
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Veronica Schmitz,
Oswaldo Cruz Foundation (Fiocruz), Brazil

REVIEWED BY

Debora Decote-Ricardo,
Federal Rural University of Rio de Janeiro,
Brazil
Sahil Mahajan,
The Ohio State University, United States

*CORRESPONDENCE

Hao Luo

1018937628@qq.com

†These authors have contributed equally to
this work

RECEIVED 08 April 2024

ACCEPTED 20 May 2024
PUBLISHED 31 May 2024

CITATION

Wang J, Cao H, Yang H, Wang N, Weng Y and
Luo H (2024) The function of CD36 in
Mycobacterium tuberculosis infection.
Front. Immunol. 15:1413947.
doi: 10.3389/fimmu.2024.1413947

COPYRIGHT

© 2024 Wang, Cao, Yang, Wang, Weng and
Luo. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 31 May 2024

DOI 10.3389/fimmu.2024.1413947
The function of CD36
in Mycobacterium
tuberculosis infection
Jianjun Wang1†, Hui Cao2†, Hongwei Yang3†, Nan Wang1,
Yiwei Weng4 and Hao Luo5*

1Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, China,
2Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention,
Nanjing, Jiangsu, China, 3Department of Clinical Laboratory, Suzhou BOE Hospital, Suzhou, Jiangsu, China,
4Department of Clinical Laboratory, The Fourth People’s Hospital of Kunshan, Suzhou, Jiangsu, China,
5Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, China
CD36 is a scavenger receptor that has been reported to function as a signaling

receptor that responds to pathogen-associated molecular patterns (PAMPs) and

damage-associated molecular patterns (DAMPs) and could integrate metabolic

pathways and cell signaling through its dual functions. Thereby influencing

activation to regulate the immune response and immune cell differentiation.

Recent studies have revealed that CD36 plays critical roles in the process of lipid

metabolism, inflammatory response and immune process caused by

Mycobacterium tuberculosis infection. This review will comprehensively

investigate CD36’s functions in lipid uptake and processing, inflammatory

response, immune response and therapeutic targets and biomarkers in the

infection process of M. tuberculosis. The study also raised outstanding issues in

this field to designate future directions.
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1 Introduction

Mycobacterium tuberculosis (M. tuberculosis) as an intracellular pathogen is a threat to

global public health and infects approximately a third of the world’s population and it

causes approximately 2 million deaths every year around the world (1, 2). The pathogenic

mycobacteria has the potential to adapt to the hostile intracellular environment of

macrophages and make it latent to infect cells in the surrounding environment (3–5).

M. tuberculosis involves host trafficking pathways by regulating maturation pathways such

as phagosomal/endosomal to generate a protected niche for itself, the mycobacterial

phagosome (6–8). Furthermore, M. Tuberculosis regulates the specific metabolic

pathways to subvert the host signaling response, thus regulating the host immune

response and enabling access to nutrients, which ultimately favor infection establishment
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1413947/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1413947/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1413947/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1413947&domain=pdf&date_stamp=2024-05-31
mailto:1018937628@qq.com
https://doi.org/10.3389/fimmu.2024.1413947
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1413947
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2024.1413947
(9, 10). The macrophages are critical immune cells in M.

tuberculosis infection and the foam-like macrophages have been

found in the granulomatous structures in both M. tuberculosis-

infected human disease and animal models (11–13). The foam of

macrophages in an M. tuberculosis-infected environment reflected

the disruption of intracellular lipid regulatory mechanisms through

the observation of infected pathological conditions. Numerous

studies have shown that during M. tuberculosis infection, newly

generated lipid bodies are often architecturally unique cytoplasmic

organelles involved in the manufacture of lipid mediators with

immunomodulatory effects (14, 15). In addition, the induction and

targeting of liposomes by M. tuberculosis may provide an escape

mechanism during infection due to the downregulation of the

immune response and/or nutrient uptake in macrophages,

promoting the survival and replication in host cells (16, 17).

Interestingly, the scavenger receptor CD36 is closely related to the

formation of foam-like macrophages and their lipid metabolism

during the infection of M. tuberculosis.

Cell surface glycoprotein CD36 is a scavenger receptor present

in various cells and functions in various roles in lipid metabolism,

mediating lipid acquisition, immune recognition, inflammation,

molecular adhesion and apoptosis (18–20). It has associations

with angiogenesis, atherothrombotic disease, metabolic disorders,

diabetes, obesity and other conditions. By sensing a range of

microbial components and endogenous ligands, it may operate as

a pattern recognition receptor mediating innate immune or

inflammatory responses to a variety of pathogens (21, 22).

