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Objectives: Hip involvement is an important reason of disability in patients with

ankylosing spondylitis (AS). Unveiling the potential phenotype of hip involvement

in AS remains an unmet need to understand its biological mechanisms and

improve clinical decision-making. Radiomics, a promising quantitative image

analysis method that had been successfully used to describe the phenotype of a

wide variety of diseases, while it was less reported in AS. The objective of this

study was to investigate the feasibility of radiomics-based approach to profile hip

involvement in AS.

Methods: A total of 167 patients with AS was included. Radiomic features were

extracted from pelvis MRI after image preprocessing and feature engineering.

Then, we performed unsupervised machine learning method to derive

radiomics-based phenotypes. The validation and interpretation of derived

phenotypes were conducted from the perspectives of clinical backgrounds

and MRI characteristics. The association between derived phenotypes and

radiographic outcomes was evaluated by multivariable analysis.

Results: 1321 robust radiomic features were extracted and four biologically

distinct phenotypes were derived. According to patient clinical backgrounds,

phenotype I (38, 22.8%) and II (34, 20.4%) were labelled as high-risk while

phenotype III (24, 14.4%) and IV (71, 42.5%) were at low risk for hip

involvement. Consistently, the high-risk phenotypes were associated with

higher prevalence of MRI-detected lesion than the low-risk. Moreover,

phenotype I had significant acute inflammation signs than phenotype II, while

phenotype IV was enthesitis-predominant. Importantly, the derived phenotypes

were highly predictive of radiographic outcomes of patients, as the high-risk

phenotypes were 3 times more likely to have radiological hip lesion than the low-

risk [27 (58.7%) vs 16 (28.6%); adjusted odds ratio (OR) 2.95 (95% CI 1.10, 7.92)].
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Conclusion: We confirmed for the first time, the clinical actionability of profiling

hip involvement in AS by radiomics method. Four distinct phenotypes of hip

involvement in AS were identified and importantly, the high-risk phenotypes

could predict structural damage of hip involvement in AS.
KEYWORDS

radiomics, spondylitis, ankylosing, hip involvement, machine learning, magnetic
resonance imaging
Introduction

Ankylosing spondylitis (AS) is a chronic inflammatory disease

that primarily involves the spine, sacroiliac joints and peripheral

joints, which could potentially lead to significant morbidity and

disability (1). Hip involvement is a prevalent manifestation and an

important cause of disability in AS. It is also associated with spine

damage, function impairment, increased disease burden and poor

prognosis in AS (2, 3). Magnetic resonance image (MRI) can detect

early hip lesion in AS and plays an important role in the diagnosis of

hip involvement in AS (4). However, MRI-detected hip lesions like

joint effusion, subchondral bone marrow edema (BME) were not

AS-specific, they could also appear in a wide spectrum of clinical

entities such as osteoarthritis, stress injury, femoral head avascular

necrosis, joint infection and inflammatory disorders (5, 6).

Moreover, it is prone to overestimate the prevalence of hip

involvement in AS if we only rely on the present of abnormal

MRI lesions (7) and the gold-standard MRI definition of hip

involvement in AS is still lacking. Therefore, a new method that

accurately predicts hip involvement in AS is urgently needed.

Radiomics has gained increasing attention over the last decade

as a promising quantitative image analysis method that had been

successfully used in patient phenotyping and prediction of

treatment response in a wide variety of diseases (8, 9). Generally,

radiomic features were firstly extracted from regions of interest

(ROIs) in routine images like CT or MRI. Then, the radiomic

features containing crucial information about disease were

progressed by artificial intelligent techniques like machine

learning (ML) or deep learning methods. Radiomics was initiated

in oncology studies and extended to musculoskeletal diseases in the

last few years (10). Moreover, ML-based deciphering of complex

diseases, such as sepsis, heart failure, ARDS and COVID-19 (11–

14), had successfully identified biologically distinct phenotypes and

facilitated the understanding of their biological mechanisms.

