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Chengdu, China, 5Center for Reproductive Medicine, The Third People’s Hospital of Chengdu,
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Objective: This study aims to develop and validate machine learning models to

predict proliferative lupus nephritis (PLN) occurrence, offering a reliable

diagnostic alternative when renal biopsy is not feasible or safe.

Methods: This study retrospectively analyzed clinical and laboratory data from

patients diagnosed with SLE and renal involvement who underwent renal biopsy

at West China Hospital of Sichuan University between 2011 and 2021. We

randomly assigned 70% of the patients to a training cohort and the remaining

30% to a test cohort. Various machine learning models were constructed on the

training cohort, including generalized linear models (e.g., logistic regression, least

absolute shrinkage and selection operator, ridge regression, and elastic net),

support vector machines (linear and radial basis kernel functions), and decision

tree models (e.g., classical decision tree, conditional inference tree, and random

forest). Diagnostic performance was evaluated using ROC curves, calibration

curves, and DCA for both cohorts. Furthermore, different machine learning

models were compared to identify key and shared features, aiming to screen

for potential PLN diagnostic markers.

Results: Involving 1312 LN patients, with 780 PLN/NPLN cases analyzed. They

were randomly divided into a training group (547 cases) and a testing group (233

cases). we developed nine machine learning models in the training group. Seven

models demonstrated excellent discriminatory abilities in the testing cohort,

random forest model showed the highest discriminatory ability (AUC: 0.880, 95%

confidence interval(CI): 0.835–0.926). Logistic regression had the best

calibration, while random forest exhibited the greatest clinical net benefit. By

comparing features across various models, we confirmed the efficacy of

traditional indicators like anti-dsDNA antibodies, complement levels, serum

creatinine, and urinary red and white blood cells in predicting and

distinguishing PLN. Additionally, we uncovered the potential value of previously

controversial or underutilized indicators such as serum chloride, neutrophil

percentage, serum cystatin C, hematocrit, urinary pH, blood routine red blood

cells, and immunoglobulin M in predicting PLN.
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Conclusion: This study provides a comprehensive perspective on incorporating a

broader range of biomarkers for diagnosing and predicting PLN. Additionally, it

offers an ideal non-invasive diagnostic tool for SLE patients unable to undergo

renal biopsy.
KEYWORDS

proliferative lupus nephritis, machine learning, kidney biopsy, predictive model,
diagnostic marker
1 Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disease with an unclear etiology, characterized by the loss of normal

immune tolerance to endogenous nuclear components (1, 2). The

development of lupus nephritis (LN) in SLE patients is

multifactorial, involving dysregulation of the complement system,

abnormal production of autoantibodies, environmental influences,

and genetic factors (3). LN is defined by the deposition of immune

complexes within the renal glomeruli, confirmed through

histopathological examination. It represents one of the most

common and severe organ challenges in SLE patients (4), posing

a significant risk factor for morbidity and mortality (5, 6). In 2003,

the International Society of Nephrology/Renal Pathology Society

(ISN/RPS) classified LN (7), excluding advanced sclerosing LN

(Type VI), into proliferative and non-proliferative types based on

renal histopathology. Non-proliferative lupus nephritis (NPLN)

includes types I, II, and isolated type V, with milder

inflammation and renal damage, leading to a favorable prognosis

(8). Conventional treatment tends to be conservative (9).

Proliferative lupus nephritis (PLN) refers to type III or IV lesions

alone or combined with type V lesions (10–12), indicating a more

severe condition compared to NPLN, with a significantly increased

risk of progression to end-stage renal disease (ESRD) and poor

prognosis (13, 14). Due to its detrimental impact on renal function

and prognosis (14), the treatment strategy for PLN involves overall

immunosuppression and maintenance therapy to control

inflammation and autoimmune reactions (9).

Given the differences in treatment strategies and prognosis

between PLN and NPLN, rapid diagnosis and early targeted

treatment are crucial for improving renal function prognosis,

particularly for PLN (9, 15). However, renal biopsy, as the gold

standard for diagnosing PLN, is not always feasible or safe due to

potential complications (16), technological limitations in primary

healthcare facilities (9, 15), and contraindications for certain

patients with specific conditions (17). Therefore, the development

of a safe, non-invasive diagnostic method is urgently needed.