Researches have shown that CD36 may also function as a co-

receptor with the Toll-like receptor (TLR) 2/6 complex, which is

involved in innate sensing, lipoteichoic acid binding, and

Staphylococcus aureus phagocytic clearance (23, 24). Additionally,

a growing body of research has revealed that patients with active
Frontiers in Immunology 02
tuberculosis (ATB) exhibit reversible changes in CD36 on their

peripheral macrophages/monocytes (25). All in all, the significant

role of CD36 is to recognize the ligands from the pathogen or host

itself to induce the appropriate immune responses to protect the

host itself and eliminate the pathogens.

However, the tangible molecular mechanisms and signaling

pathways which regulate lipid body biogenesis during M.

tuberculosis infection and the contribution it has to tuberculosis’

pathophysiology are not clear. This study will delve into and review

the functions and specific signaling mechanisms of CD36 in M.

tuberculosis, providing comprehensive materials for the study of

CD36 in M. tuberculosis infection
2 The biological functions of
CD36 molecular

As a 55 kDa heavily glycosylated protein, the membrane

glycoprotein CD36 has two distinct structural parts including

extracellular ectodomain and cytosolic domain respectively (26).

For a specific collection of adaptor proteins, the extracellular

ectodomain serves as a docking location where the signal is

relayed for functional outcomes during the signaling pathway

initiated at the cell surface via CD36-ligand contact (27).

Transmembrane sections link the protein’s ectodomain and

cytosolic (C- or N-terminal) portions (Figure 1). Following

ligand-receptor contact, CD36 is internalized with or without

ligand and the reaction is amplified by the internalized CD36-

ligand complex (28).

Scavenger receptors have the special ability to collect cellular

waste or dead/senescent cells which are then disposed of in the
FIGURE 1

Schematic diagram of CD36 structure and its roles in lipid metabolism process. The structure and related functional regions of CD36 in bilayer lipids
were displayed. Meanwhile, the pathways, related signaling pathways, and functions of CD36 in lipid metabolism have been demonstrated.
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target spleen (29). Moreover, CD36’s potential is dependent on its

ability to bind with ligands found in cells or cellular debris, as well

as how well this interaction is eliminated (30). The physiochemical

aspects of topology, charge and other characteristics of the CD36

ectodomain enable it to recognize a wide variety of ligands,

including phosphatidylserine, oxidized low-density lipoprotein

(oxiLDL), lipopolysaccharide (LPS), long-chain fatty acids

(LCFAs) and so on (31–34). CD36 surface chemistry and

ectodomain topology could also facilitate the ligands binding that

have diversified unknown origins.

CD36 could be expressed on the surface of various cell types

including monocytes, macrophages, cancer cells, endothelial cells

and platelets (35). Circulating monocytes in the blood are

transmigrated into the arterial intima and differentiated into

macrophages, but CD36 expression in macrophages is regulated

by various factors (36). In addition, multitudinous chemical

compounds such as curcumin, astaxanthin, quercitrin and

kaempferol could regulate CD36 expression through erythroid-

related factor 2 (Nrf2) and peroxisome proliferator-activated

receptor-gamma (PPAR-g) signaling pathways in macrophages

(37–39). In cancer cells, CD36 could also regulate cell

proliferation, glycolysis, and Epithelial-Mesenchymal Transition

(EMT) through the MAPK, AKT, and STAT3 signaling pathways

to determine the physiological and pathological processes of cells

(Figure 1) (40–42). In addition, to reduce the parasite burden, a

combination of CD36 ligands generates pro-inflammatory

cytokines; however, this improper cytokine production leads to

pathogenic alterations (43). Undoubtedly, CD36 and its

downstream signaling may offer useful resources for developing

appropriate adjuvant treatments that aid in the recovery from

pathology linked to the disease (44). Furthermore, specific

downstream signaling can be triggered by a suitable chemical

substance acting as a ligand which will generate an appropriate

immune response to eradicate the infection (45).

