myeloid leukemia or blastic plasmacytoid dendritic cell neoplasm

R/R AML/blastic
plasmacytoid dendritic
cell neoplasm (BPDCN)

PB CD123
Phase

1/phase2

NCT03824964
Study of anti-CD19/CD22 CAR NK cells in relapsed and refractory B

cell lymphoma
Refractory BCL Unknown

CD19,
CD22

Early_Phase
1

NCT03690310 Study of anti-CD19 CAR NK cells in relapsed and refractory B cell lymphoma Refractory BCL Unknown CD19
Early_Phase

1

NCT05654038
A study of universal CD19-targeted UCAR-NK cells combined with HSCT for B

cell hematologic malignancies
B-Cell Lymphoblastic
Leukemia/Lymphoma

hPSC CD19
Phase 1/
phase 2

NCT05667155
Clinical study of cord blood-derived CAR NK cells targeting CD19/CD70 in

refractory/relapsed B-cell non-Hodgkin lymphoma
B-cell NHL UCB

CD19,
CD70

Phase 1

NCT03692767 Study of anti-CD22 CAR NK cells in relapsed and refractory B cell lymphoma Refractory BCL Unknown CD22
Early_Phase

1

NCT02944162 CAR-pNK cell immunotherapy for relapsed/refractory CD33+ AML R/R CD33+ AML NK-92 CD33
Phase 1/
phase 2

NCT04887012
Clinical study of HLA haploidentical CAR-NK cells targeting CD19 in the

treatment of refractory/relapsed B-cell NHL
B-cell NHL Unknown CD19 Phase 1

NCT05652530 Clinical study of the safety and efficacy of BCMA CAR-NK R/R MM Unknown BCMA
Early_Phase

1

NCT04639739 Anti-CD19 CAR NK cell therapy for R/R non-Hodgkin lymphoma R/R B-cell NHL Unknown CD19
Early_Phase

1

NCT03056339
Umbilical & cord blood (CB) derived CAR-engineered NK cells for B

lymphoid malignancies
ALL/CLL/NHL UCB CD19

Phase 1/
phase 2

NCT05247957
NKG2D CAR-NK cell therapy in patients with relapsed or refractory acute

myeloid leukemia
R/R AML UCB NKG2D NA

NCT05739227
Safety and efficacy of allogenic CD19-CAR-NK cells in treatmenting r/r B-cell

hematologic malignancies
ALL/BCL/CLL Unknown CD19

Early_Phase
1

NCT03579927
CAR.CD19-CD28-zeta-2A-iCasp9-IL15-transduced cord blood NK cells, high-
dose chemotherapy, and stem cell transplant in treating participants with B-

cell lymphoma
B-cell lymphoma UCB CD19

Phase 1/
phase 2

NCT05008536
Anti-BCMA CAR-NK cell therapy for the relapsed or refractory

multiple myeloma
Refractory MM UCB BCMA

Early_Phase
1

NCT05092451
Phase I/II study of CAR.70-engineered IL15-transduced cord blood-derived NK
cells in conjunction with lymphodepleting chemotherapy for the management of

relapse/refractory hematological malignances
BCL/MDS/AML UCB CD70

Phase 1/
phase 2

(Continued)
F
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achieved complete remission with no minimal residual disease (MRD),

highlighting their clinical efficacy (89). Similarly, bispecific CAR-NK

cells targeting both CD19 and BCMA for B-ALL and MM have shown

potent cytotoxicity in vitro, warranting further investigation of their in

vivo efficacy (90). Moreover, triple-modified NK cells incorporating a

CD19-targeting CAR, hnCD16, and an IL-15/IL-15 receptor fusion

protein (IL-15RF) have been designed, potentially mitigating tumor

escape to a greater extent (91). Ensuring safety is paramount in CAR-
Frontiers in Immunology 08
NK cell therapy. The CAR design should not only accurately target

tumors but also minimize the risk of “on-target, off-tumor” toxicity

against normal tissues expressing the target antigen. Studies in various

tumor models have demonstrated the feasibility of utilizing CARs with

lower affinity for tumor tissues expressing high levels of TAA. This

approach ensures that only those tumor cells with a sufficiently high

antigen density can activate the CAR structure (57). Furthermore,

incorporating suicide switches into CAR-NK cells offers an additional
TABLE 4 Continued

NCT no. Study title Disease
NK
cell

source
Target Phase

NCT05487651 Allogeneic NK T-cells expressing CD19 specific CAR in B-cell malignancies
NHL/BCL/DLBCL/B-

cell leukemia
PB CD19 Phase 1

NCT03940833 Clinical research of adoptive BCMA CAR-NK cells on relapse/refractory MM MM NK-92 BCMA
Phase 1/
phase 2