Therefore, we hypothesized that radiomics is a promising method

in profiling of hip involvement in AS. We did this pilot study to

evaluate the clinical actionability of using radiomics data to

phenotype AS patients with symptomatic hip involvement and

predict structural damage of hip joint in AS.
02
Materials and methods

We retrospectively investigated AS patients with hip joint pain

and who underwent pelvis MRI exams since January 2019 to

September 2022, at the First Medical Center of the Chinese

People’s Liberation Army (PLA) General Hospital, a tertiary

referral center in Beijing. All enrolled patients met the following

criteria: they were diagnosed with AS according to the 1984

modified New York criteria (15) and whose MRI imaging fulfilled

the quality criteria for reading. Patients with other comorbidities

that potentially result in hip joint pain were excluded. Socio-

demographic data, type of previous anti-inflammatory medication

(non-steroidal anti-inflammatory drugs (NSAIDs) and tumor

necrosis factor inhibitors (TNFi)) and clinical assessments were

obtained from medical records. Clinical assessments included age at

onset, disease duration, peripheral arthritis history, serum

inflammatory markers level (C-reactive protein (CRP) and

erythrocyte sedimentation rate (ESR)) and HLA-B27 status.

Furthermore, X-rays of anterior–posterior pelvis were collected

and the severity of structure damage of hip joint was assessed by

the Bath ankylosing spondylitis radiology hip index (BASRI-hip)

(16). Research ethics approval was granted by the Ethical

Committee of the Chinese PLA General Hospital (S2023-375-01)

and informed consent was waived due to the retrospective nature of

the study. Our works were conducted in accordance with the

Declaration of Helsinki.
MRI image acquisition and preprocessing

As the real-world background, patients underwent MRI exams in

8 MRI scanners at our hospital. The parameters of different scanners

were detailed in Supplementary Table S1. To correct the

heterogeneity of radiomic features caused by different scanners, we

used a practical realignment approach, the comBat compensation

method (17). This method realigns image-derived data in a single

space in which the batch effect is discarded. This method enables

pooling data from different scanners and centers without a substantial

loss of statistical power caused by intra- and inter-center variability
frontiersin.org
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(18, 19). Image preprocessing was conducted as a fixed bin size of 25

for image discretization was used to filter noise from images and all

images were resampled at the same voxel size (1 × 1 × 1 mm3) to

standardize the voxel spacing. A detailed workflow of the steps

involved in our study was summarized in Figure 1.
Image evaluation and region segmentation

Conventional MRI characteristics of hip joint were reported by

two musculoskeletal radiologists (reader 1 and reader 2). The

severity of structure damage of hip joint was also assessed by

reader1, according to the BASRI-hip. The presence of joint

effusion, BME and enthesitis was considered as active

inflammatory changes, whereas sclerosis, subchondral erosion,

joint space narrowing and fat lesion were termed as structural

damage of hip involvement (7). We defined active inflammatory

changes and chronic structural damage with reference to previously

reported method (7). Additionally, we used a qualitative method to

define these lesions: the presence of a defined lesion in any slice of

hip MRI was considered positive for that lesion. A senior radiologist

would also be brought into making the final conclusion if there was
Frontiers in Immunology 03
disagreement between the two observers. Then, a fellowship-trained

operator (reader 3) delineated the entire hip joint, composed of the

femur, acetabulum, and joint space, as regions of interest (ROI).

The reader delineated the ROIs with reference to the range of

proximal hip femur, acetabulum and hip joint capsule in slices on

an open-source software, 3D Slicer (Version 5.0.3). The ROIs were

drawn manually slice by slice in the axial axis, by using edge-based

tool and then fine-tuned by the smoothing tool in 3D

Slicer (Figure 2).
Radiomic features extraction and selection

Radiomic features were extracted in the open-source radiomics

platform, Pyradiomics (version 3.0.1), in Python (version 3.7).