Macrophages have high expression of CD36 which is intimately

associated with their multitude of functions. Because monocyte/

macrophage CD36 may bind to and increase oxLDL endocytosis as

well as take part in the generation of foam cells, it plays a crucial role

in the development of atherosclerotic lesions (46). Macrophages

could bind and ingest ox-LDL with the assistance of CD36, and the

internalized ox-LDL activates PPAR-g to upregulate CD36

expression, which facilitates the uptake of ox-LDL further (35, 47,

48). Foam cells and the accumulation of esterified cholesterol in

macrophages are caused by elevated ox-LDL (49). Additionally, the

uptake of ox-LDL by CD36 sets off cytokine production and

immune cell recruitment to the artery intima, which leads to

arterial narrowing and the advancement of atherosclerotic

vascular disease (50). A significant amount of foam cells are

formed in vitro and in vivo due to CD36 and blocking CD36

expression or downstream signaling prevents animals from

absorbing ox-LDL which limits the progression of experimental

atherosclerosis in mice. A link between carotid atherosclerosis and

the plasma levels of soluble CD36 (sCD36) was discovered by

Handberg et al. (51).

The function of CD36 is to identify ligands from the pathogen

or the host, at which point it triggers the right innate immune
Frontiers in Immunology 03
response that kills the infection and produces inflammatory

cytokines (52). In the immune process initiated by pathogenic

infections, the recognition of TLR2 agonists is affected by some

accessory receptors, such as CD36, CD11b/CD18 and CD14 (53,

54). Moreover, the identification of co-receptors that promote TLR

functions reveals that TLRs combine with other cell surface

molecules to link PAMP recognition to the initiation of

inflammatory responses (55). Hoebe et al. demonstrated that

TLR2/TLR6 heterodimers require CD36 and the heterotypic

binding of TLR2/6 to CD36 is not pre-formed, but ligand-

induced, revealing the heterotypic association of TLR2 (56, 57).

Moreover, deposition of the altered self-components oxLDL and

amyloid-beta induce inflammatory response through CD36-

triggered the heterodimer activation of TLR4-TLR6 in

Alzheimer’s disease and atherosclerosis, indicating a novel model

of TLR heterodimerization dominated by co-receptor signaling

factors (58). These studies indicated that the function of CD36

cannot be achieved without the coordination of the TLR

receptor family.

Recent research on CD36’s function in infectious disorders has

shown that it plays a pathological role in infections with viruses,

tuberculosis, pneumonia and Staphylococcus aureus. In influenza

virus-mediated pneumonia, the expression of CD36 was

downregulated and since the host is more susceptible to infection

when CD36 is absent, CD36-mediated phagocytosis is required to

eliminate germs (59). Moreover, the residues of the cytoplasmic

domain (Y463 and C464) were critical and involved in TLR2/6

signaling (60). Meanwhile, CD36-deficient macrophages failed to

eliminate the bacteria and decreased the secretion of TNF main

components revealed that the cytoplasmic domain of the CD36

receptor is required for the phagocytosis (60). Additional findings

revealed that CD36 expression may be associated with HIV

infections, influenza and hepatitis virus (61, 62). HBV replication

is facilitated by the store-operated Ca2+ channel, which is mediated

by the Src-kinase-mediated signaling pathway and is mediated by

CD36 (63). The Nef protein of HIV downregulated CD36 which

impacted the infected cells’ ability to be phagocytosed and added to

the host’s pathology by pointing to the TNF-a and co-interactions

of the infected cells (64).

Currently, an increasing number of studies have shown

abnormal expression of CD36 in Mycobacterium infection, but

the function of CD36 in Mycobacterium infection is still

insufficient and ambiguous. Fink et al. discovered via gene

sequencing that CD36 is down-regulated in zebrafish infected

with M. marinum; conversely, the knockdown of CD36 defective

zebrafish larvae resulted in a higher bacterial burden during such

infection (65). Bazzi et al. reported downregulating CD36

expression, reducing CCL2 spontaneous release and increasing

CCL5, CXCL8/IL-8, IL-6 and TNF-a spontaneous secretion in M.

obuense infected macrophages (66). Park et al. found that

macrophages expressed CD14, CD36 and TLR2, and function the

most active responses against M. avium subsp. paratuberculosis

(MAP) infection, which includes the expression of proinflammatory

cytokines and chemokines such as CCL4, CCL3, IL-1b, IL-8, and

CCL20 (67). CD36 plays an indispensable role in macrophage

resistance against Mycobacterium infection, and the abnormality
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of CD36 is closely related to the inflammatory response of cells and

the phagocytosis of tuberculosis.
3 The function of CD36 in
M. tuberculosis infection

After infecting host cells,M. tuberculosis generated intracellular

phagosome and fused with lysosomes, then the components of M.

tuberculosis were presented to immune cells through vesicles.