Currently, research on using big data analysis to predict clinical

factors related to PLN is still quite scarce. There is limited evidence

demonstrating the potential of biomarker analysis in predicting
02
PLN risk or identifying individuals who may develop PLN at the

onset of their disease. Based on this, we have developed and

validated various machine learning models to predict the

occurrence of PLN. The development of these models is crucial

for achieving early diagnosis of PLN in clinical practice and

effectively stratifying PLN from NPLN, thereby improving

patient prognosis.
2 Materials and methods

2.1 Study participants

This study was a single-center retrospective study conducted at

West China Hospital, Sichuan University, a tertiary teaching

hospital. Between 2011 and 2021, a total of 1312 patients

diagnosed with SLE with renal involvement underwent

renal biopsy.

2.1.1 Inclusion criteria
(1)Patients clinically diagnosed with SLE and renal

involvement, with renal involvement manifested by persistent

proteinuria (>0.5g protein per day), presence of cellular casts (red

blood cells, hemoglobin, granular, tubular, or mixed), urinary

protein-to-creatinine ratio >500mg/g (50mg/mmol), or renal

dysfunction. (2) Patients who underwent renal biopsy and were

pathologically diagnosed with PLN or NPLN according to the 2003

ISN/RPS classification criteria. NPLN includes class I, II, or V LN,

while PLN includes class III, IV, or III/IV with V LN (10–12).

2.1.2 Exclusion criteria
(1)Patients with repeat biopsies who underwent clinical

intervention between the two biopsy procedures, to ensure model

accuracy, patients undergoing their second biopsy were excluded

based on the time of renal puncture. (2) Patients with non-LN or

unclear pathological diagnosis of LN (such as limited glomerular

number in renal biopsy, making classification difficult). (3) Patients

with class VI LN or other renal diseases besides LN (such as primary

glomerulonephritis, diabetic nephropathy, hepatitis B virus-related

nephropathy, drug-induced renal injury, etc.). (4) Patients with
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concurrent autoimmune diseases such as rheumatoid arthritis,

autoimmune hepatitis, ANCA-associated vasculitis, etc. The flow

chart for inclusion and exclusion is provided in Figure 1.

After confirming subjects based on inclusion and exclusion

criteria, we collected clinical and laboratory characteristics. Clinical

features included renal biopsy pathology, demographics (age,

gender), admission physical exam indicators (systolic and diastolic

blood pressure, body mass index, pulse). Laboratory features

encompassed all indicators detected during hospitalization

(hematology, immunology, biochemistry, coagulation, routine

exams, etc.). Data were collected from the most recent data before

renal biopsy. Features with <30% missing values for laboratory

features and <60% for observation samples were selected. Missing

values were then addressed using multiple imputation methods.
2.2 Machine learning models overview

This study developed nine models, including generalized linear

models such as logistic regression, Least Absolute Shrinkage and
Frontiers in Immunology 03
Selection Operator(LASSO), ridge regression, and elastic net

regression, as well as support vector machines including linear

and radial basis kernel functions, and decision tree models such as

classical decision trees, conditional inference trees, and random

forests. Logistic regression estimates model parameters using

Maximum Likelihood Estimation (MLE) (18). LASSO regression,

ridge regression, and elastic net regression improve the model by

adding an additional shrinkage penalty term to ordinary least

squares (OLS). LASSO controls the sum of absolute values of

coefficients through L1 regularization, achieving coefficient

shrinkage and variable selection, making the final model more

concise and interpretable. Ridge regression introduces a penalty

term for the sum of squared coefficients through L2 regularization,

improving prediction stability and accuracy. However, ridge

regression lacks the ability to perform feature selection when

dealing with datasets with a large number of features. Elastic net

combines L1 and L2 regularization to penalize coefficients in the

regression model, enabling feature selection that ridge regression

cannot achieve and handling correlations between features that

LASSO may overlook (19, 20). These three models using shrinkage
FIGURE 1

The flow chart for inclusion and exclusion.
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penalties can avoid multicollinearity and overfitting problems.

Support Vector Machine (SVM) maximizes the margin between

two classes by hyperplane (decision boundary) in a high-

dimensional feature space to distinguish different classes. Linearly

separable SVMs are called linear kernel SVMs, while nonlinearly

separable SVMs use kernel tricks to map data to higher-

dimensional space for linear separability, known as radial basis

kernel SVMs (21). Classical decision trees build tree models based

on maximizing purity, conditional inference trees select features

and build models based on statistical significance tests, and random

forests are an ensemble supervised learning algorithm that

constructs multiple decision trees by random sampling of samples

and features (22). The final prediction classification of a sample is

determined by the most frequently occurring class among the

predictions of all trees to improve overall prediction accuracy.
2.3 Machine learning models establishment