NCT05570188
Anti-CD19 universal CAR-NK cells therapy combined with HSCT for B cell

hematologic malignancies
BCL/B-cell leukemia Unknown CD19

Phase 1/
phase 2

NCT06325748
SENTI-202: Off-the-shelf logic gated CAR NK cell therapy in adults with CD33

and/or FLT3 blood cancers including AML/MDS
CD33 and/or FLT3

AML/MDS
PB

CD33/
FLT3

Phase 1

NCT05472558
Clinical study of cord blood-derived CAR-NK cells targeting CD19 in the

treatment of refractory/relapsed B-cell NHL
R/R B-cell NHL UCB CD19 Phase 1

NCT05008575
Anti-CD33 CAR NK cells in the treatment of relapsed/refractory acute

myeloid leukemia
R/R AML UCB CD33 Phase 1

NCT04796675
Cord blood derived anti-CD19 CAR-engineered NK cells for B

lymphoid malignancies
ALL/CLL/NHL UCB CD19 Phase 1

NCT05410041
Anti-CD19 CAR-engineered NK cells in the treatment of relapsed/refractory B-

cell malignancies
B-cell malignances Unknown CD19 Phase 1

NCT06242249 Anti-BCMA CAR-NK therapy in relapsed or refractory multiple myeloma R/R MM Unknown BCMA
Phase 1/
phase 2

NCT05842707
Study of cord blood-derived CAR NK cells targeting CD19/CD70 in refractory/

relapsed B-cell non-Hodgkin lymphoma
R/R B-cell NHL UCB

CD19,
CD70

Phase 1/
phase 2

NCT05020015
A study of TAK-007 in adults with relapsed or refractory (r/r) B-cell non-

Hodgkin lymphoma (NHL)
R/R B-cell NHL UCB CD19 Phase 2

NCT05336409 A study of CNTY-101 in participants with CD19-positive B-cell malignancies
Indolent B-cell NHL/
aggressive B-cell NHL

iPSC CD19 Phase 1

NCT05020678
NKX019, intravenous allogeneic chimeric antigen receptor natural killer cells

(CAR NK), in adults with B-cell cancers
B-cell malignancies PB CD19 Phase 1

NCT04747093 Induced-T cell like NK cells for B cell malignancies B-cell malignancies Unknown CD19
Phase 1/
phase 2

NCT05563545
Anti-CD19 CAR-engineered NK cells in the treatment of relapsed/refractory

acute lymphoblastic leukemia
R/R ALL Unknown CD19 Phase 1

NCT06201247 Off-the-shelf CD123 CAR-NK for R/R AML R/R AML PB CD123
Early_Phase

1

NCT06307054 CLL-1 CAR-NK cells for relapsed/refractory AML R/R AML Unknown CLL-1 Phase 1

NCT05734898 NKG2D CAR-NK & r/rAML R/R AML Unknown NKG2D NA

NCT06027853 Natural killer (NK) cell therapy targeting CLL1 in acute myeloid leukemia AML iPSC CLL1 Phase 1

NCT05673447
The study of anti-CD19 CAR NK cells in the treatment of relapsed/refractory

diffuse large B cell lymphoma
DLBCL Unknown CD19

Early_Phase
1

f

R/R, relapsed/refractory; MDS, myelodysplastic syndromes; CLL, chronic lymphocytic leukemia; MM, multiple myeloma; NHL, non-Hodgkin’s lymphoma; ALL, acute lymphoblastic leukemia;
AML, acute myeloid leukemia; DLBCL, diffuse large B-cell lymphoma; UCB, umbilical cord blood; PB, peripheral blood; iPSC, induced pluripotent stem cell; hPSC, human pluripotent stem cell;
BCMA, B-cell maturation antigen.
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safety measure (92). The inducible caspase 9 (iCasp9) system has been

successfully employed for this purpose, demonstrating a favorable

safety profile (55, 93).
7.2 Extending the persistence of CAR-
NK cells

Unlike T cells, which can differentiate into memory cells and

maintain long-term antitumor efficacy (110), NK cells have a shorter

life span in humans (approximately 2 weeks in blood) (112). This

limited life span offers some safety advantages, but also hinders the

efficacy of CAR-NK cell therapy (103). Various strategies have been

implemented to prolong the survival of NK cells in vivo.

Lymphodepleting conditioning regimens prior to adoptive cell

transfer can mitigate the risk of rejection and significantly improve

the efficacy of cell therapy through various mechanisms (94).

Therefore, the combination of cyclophosphamide and fludarabine is

often used as pretreatment before clinical treatment with allogeneic

CAR-NK cells, whereas autologous NK cells do not necessitate

pretreatment (113). Multiple infusions of CAR-NK cells have also

been proposed to potentially safeguard the treatment outcomes (95).

However, the inherent heterogeneity of the natural immune system

requires close monitoring (114) and assessment of host immune

rejection against allogeneic NK cells to prevent diminished efficacy

(115, 116). Exogenous cytokine support, particularly IL-2 and IL-15,

canmaintain the proliferation and activity ofNK cells in vivo (97, 117).