Immune cells regulate host cells to produce immunosuppressive

responses by uptake of liposomes of M. tuberculosis in vesicles

through CD36 (Figure 2). CD36 has been shown to promote lipid

uptake in cells which may serve as a source of carbon to support the

cell’s development (68). CD36 acts as a transporter of long chain

fatty acid and function its effect on glycolysis and the trichloroacetic

acid (TCA) cycle in M. tuberculosis infection (69). During this

infection, this pathogen promotes the expression of CD36 and make

host cells take up more long-chain fatty acids to produced sufficient

ATP through glycolysis or the tricarboxylic acid cycle, allowing it to

lurk in host cells for a long time and infect surrounding normal cells

(70). M1 macrophages require rapid generation of ATP to activate

inflammation through glycolysis via the inhibition of OXPHOS and

TCA cycle in mitochondria (71, 72). These findings provided a

novel target to treat the infection of M. tuberculosis.

Pepino et al. found macrophages pretreated with surfactant

lipids increased the CD36 expression and induced the translocation

of CD36 from the cytosol to the membrane (27). According to

Dodd et al., surfactant lipids and/or surfactant protein A (SP-A) can

cause preformed CD36 to be redistributed in the cell membrane,

which can increase the production of CD36 (68). Advanced
Frontiers in Immunology 04
glycation end products (AGEs), which are also CD36 ligands, and

oxiLDL are produced as a result of oxidative stress (73). The

expression of CD36 in cells involved in the inflammation and

immune response is dependent on the recognition and the uptake

of lipid and metabolic components of M. tuberculosis (74, 75).

Furthermore, CD36 plays a role in the uptake of surfactant lipids by

human macrophages the CD36 knockdown decreases the uptake of

dipalmitoylphosphatidylcholine (DPPC) and pre-infection

exposure of human macrophages to surfactant lipids promotes M.

tuberculosis growth in a manner that is CD36-dependent. These

findings suggest that CD36 mediates the uptake of surfactant lipids

by human macrophages, a function thatM. tuberculosis exploits for

growth. WhenM. tuberculosis is phagocytosed by macrophages, the

immune system produces cytokines that target the phagocytes by

secreting antimicrobial compounds, attracting PMNs to the

infection site and producing granulomas (76). Oxidative stress is

produced by granulomas made of immobilized M. tuberculosis and

infiltrating macrophages to destroy the immobilized bacteria (77).

Hematopoietic stem cells (HSCs) also require CD36-mediated

free fatty acid (FFA) uptake to compensate for metabolic

requirements during acute infections (78). Once the components

or metabolites of M. tuberculosis circulate in the peripheral blood,

HSCs rapidly produce a large number of monocytes, T

lymphocytes, and dendritic cells, promoting the transformation of

monocytes into macrophages to cope withM. tuberculosis infection

(79). Mistry et al. revealed the significant roles of CD36 in HSC

metabolism in response to acute infections, which is impaired if

CD36-mediated FFA uptake is absent and leads to increased

mortality in HSCs (80). Meanwhile, M. tuberculosis not only

could alter hematopoiesis by directly infecting the bone marrow

niche harboring HSC, but also induce systemic cytokines such as
FIGURE 2

The functions of CD36 in the process of M. tuberculosis infection. After being engulfed by host cells and lysosomal lysis, antigens of M. tuberculosis
are presented to immune cells through vesicles, inhibiting immune cell functions such as inhibiting inflammation, immune function, and promoting
viability of M. tuberculosis.
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TPO, SCF, IL-3, IL-6, TGF-b, MIP-1a and so on during chronic

infection (81, 82).

However, monocytes and macrophages are crucial in the

formation of granuloma.