We randomly split the dataset into training and testing sets in a

7:3 ratio. Machine learning models were built on the training set,

with elastic net regression optimizing model parameters using grid

search, and the remaining models selecting optimal parameters

through ten-fold cross-validation. We chose the point of maximum

Youden index as the optimal cutoff value to distinguish between

PLN and NPLN.
2.4 Models validation

In this study, the ability of the models to differentiate between

PLN and NPLN was evaluated using Receiver Operating

Characteristic Curve (ROC) on both the training and testing

datasets. The Youden index was used to determine the threshold

for assessing accuracy, sensitivity, and specificity. Calibration curves

were plotted to evaluate the calibration accuracy of the models,

ensuring the reliability of their predictive results. To analyze the

clinical utility of the models, the study quantified the net benefit of

PLN risk probability at different thresholds using Decision Curve

Analysis (DCA) curves, thereby determining the clinical application

value of the models.
2.5 Statistical methods

In the study, continuous data for PLN and NPLN groups in the

training and testing sets were represented using median and

interquartile range (IQR), and compared using the Wilcoxon

rank-sum test (Mann-Whitney U test). Categorical data were

presented as frequencies (proportions) and compared using the

chi-square test. The logistic regression model included LASSO-

selected predictor variables or clinically relevant variables as

independent variables, while other models used all predictor

variables as independent variables. All models were built with

PLN or NPLN as the response variable. Model parameters were

selected using ten-fold cross-validation or grid search. The optimal
Frontiers in Immunology 04
cutoff value for distinguishing PLN and NPLN was determined

using the point of maximum Youden index. All statistical tests were

two-tailed, with significance set at P < 0.05. Data analysis was

conducted using R (version 4.2.2) and RStudio.
2.6 Ethics statement

This study was approved by the biomedical research ethics

committee of West China Hospital (2022–239). The informed

content was waived. The study conformed to the Declaration

of Helsinki.
3 Results

3.1 Study participants

This study enrolled 1312 SLE patients with kidney involvement,

of whom 788 met the inclusion and exclusion criteria for analysis.

Data on 7 clinical features (pathological classification, age, gender,

systolic and diastolic blood pressure, BMI, and pulse) and 1265

laboratory features were collected. After addressing missing values,

analysis included 780 patients and 129 features, with PLN or NPLN

as the outcome. 6 clinical features and 122 laboratory features

(detailed in Supplementary Material 1) were considered. Baseline

characteristics of the training and testing sets (Table 1) showed no

significant differences (P > 0.05) in age, gender, blood pressure,

BMI, and pulse rate. However, significant differences (P < 0.05) in

blood pressure and 13 other major laboratory features were

observed between PLN and NPLN patients in both sets.
3.2 Machine learning models establishment

The logistic regression model utilized ten-fold cross-validation

with LASSO variable selection, identifying 11 non-zero potential

predictor variables at a lambda value of 0.04171. The classical

decision tree model, through ten-fold cross-validation,

determined 4 terminal nodes with a complexity parameter of

0.04615385, involving features such as Serum Cystatin C (CysC),

anti-double stranded DNA antibodies (Anti-dsDNA) and urinary

red blood cells (URBC). The conditional inference tree model

considered only four variables: hematocrit (HCT), Anti-dsDNA,

systolic blood pressure (BPS), and CysC. In the random forest

model, the optimal number of trees corresponding to the minimum

error rate was 169. Variable importance was assessed using

MeanDecreaseAccuracy and MeanDecreaseGini. The linear kernel

support vector machine (LSVM) model explored 21 different cost

parameters, with optimal selection achieved at 0.01 through ten-

fold cross-validation. The radial basis kernel support vector

machine (RSVM) model, utilizing 441 parameter combinations of

cost and gamma, identified the optimal combination: gamma of

0.0001 and cost of 100. The LASSO model employed ten-fold cross-

validation, selecting a lambda of 0.04171 and identifying 14 non-

zero variables. For the ridge regression model, ten-fold cross-
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1413569
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 1 Comparison of patient characteristics in this study.