However, systemic high-dose injections could induce additional safety

risks, as exemplifiedby the association betweenhigh-dose IL-2 therapy

and vascular leak syndrome (118). Liu et al. (32, 55) addressed these

limitations by constructing CD19-CAR (iC9/CAR.19/IL-15)-CB-NK

cells that ectopically secrete IL-15 and express suicide switches. These

cells exhibited both longer persistence and stronger antitumor efficacy
Frontiers in Immunology 09
in vitro and in vivo, persisting at low levels for at least 12 months in

patients. Building on this concept, Daher et al. (96) constructedCISH-

knockout (KO)/IL-15 CAR-NK cells using CRISPR-Cas9 to knock

down IL-15-associated negative immune checkpoint genes (CISH

genes). These CISH-KO/IL-15 CAR-NK cells exhibited enhanced

survival and antitumor activity compared with the control IL-15

CAR-NK cells. The induction of immune memory in NK cells

represents another approach to improve their activity (119). NK cells

can acquire memory-like properties upon stimulation with cytokines,

particularly IL-12, IL-15, and IL-18. Therefore, the application of

cytokines to induce the generation of memory-like NK cells might

prolong their in vivo survival (66, 98). Interestingly, some studies have

suggested that activating CAR (aCAR) NK cells can express and

acquire trogocytic antigens (TROGs) through trogocytosis, leading

to fratricide (killing of other CAR-NK cells). However, co-expressing

an inhibitory CAR (iCAR) on these aCAR-NK cells can restrain their

killing function, thereby reducing the risk of fratricide. This

phenomenon suggests that CARs expressing both aCAR and iCAR

(AI-CARs) could not only minimize NK cell depletion but also

improve the durability of CAR-NK cell therapy in vivo (99, 100).
7.3 Overcoming the inhibitions of the
tumor microenvironment

The tumor microenvironment (TME) presents a significant

challenge for effective immune cell killing. Cancer-associated

fibroblasts (CAFs), a major component of the tumor stroma, are

well-established contributors to tumor progression (120). The

targeting of CAFs represents a potential strategy to counteract the

negative influence of the TME. Sakemura et al. (101) explored this

concept by designing BCMA/CAF-CAR-T cells. Studies using human

MM cells and mouse models demonstrated that this dual-targeted

CAR structure could reverse CAR-T cell dysfunction and enhance the

antitumor efficacy. In addition, manipulation of the expansion

conditions of CAR-NK cells might mitigate the suppressive effects of

theTME, as has been tentativelydemonstratedwithCAR-Tcells (102).

The TME harbors multiple immunosuppressive factors, including

hypoxia, transforming growth factor beta (TGF-b), PGE-2, and
extracellular metabolites such as lactate and adenosine, which can

restrain immune cell activity (121). The modification of NK cells to

overcome these suppressive factors presents a promising approach.

Knockdownof theTGF-b receptor II (TGF-bRII) onNKcells has been

shown topartiallyovercome thenegative influenceof theTMEwithout

compromising their anti-leukemia efficacy (103). Engineering CARs

that express negative TGF-b receptors and combining treatment with

TGF-b receptor inhibitors are also being explored (104, 105). Tumor

cells can also upregulate the expression of ligands for immune cell

inhibitory receptors, exploiting the negative feedback mechanisms of

the immune system to evade immune clearance. Strategies to address

this challenge include the knockdownof relevant receptors onNKcells

(such as NKG2A) or combining therapy with specific inhibitory

checkpoint antibodies to improve the antitumor effects (106–108).

Furthermore, the design of CAR structures that target inhibitory

checkpoints represents a promising approach (109), as initially

demonstrated in solid tumors (122).
TABLE 5 Limitations of and potential solutions for chimeric antigen
receptor natural killer (CAR-NK) cell therapy.

Limitations Solutions References

Unsatisfactory targeted
antitumor efficacy

Dual- or multi-specific
target CARs

Specially modified NK cells
CARs with different affinity

Suicide switches

(89, 90)
(91)
(57)

(55, 92, 93)

Short persistence of CAR-
NK cells

Lymphodepleting
conditioning

Multiple infusions of CAR-
NK cells

Exogenous cytokine support
Application of CIML
Design of AI-CARs

(94)
(95)

(32, 55, 96, 97)
(66, 98)
(99, 100)

Inhibition of the
tumor microenvironment

Targeting at components of
the TME

Manipulating the expansion
conditions

Modifying CAR-NK cells
Targeting at specific
inhibitory checkpoint

(101)
(102)

(103–105)
(106–109)
CIML, cytokine-induced memory-like; AI-CARs, CARs expressing both activating and
inhibitory CARs; TME, tumor microenvironment.
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8 Conclusions

NK cells offer a novel avenue for cancer immunotherapy, and

the development of CAR-NK cell therapy holds significant promise

for the treatment of hematological malignancies. Preclinical studies

suggest that CAR-NK cell therapy might address some of the

limitations associated with CAR-T cell therapy while achieving

comparable clinical efficacy. While NK cells and CAR-NK

immunotherapy have inherent limitations, researchers are actively

developing strategies to improve their treatment efficacy. Early

studies have yielded promising results, paving the way for future

clinical applications of CAR-NK therapy.
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