Castaño et al. reported that monocytes infected by M.

tuberculosis produced fewer granules and decreased the number

of cytoplasmic projections and the expression of CD36, CD86 and

CD68 compared to monocytes differentiated in the absence of

mycobacteria (25). Monocytes treated with recombinant IL-1b

prevented the increased expression of HLA-II, CD86 and CD36

observed with differentiation into macrophages (25). Moreover,

infected monocytes suppressed the secretion of IL-6, TNF-a, IL-10,

IL-12p70, but promoted the expression of IL-1b in response to LPS

and purified protein M. tuberculosis-derived (25). According to a

recent work by Baranova et al., CD36 mediates signaling triggered

by gram-negative bacteria and LPS via a JNK-mediated signaling

pathway in a manner that is TLR2/4-independent and serves as a

phagocytic receptor for a range of bacteria (83). Furthermore,

Józefowski et al. demonstrated that an antibody-neutralizing

scavenger receptor SR-PSOX/CXCL16 partially reversed the

augmentation of LPS-induced TNF-a generation by dextran

sulphate, whereas an antibody-neutralizing CD36 reversed the

stimulatory effect of deacylated ManLAM (84). According to this

study, NO generation is regulated by unidentified scavenger

receptors, whereas CD36 regulates the activity of ManLAM and

its deacylated form that results in TNF-a release in LPS-stimulated

J774 cells and peritoneal murine macrophages (84). Accordingly,

M. fortuitum which was unable to synthesize ManLAM was not

bound by murine CD36 expressed in HEK293 cells, indicating that

CD36 is required for the uptake of mycobacteria (85). Depending

on the route of infection, CD36 may have distinct effects on

interactions between mycobacteria and distinct populations of

macrophages that mycobacteria first encounter in vivo. Alemán

et al. found that the phagocytosis of M. tuberculosis-induced

neutrophils by immature dendritic cells (iDCs) leads to

lymphoproliferation, which is significantly reduced by blocking

CD36 and not DC-SIGN on iDCs (86). However, Hedlund et al.

revealed that dendritic cells (DC) from M. tuberculosis-induced

apoptotic neutrophils contained almost all stimulatory capacity,

and the cell contact-dependent activation required binding of

CD11b/CD18 to the DC via DC-SIGN but did not involve CD36

indicating that the cell interaction is crucial for DC activation (87).

Of course, these studies reflected differences in CD36 expression

and other M. tuberculosis sensing receptors, determining

macrophage responses to M. tuberculosis.

CD36 is also a lysosomal membrane protein and plays critical

roles in lysosomal enzyme trafficking and uptake of pathogens,

respectively and generally in host cell defences against intracellular

pathogens (88). LmpB is a functional homologue of CD36 and

could specifically mediate the uptake of mycobacteria and lysosome

biogenesis (89). This evidence indicated the functions of LmpA and

LmpB as ancestors of the family of LIMP-2 and CD36, in lysosome

biogenesis and host cell defence (89). Almeida et al. revealed that

the synergistic interactions between CD36 and TLR2 are

responsible for the altered lipid metabolism of host cells caused

by infection. This data showed that CD36-TLR2 cooperation and
Frontiers in Immunology 05
signaling compartmentalization inside rafts, via PPAR-g dependent
and NF-kb independent pathways, reroute host response signaling,

thereby promoting lipid accumulation and down-regulating the

response of BCG-infected macrophages (90) (80). BCG induced

CD36 expression and CD36’s roles were further validated by the

inhibition of BCG-induced lipid body formation in vitro and in vivo

in macrophages from CD36 deficient animals. Hawkes et al. showed

CD36-/- mice showed decreased levels of inflammatory factors, the

density of granuloma and the burden of M. tuberculosis in the

spleen and liver during M. tuberculosis infection (91). The viable

bacteria in macrophages from CD36-/- mice and the growth of M.

tuberculosis were decreased significantly (91). These results fully

demonstrated that CD36 regulated cellular lipid uptake and

metabolism through various signaling pathways containing TLR

receptors, PPAR-g and NF-kb pathways, as well as eliminating

intracellular mycobacteria through lysosomes and endocytosis.

In summary, after infection with M. tuberculosis, CD36

protein could induce the transformation of mononuclear cell

into macrophages, polarization of M2 macrophages, promotion

of cytokine secretion, inhibition of macrophage migration and T

cell activation, resulting in inflammatory response and specific

cellular immune suppression (Figure 3). Preliminary studies at

the cellular and animal model levels have shown the functional

role of CD36 in the immune response to tuberculosis infection,

but the specific molecular mechanisms still need to be

further investigated.
4 The potential function of CD36 in
the treatment of tuberculosis

Based on the diverse immune regulatory functions of CD36 in

M. tuberculosis infection and its ability to regulate pathogen growth,

CD36 has become a potential key target for tuberculosis treatment.