Missing
rates
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Training Cohort Test Cohort

NPLN(n=130) PLN(n=417) P1 NPLN(n=55) PLN(n=

Sex Female 115(88.5) Female 352(84.4) 0.254 Female 50(90.9) Female

Male 15(11.5) Male 65(15.6) Male 5(9.1) Male

Age 33.00[25.00, 43.00] 33.00[24.00, 42.00] 0.408 31.00[26.00, 40.00] 31.00[24.0

BPS 120.00[109.00,134.00] 135.00[123.00,150.00] <0.001* 123.00[115.50, 131.00] 133.00[120

BPD 80.00[72.00, 87.75] 88.00[79.00, 98.00] <0.001* 81.00[75.00, 90.00] 86.00[75.2

BMI Lean 27(20.8) Lean 51(12.2) 0.047* Lean 3(5.5) Lean

Normal 63(48.5) Normal 252(60.4) Normal 38(69.1) Normal

Overweight 26(20.00) Overweight 73(17.5) Overweight 8(14.5) Overweigh

Obese 14(10.8) Obese 41(9.8) Obese 6(10.9) Obese

pulse 80.00[75.00, 98.00] 84.00[78.00, 94.00] 0.702 86.00[79.00, 97.50] 82.00[78.0

C3 0.6[0.45, 0.81] 0.39[0.26, 0.54] <0.001* 0.61[0.46, 0.81] 0.39[0.29,

C4 0.13[0.08, 0.20] 0.09[0.05, 0.13] <0.001* 0.14[0.11, 0.21] 0.09[0.05,

IGM 1315.00[790.75, 1785.00] 936.00[649.00, 1400.00] <0.001* 1230[870.00, 1805.00] 987.50[678

RBC 4.30[3.95, 4.72] 3.54[3.06, 4.10] <0.001* 4.26[4.03, 4.73] 3.64[3.19,

Cl 105.80[102.73, 107.47] 108.50[104.90, 111.90] <0.001* 105.40[102.90, 108.20] 108.00[104

NEUTP 64.55[57.02, 74.72] 72.70[63.50, 80.40] <0.001* 64.10[57.05, 72.75] 71.20[62.8

CysC 1.04[0.86, 1.26] 1.78[1.30, 2.45] <0.001* 1.09[0.92, 1.40] 1.79[1.23,

Cr 55.00[47.58, 63.50] 86.10[62.00, 138.00] <0.001* 52.00[45.50, 63.65] 91.20[62.0

HCT 0.39[0.35, 0.42] 0.32[0.27,0.36] <0.001* 0.38[0.36, 0.44] 0.31[0.27,

UPH 6.50[6.00, 7.00] 6.00[6.00, 6.50] <0.001* 6.50[6.00, 7.00] 6.00[6.00,

URBC Normal 37(28.5) Normal 30(7.2) <0.001* Normal 15(27.3) Normal

High 93(71.5) High 387(92.8) High 40(72.7) High

UWBC Normal 87(66.9) Normal 120(28.8) <0.001* Normal 32(58.2) Normal

High 43(33.1) High 297(71.2) High 23(41.8) High
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validation determined the optimal lambda as 0.0899. The elastic net

model used cross-validation to select optimal alpha and lambda,

with alpha at 0.2894737 and lambda at 0.03757956. Except for the

classical decision tree model and the conditional inference tree

model, the features or the top 15 important features for the

remaining models are listed in Figure 2.
3.3 Models validation

In our model training set, all models achieved an AUC

exceeding 0.8, indicating strong classification performance.

Notably, the ridge regression model stood out with an impressive

AUC of 0.953 [95% confidence interval(CI): 0.933, 0.973]. In the

testing set, except for the classical decision tree and conditional

inference tree, all models maintained AUC above 0.8, with the

random forest model performing the best (AUC: 0.880 [95% CI:

0.835, 0.926]). RSVM exhibited the highest sensitivity in the

training set (0.923 [95% CI: 0.893, 0.945]), while logistic

regression showed the best specificity (0.908 [95% CI: 0.844,

0.948]). Additionally, RSVM achieved the highest accuracy (0.914

[95% CI: 0.887, 0.935]). In the testing set, ridge regression ranked

first in sensitivity (0.837 [95% CI: 0.775, 0.885]), while logistic

regression had the highest specificity (0.818 [95% CI: 0.695, 0.900]).

The ridge regression model also led in accuracy (0.803 [95% CI:

0.747, 0.849]). The differentiation performance of each model in the

training and testing cohorts is illustrated in Figure 3 and Table 2.

Calibration curve analysis indicated good consistency between

predicted values and actual observations for all models. Particularly,

in the training set, the ridge regression model demonstrated the

highest prediction accuracy, with a mean squared error (MSE) of

only 0.00011, highlighting its precision in fitting the dataset.

Furthermore, in the testing set, the logistic regression model

exhibited the best performance with an MSE value of 0.00080,

showcasing its strong generalization ability on independent

datasets. Figure 4 and Table 3 reflect the model’s prediction

accuracy performance for the two cohorts.