Current research on the roles of CD36 in mycobacterial infections

has demonstrated the intricate nature of interactions between

macrophages and M. tuberculosis. These studies used genetically

deficient mice to study the functions of CD36 in anti-mycobacterial

host defense, with qualitatively different findings (91, 92). Court

et al. reported that the long-term regulation of M. tuberculosis

infection is unaffected by the absence of CD36 plus SR-A (92). After

being challenged with M. bovis BCG, animals lacking CD36 alone

had lower mycobacterial loads and granulomatous reactions, as

demonstrated by Hawkes et al. (91). These findings indicated that

CD36 is a receptor that mycobacteria use to infiltrate macrophages

and demonstrated CD36’s role in cellular scenarios related to

granuloma formation, which facilitate early bacterial growth and

spread. This evidence indicates studies of CD36 in regulating the

survival and growth of intracellular mycobacteria are insufficient

and controversial which needs further research and suggests that

CD36 may be an important valuable target for controlling or

eliminating M. tuberculosis.

The hallmark of M. tuberculosis infection, foam cells, are

reduced when stem bromelain-induced macrophages (SBM)

cleaves CD36, according to research by Mahajan et al. (93). This
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https://doi.org/10.3389/fimmu.2024.1413947
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1413947
creates an environment that facilitates the increased clearance ofM.

tuberculosis and provides a mechanism for the anti-mycobacterial

activity of SBM. ManLAM might be the main CD36 ligand on the

surface of M. tuberculosis. Anti-CD36 mAb, but not anti-TLR2

mAb, counteracted the increasing effect of deacylated ManLAM on

the LPS-stimulated TNF-a generation, as reported by Baranova

et al. (83). This suggests that CD36 can independently initiate

intracellular signaling. In macrophages from immunologically

naï¨ve guinea pigs infected with M. tuberculosis, Palanisamy et al.

demonstrated an increase in CD36 and LOX1, which enhances the

uptake of oxidized host macromolecules, including OxLDL (94).

The intracellular buildup of OxLDL, the expression of CD36 and

LOX1 in macrophages, and the bacterial load were all reduced in

guinea pigs immunized with BCG prior to aerosol challenge (94).

This study demonstrated that intracellular bacilli survival and

persistence were supported by oxidative stress in guinea pigs

infected with M. tuberculosis and the possible roles of OxLDL-

loaded macrophages. This literature has presented various potential

treatments or control strategies for M. tuberculosis infection

through CD36 targets including natural compounds, ligands, etc.

More importantly, CD36 may play an important role in the

immune process of conjugated vaccines, providing a new

perspective for subsequent research.

M. tuberculosis infection triggers an immune response that

converges on formation of a granuloma, a dynamic and spatially

organized tissue structure composed of macrophages, granulocytes,

lymphocytes and fibroblasts, and provide the immune

microenvironment for M. tuberculosis infection (95). In M.

tuberculosis infected microenvironment, additional phagocytes were

recruited to the site of infection through the secretion of cytokines

and chemokines from above immune cells (96). In addition, the
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expression of CD36 is regulated at both the transcriptional and

posttranslational levels among these different cells. In monocytes,

CD36 is upregulated by PPAR-ɣ, as well as by cytokines including

CSF, IL-4, and IL-10 that are involved in differentiation toward DCs

and reparative “M2”-like phenotypes (97, 98). These findings provide

us with new ideas for treating tuberculosis infection. If the expression

of CD36 on various immune cells in granulation was inhibited, the

energy metabolism of infected cells will be reduced to decrease the

latent proliferation of M. tuberculosis. We believe that achieving the

goal of treating tuberculosis will not be far away.

5 The functions of CD36 as a
biomarker for the diagnosis
of tuberculosis

CD36, as an important signaling molecule on the cell surface, is

expressed on various cell surfaces, and CD36 has become a

diagnostic biomarker for various tumors (99, 100). CD36 also has

important potential value in the diagnosis of tuberculosis infection.