Through DCA, we assessed the net benefit performance of the

models across various threshold probabilities. In the analysis of the

training set, the ridge regression model exhibited a net benefit

exceeding the extreme curve, with the broadest range of threshold

probabilities. At the optimal threshold, this model achieved the

maximum net benefit of 0.628. Similarly, in the testing set, the

random forest model’s net benefit surpassed the extreme curve, with

the widest interval of threshold probabilities, reaching the highest

value of 0.520 at the optimal threshold probability point. Overall,

most models demonstrated significant net benefits in practical

decision support, except for classical decision tree and conditional

decision tree models. Figure 5 and Table 4 illustrate the models’

value for clinical applications.
4 Discussion

SLE is a potentially life-threatening autoimmune disease, with

PLN being one of its most severe clinical manifestations,
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FIGURE 2

Important features of the models As shown in the figure, “LR” denotes logistic regression model, “RF MDA” and “RF MDG” represent random forest
model’s variable importance assessed by MeanDecreaseAccuracy and MeanDecreaseGini respectively, “LSVM” stands for linear kernel Support Vector
Machine model, “RSVM” denotes radial kernel Support Vector Machine model, “LASSO”, “Ridge”, and “EN” respectively represent Least Absolute
Shrinkage and Selection Operator, Ridge regression, and Elastic Net regression models. In the LR, LSVM, LASSO, Ridge, and EN models, variable
importance is assessed based on the coefficients of each variable within the models. For the RSVM model, the importance of each feature is
determined by the average contribution of that feature across all support vectors. In RF model, variable importance is evaluated using
MeanDecreaseAccuracy and MeanDecreaseGini. Due to the differing importance of features across various models and the different methods used
to assess this importance, the specific importance values of each feature vary between models in the figure. In the figure, BPS and BPD represent
systolic blood pressure and diastolic blood pressure, respectively; RBC, HCT, HGB, PLT, BASO%, RDWCV, NEUT and NEUTP represent red blood
cells, hematocrit, hemoglobin, platelet count, basophil percentage, red blood cell distribution width CV, neutrophil absolute count and the
percentage of neutrophils in whole blood, respectively; C3, C4, IgM, Cl, CysC, Cr, HDLC, UREA, BMPP, bHBA, IBIL, HBSAB, DBIL, MG, IGG, TP, K,
CO2, HBEAB, Anti-Jo1, ANA and Anti-dsDNA represent serum levels of complement 3, complement 4, immunoglobulin M, chloride, cystatin C,
creatinine, high-density lipoprotein cholesterol, urea, bactericidal membrane permeability protein, beta-hydroxybutyrate, indirect bilirubin, hepatitis B
surface antibody, direct bilirubin, magnesium, immunoglobulin G, total protein, potassium, carbon dioxide binding, hepatitis B e antibody, Anti-Jo1
antibody, antinuclear antibody and anti-double-stranded DNA antibodies, respectively; UPH, URBC, UWBC, KET, SREC,UBG, BIL and PC represent
PH, red blood cells, white blood cells, ketones, small round epithelial cells, urobilinogen, bilirubin and pus cells in urine, respectively. UMRBC,
USRBC, USWBC, and UMWBC represent urinary sediment microscopy red blood cells, urinary sediment red blood cells, urinary sediment white
blood cells, and urinary sediment microscopy white blood cells, respectively.
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A B

FIGURE 3

(A) ROC curves for each model in the training cohort; (B) ROC curves for each model in the testing cohort. In the figure, LR denotes Logistic
Regression, Dtree represents Classic Decision Tree, Ctree stands for Conditional Inference Tree, RF is Random Forest, LSVM indicates Linear Kernel
Support Vector Machine, RSVM denotes Radial Kernel Support Vector Machine, LASSO stands for Least Absolute Shrinkage and Selection Operator,
Ridge refers to Ridge Regression, and EN signifies Elastic Net.
TABLE 2 Comparison of each model’s performance in terms of AUC, sensitivity, specificity, and accuracy in the training and testing cohorts.

Training
Cohort

Threshold Sensitivity[95CI] Specificity[95CI] Accuracy[95CI] AUC[95CI]

LR 0.808 0.796[0.755,0.832] 0.908[0.844,0.948] 0.823[0.788,0.852] 0.919[0.894,0.945]

Dtree 0.830 0.736[0.692,0.776] 0.846[0.774,0.899] 0.762[0.725,0.796] 0.847[0.808,0.887]

Ctree 0.784 0.849[0.811,0.880] 0.708[0.624,0.779] 0.815[0.781,0.846] 0.856[0.820,0.892]

RF 0.662 0.861[0.824,0.891] 0.815[0.739,0.873] 0.850[0.818,0.878] 0.898[0.867,0.929]

LSVM 0.752 0.880[0.845,0.908] 0.885[0.817,0.930] 0.881[0.851,0.906] 0.938[0.912, 0.963]

RSVM 0.704 0.923[0.893,0.945] 0.885[0.817,0.930] 0.914[0.887,0.935] 0.944[0.920,0.969]

LASSO 0.726 0.823[0.783,0.856] 0.862[0.791,0.911] 0.832[0.798,0.861] 0.914[0.887,0.940]

Ridge 0.684 0.911[0.880,0.935] 0.885[0.817,0.930] 0.905[0.877,0.927] 0.953[0.933,0.973]

EN 0.677 0.904[0.872,0.929] 0.854[0.782,0.905] 0.892[0.863,0.916] 0.942[0.920,0.964]

Test Cohort Threshold Sensitivity Specificity Accuracy AUC[95CI]

LR 0.808 0.747[0.678,0.806] 0.818[0.695,0.900] 0.764[0.705,0.814] 0.853[0.801,0.904]

Dtree 0.830 0.685[0.614,0.749] 0.709[0.578,0.813] 0.691[0.629,0.747] 0.740[0.664,0.815]

Ctree 0.784 0.764[0.696,0.821] 0.673[0.541,0.782] 0.742[0.683,0.795] 0.795[0.733,0.858]

RF 0.662 0.815[0.751,0.865] 0.709[0.578,0.813] 0.790[0.733,0.837] 0.880[0.835,0.926]

LSVM 0.752 0.764[0.696,0.821] 0.800[0.675,0.886] 0.773[0.714,0.822] 0.863[0.813,0.913]

RSVM 0.704 0.803[0.738,0.855] 0.727[0.597,0.828] 0.785[0.728,0.833] 0.859[0.809,0.910]

LASSO 0.726 0.775[0.708,0.831] 0.782[0.655,0.872] 0.777[0.719,0.826] 0.862[0.814,0.910]

Ridge 0.684 0.837[0.775,0.885] 0.691[0.559,0.798] 0.803[0.747,0.849] 0.863[0.811, 0.914]

EN 0.677 0.820[0.757,0.870] 0.709[0.578,0.813] 0.794[0.737,0.841] 0.863[0.814,0.912]
F
rontiers in Immunology
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LR denotes Logistic Regression, Dtree represents Classic Decision Tree, Ctree stands for Conditional Inference Tree, RF is Random Forest, LSVM indicates Linear Kernel Support Vector
Machine, RSVM denotes Radial Kernel Support Vector Machine, LASSO stands for Least Absolute Shrinkage and Selection Operator, Ridge refers to Ridge Regression, and EN signifies Elastic
Net. Threshold represents the optimal cutoff value determined based on the Youden’s index, and sensitivity, specificity, and accuracy are determined based on this Threshold.
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significantly increasing the risk of patient mortality and renal failure

(13, 14). While renal biopsy remains the gold standard for

diagnosing PLN, its invasiveness, potential risks, and

inapplicability in specific circumstances limit its widespread use,

particularly for certain special conditions or contraindicated

patients. This limitation underscores the urgent need for a non-

invasive diagnostic approach. An exhaustive search of the PubMed

database reveals a scarcity of studies using machine learning to

predict the risk of PLN. Consequently, this study aimed to harness

high-dimensional feature data to construct and validate a series of

machine learning models, aiming to accurately predict the risk of

PLN occurrence.

In this study, we observed a stable overall prevalence rate of 76%

for PLN. To our knowledge, only two previous studies attempted to

construct predictive models for PLN. In these two studies, one

model achieved a maximum AUC of 0.84 in the training set and

0.82 in the validation set (23), while the other study reported a lower

predictive accuracy of only 0.637 (24). In comparison, our study

utilized a larger dataset to build models, and the results demonstrate

that our models achieved a maximum AUC of 0.953 in the training
Frontiers in Immunology 09
set and AUCs exceeding 0.850 in the testing set for all models except

classical decision tree and conditional inference tree. Regarding

predictive accuracy, our training set performance ranged from

0.823 to 0.914, while the testing set ranged from 0.764 to 0.803.