In vitro, Sánchez et al. also found that M. tuberculosis infection

decreased the expression of CD36 correlated with induction of

apoptosis indicating that the low expression of CD36 is closely

related to tuberculosis infection (101). Shkurupy et al. found CD36,

CD11 and CD29 on macrophages increased significantly due to M.

tuberculosis infection and participated in macrophages fusion

suggesting that the expression of these molecules is a constitutive

property of peritoneal (102). CD36 was up-regulated by M.

tuberculosis H37Ra infection in macrophages and suppressed in

exosomes from H37Ra-infected macrophages indicating that CD36

could be a potential biomarker associated with TB infection (103).
FIGURE 3

The lipid regulatory function of CD36 on immune cells in peripheral blood cells. CD36 promotes the transformation of mononuclear cells into
macrophages during lipid metabolism, M2 polarization of macrophages, inhibition of macrophage migration, promotion of immune cell activation
and secretion of cytokines, inhibition of T cell activation, and other functions.
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Currently, in vivo, numerous samples of evidence indicate that

CD36 also demonstrates its potential as a diagnostic biomarker

(Figure 4). Single nucleotide polymorphisms (SNP) in CD36

indicated the risk of pulmonary tuberculosis is decreased in SNPs

due to the reduced ability of CD36 to recognize the M. tuberculosis

pattern recognition molecules indicated CD36 as important

receptors in response to PTB (104). There is evidence indicating

that TGF-E down-regulated CD36 expression and the upexpression

of TGF-E existing may be responsible for the downexpression and

decreased percentage of CD36+ monocytes in TB patients (105,

106). The reduction in CD36+ monocytes suggests that TB patients’

monocytes and macrophages would be less able to identify and

eliminate apoptotic cells which would cause the cells to become late

necrotic and promote the spread of germs (106). In patients with

various clinical manifestations of tuberculosis, Sánchez et al. had

previously shown an increased frequency of CD14+ monocytes

along with decreased expression of CD36 and HLA-DR, indicating

that immature cells were circulating during active TB (107). Flow

cytometry was used to evaluate blood mononuclear cells from TB

patients with varying clinical phases for the markers CD36, CD14,

CD40, CD163 and CD203. However, CD36 and CD14 were found

to be reduced in TB patients (107). Zhang et al. found serum

exosomal protein CD36 decreased significantly in active TB (ATB)

patients, and CD36 was downexpressed in peripheral blood

mononuclear cells (PBMCs) of ATB patients through the

comprehensive proteomics analysis (108). Similarly, among LTBI

individuals with coronary artery disease (CAD), CD36 was down

expressed across all monocyte subsets suggesting that the lower

expression of CD36 could engender a negative feedback mechanism

to counterbalance ongoing inflammation (109).

A large amount of clinical trial data indicated that CD36 is

downregulated in the peripheral blood of tuberculosis patients,
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which is beyond doubt. The abnormal expression of CD36 is only

analyzed at the cellular level and peripheral blood in vivo, and it is still

far from becoming a diagnostic kit for clinical application. At least the

following issues need to be addressed: (1) The abnormal expression of

CD36 is specific to M. tuberculosis infection and is not affected by

other diseases; (2) The sensitivity and standards of CD36 for detecting

M. tuberculosis infection need to be studied; (3) The commercialized

CD36 reagent kit needs further optimization. Despite facing

numerous challenges, researches on the correlation between CD36

andM. tuberculosis infection have laid an experimental and theoretical

foundation for CD36 to become a diagnostic marker of tuberculosis.

6 Future prospects

At present, the scavenger receptor CD36 plays an important

role in tumors and lipid metabolism and is a critical hotspot in these

fields. However, in recent years, researchers found that CD36 also

acted as a significant influence on the recognition of ligands from

pathogens especially inM. tuberculosis and host cells. CD36 mainly

involves the lipid metabolism, inflammatory response, immune

response, vaccine immunity, and diagnostic markers of hosts

infected with M. tuberculosis. The functions of CD36 in M.

tuberculosis infection has gradually become clear, and numerous

studies are conducting animal and drug experiments targeting

CD36, hoping to therapy tuberculosis. However, there have been

few significant achievements so far, and clinical trials are far from

being conducted. At the same time, the clinical diagnosis of

tuberculosis infection by CD36 is still in the initial exploration

stage both in vivo and in vitro, and requires a large amount of

clinical testing to confirm its diagnostic value.

This study comprehensively reviews the relevant roles and

functions of CD36 in tuberculosis infection, providing a research
FIGURE 4

The diagnostic application of CD36 in microbial infections. After bacterial, viral and fungal infection, they regulate the specific expression of CD36
protein in host cells, making CD36 a marker for diagnosing microbial infection.
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foundation for researchers. Although CD36 has a wide range of

functions in the process ofM. tuberculosis infection in hosts, related

studies are still inadequate, and the specific molecular mechanisms

in related fields are still not clear enough.
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