Although the performance of models may be influenced by the

selection of predictive variables, considering the scale of data and

number of predictive variables used in our study surpass previous

research, our models outperform those constructed in previous

studies in all aspects. Furthermore, among the various machine

learning models we developed, they all demonstrated high

consistency and predictive accuracy. In clinical decision-making,

except for classical and conditional decision tree models, all other

models showed significant net benefits, validating not only the

efficacy of the models but also enhancing their practical value in

assisting clinical decision-making. Furthermore, the study observed

a statistical difference in Anti-dsDNA between the training and

testing cohorts. First, since the data was randomly split, we cannot

guarantee identical distributions between the training and testing

sets, making such differences possible. Second, the testing data is

used to evaluate the model’s performance. In real-world
A B

FIGURE 4

(A) Calibration curves for each model in the training cohort; (B) Calibration curves for each model in the testing cohort.
TABLE 3 Comparison of calibration performance of each model in the training and testing cohorts.

Training
Cohort

MAE MSE 0.9 QAE Test Cohort MAE MSE 0.9 QAE

LR 0.014 0.00043 0.034 LR 0.018 0.00080 0.051

Dtree 0.029 0.00148 0.063 Dtree 0.027 0.00142 0.062

Ctree 0.037 0.00163 0.050 Ctree 0.057 0.00420 0.084

RF 0.008 0.00014 0.019 RF 0.027 0.00096 0.046

LSVM 0.014 0.00051 0.038 LSVM 0.036 0.00207 0.070

RSVM 0.016 0.00083 0.041 RSVM 0.045 0.00274 0.082

LASSO 0.024 0.00093 0.062 LASSO 0.052 0.00418 0.106

Ridge 0.007 0.00011 0.018 Ridge 0.031 0.00136 0.064

EN 0.019 0.00080 0.043 EN 0.042 0.00235 0.067
MAE is the model’s mean absolute error of prediction, MSE is the model’s mean squared error of prediction, and 0.9 QAE is the 90% of Quantile of Absolute Error for the model.
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applications, the testing cohort represents the patients we aim to

predict, and it is unlikely to find a dataset with a distribution

identical to that of the training cohort. Lastly, the AUC for all seven

models in the testing set is greater than 0.85, indicating that the

models perform well even with discrepancies in data distribution,

further demonstrating their strong generalization ability.

Additionally, in both cohorts, the positive rate of Anti-dsDNA in

PLN is significantly higher than in NPLN, which is consistent with

the model’s conclusions. Therefore, our model is not affected by

this factor.

In this study, we evaluated seven predictive models with AUC

values exceeding 0.85 in the testing set. The results showed that

among these high-performing models, at least three models

consistently identified 16 key predictive factors. These factors

cover various physiological and biochemical indicators,

specifically including BPS, diastolic blood pressure (BPD), serum

chloride (Cl), neutrophil percentage (NEUTP), CysC, HCT,

complement 4 (C4), urine pH (UPH), URBC, urinary white blood

cells (UWBC), Anti-dsDNA, serum creatinine (Cr), red blood cell

count in the blood (RBC), immunoglobulin M (IGM), complement

3 (C3), and BMI. The majority of shared features had a data missing
Frontiers in Immunology 10
rate of less than 5%, with blood pressure data missing rates of 8.59%

and 8.72%, and C4 missing rate of 6.28%, all within the range of 5%-

10%. However, the missing rate for IGM reached 11.79%, and the

BMI’s missing rate was significantly higher than other variables at

43.21%. This suggests that although BMI as a research indicator has

certain potential value, its high data missing rate requires further

exploration and validation in future studies. All seven models

consistently demonstrated the importance of blood pressure; six

models highlighted the significance of CysC, URBC, UWBC and

Anti-dsDNA; C4 was considered a significant factor in five models;

while IGM was identified as a key variable in four models. It is

noteworthy that blood pressure, URBC, UWBC, Anti-dsDNA, C3

and C4, and Cr are not only traditionally used laboratory markers

for predicting LN but also demonstrated their ability to distinguish

between PLN and NPLN in this study. Furthermore, these

biomarkers predicting PLN are consistent with those identified in

previous studies (23, 24), further validating the stability and

reliability of these indicators.

Although previous studies have revealed a significant

correlation between CysC levels and the severity and pathological

grades of LN (25, 26), the specific connection between it and PLN
A B

FIGURE 5

(A) DCA curves for each model in the training cohort; (B) DCA curves for each model in the testing cohort. “All” signifies that all patients have PLN
and have all received an intervention, which resulted in a net benefit for the patients; “None” means that all patients have NPLN, none have received
an intervention, and the net benefit is zero.
TABLE 4 Comparison of DCA performance of each model in the training and testing cohorts.

Training
Cohort

LR Dtree Ctree RF LRVM RSVM LASSO Ridge EN

Probability
Range

0.03-
0.99

0.18-
0.92

0.25-
0.93

0.03-
0.98

0.01-
0.98

0.01-
0.98

0.03-
0.98

0.01-
0.98

0.01-
0.98

Threshold NB 0.512 0.383 0.395 0.567 0.576 0.623 0.517 0.628 0.614

Test
Cohort

LR Dtree Ctree RF LRVM RSVM LASSO Ridge EN

Probability
Range

0.19-
0.92

0.40-
0.87

0.45-
0.89

0.04-
0.97

0.13-
0.93

0.11-
0.94

0.10-
0.96

0.10-
0.94

0.10-
0.94

Threshold NB 0.390 0.188 0.263 0.520 0.429 0.452 0.465 0.478 0.488
f

Within this Probability Range, the net benefit of the model exceeds that of the extreme curves. Threshold NB is the net benefit of the model when the threshold probability is set to the value
determined by Youden’s index.
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remains insufficiently supported by empirical evidence. The exact

association between neutrophils and PLN is also subject to

controversy (27, 28). Anemia symptoms in LN patients may be

related to renal damage and the generation of autoantibodies (29,

30), however, there is currently no in-depth research indicating a

direct link between anemia symptoms and PLN. Recent research

indicates that IgM deposited in LN glomeruli can activate the

complement system, driving disease progression, and lower IgM

levels in LN patients’ serum may be associated with more severe

manifestations of the disease (31). LN patients may experience

electrolyte and acid-base balance disturbances due to renal

impairment (32), manifested by elevated serum Cl levels and

decreased UPH. This study further clarifies some previously

disputed or less widely used indicators, such as CysC, NEUTP,

HCT, RBC, IGM, UPH, and Cl, indicating their potential

importance in predicting PLN. These findings underscore the

need for greater attention to these indicators in clinical practice.

The identification of consensus indicators in this study not only

highlights their crucial role in predicting PLN but also provides

strong clues for future research on PLN biomarkers. Additionally,

the correlation analysis of common features indicates a strong

positive correlation between serum cystatin C and creatinine,

systolic and diastolic blood pressure, red blood cells and

hematocrit, as well as complement 3 and complement 4.

Conversely, cystatin C or creatinine show a strong negative

correlation with red blood cells or hematocrit (Figure 6). These

findings are consistent with the clinical presentations of the patients

and the characteristics listed in Table 1.

While our study has certain significance, there are limitations. It

is a single-center retrospective study, and the results have not been
Frontiers in Immunology 11
validated through multicenter studies due to the relative rarity of

lupus nephritis patients and limitations in research resources.

Therefore, before translating the models into clinical practice, it is

necessary to further validate and refine our models using

multicenter data from different ethnic backgrounds. Additionally,

considering data integrity, the study excluded non-routine testing

variables with a missing rate exceeding 30%, which may result in the

mode ls not fu l l y captur ing a l l po tent i a l important

explanatory features.

Our study pioneers the analysis of detailed, high-dimensional

data from lupus nephritis patients over the past decade,

encompassing comprehensive cl inical and laboratory

examination data. Multiple machine learning models were

developed and comprehensively evaluated, affirming their

discriminative ability, accuracy calibration, and potential clinical

application. Beyond classical decision tree and conditional

inference tree models, the other models demonstrate strong

overall performance, offering innovative non-invasive methods

for diagnosing and predicting PLN. Moreover, they show

promise as reliable supplements or even alternatives to renal

biopsy, especially in LN stratified management, crucial for

patients ineligible for renal biopsy. Additionally, by identifying

common features, this study suggests considering a more

comprehensive panel of biomarkers for PLN diagnosis and

prediction. At the clinical level, physicians can select the most

suitable model based on patient-specific conditions and treatment

needs, enhancing the accuracy of early detection and intervention

for PLN. Our research significantly enhances the technical

capabilities for early PLN diagnosis and treatment, providing

clinicians with more robust and refined auxiliary tools.
FIGURE 6

Correlation graph of common important features. Statistical significance is determined at P<0.05. In the figure, non-significant correlations are
represented as blank spaces. Significant correlations are displayed in blue or red, with specific correlation values shown. Blue indicates positive
correlations, red indicates negative correlations, and the color intensity reflects the strength of the correlation.
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