Radiomic features were defined according to the Image

Biomarkers Standardization Initiative (IBSI) (20) and fell into the

following categories: first-order (n=18), shape (n=8) and texture

(n=75) features. Moreover, 14 image filters were applied and high-

order features (n=1210) were extracted after decompositions of the

original images by the filters. A list of all radiomic features and

detailed explanation were provided in Supplementary Table S2.
FIGURE 1

Workflow for the development and validation of the radiomics-based machine learning model. ROI: region of interest.
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Redundancy was checked and radiomic features with invariance

were removed. Additionally, to assess the reliability of manual

segmentation process, another observer (reader 1) delineated 15

randomly selected patients, after training session and consensus

meeting with reader 3. Then, inter-observer (reader 1 and 3) and

intra-observer (reader 3 twice) intraclass correlation (ICC) were

calculated to evaluate the reliability of extracted radiomic features.

Only features with good reproducibility that both inter-observer

and intra-observer ICC ≥ 0.75 were considered in further analyses.

All selected features were normalized by Z-score standardization

before the next step.
Phenotype derivation, validation
and interpretation

Once radiomic features were selected and prepared,

unsupervised agglomerative hierarchical clustering with Euclidean

distance calculation and Ward linkage criterion was applied to

identify radiomics-based patient clusters. Dendrogram that

visualizes the clustering procedure and distances between the

clusters at different layers was prepared to help determine the

optimal number of clusters (phenotypes).

The validation of derived phenotypes was conducted in three

ways. First, we characterized the derived phenotypes by clinical

backgrounds. In detail, we evaluated inter-groups differences of
Frontiers in Immunology 04
clinical factors associated with hip involvement, such as juvenile-

onset, disease duration, cigarette smoking, TNFi treatment and

serum inflammation markers. Second, we interpreted phenotyping

results by profiling the heterogeneity of MRI-detected hip lesions

between phenotypes. Third, we assessed the radiographic outcomes

of hip involvement by the BASRI-hip criteria, to evaluate the

performance of radiomics-based phenotyping to predict hip joint

structural damage.
Validation of radiomic-derived phenotypes

To evaluate the robustness and reliability of the phenotypes

obtained from unsupervised agglomerative hierarchical clustering,

we performed a consensus clustering algorithm using the

‘ConsensusClusterPlus’ package (version 1.62.0). This method

involves conducting multiple iterations of clustering on resampled

data and then measuring the consistency of the resulting clusters

across these iterations (21).

The performance of consensus clustering was assessed using the

consensus matrix, cumulative distribution function (CDF) curve,

relative alterations in the area under the CDF curve (Delta Area

Plot), and cluster-consensus plot, in order to help determine the

optimal number of phenotypes and evaluate whether the derived

phenotypes are reasonable.
B

C D

A

FIGURE 2

Example of hip MRI slices showed the range of handcrafted segmentation. (A) Regions of interest (ROI) of bilateral hips were labeled with green
color in coronal plane. (B) The first slide containing ROI in axial plane. (C) The reconstructed 3D volume of ROI. (D) The last slide containing ROI in
axial plane.
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Statistics

Descriptive statistical analysis was performed using SPSS

Statistics (version 22; IBM Corp.). Missing data were addressed

using multiple imputation by 5 iterations, assuming they were

missing at random. Implementation of other work is based on

Python (version 3.7) and R programming language (version 4.2.1).

The ICC coefficient was calculated by the two-way mixed effect

models and consistency method, by using R package ‘psych’

package (version 2.2.9). Unsupervised agglomerative hierarchical

clustering and the formation of dendrogram were based on Python

package ‘scikit-learn’ (version 0.22.1). Chord diagrams were created

using R package ‘circlize’ (version 0.4.15). We used binary logistic

regression to estimate odds ratios (ORs) and 95% CIs of having
Frontiers in Immunology 05
radiological hip involvement across the derived-phenotypes. For all

analyses, two-sided P values <0.05 were considered significant.
Results

Patients and MRI imaging findings

A total of 167 patients were admitted into our study.146

patients were males (87.4%), the median age (interquartile range

(IQR)) was 31.0 (26.0–37.0) years. They had established AS with

median disease duration (IQR) of 6 (2.0–10.0) years and their

median age (IQR) at disease onset was 23.0 (20.2–28.0). HLA-B27

positive rate was 88.6% and 18 (10.8%) individuals were identified
TABLE 1 Characteristics and MRI findings of patients among different phenogroups.

Total
(n= 167)

Phenogroup I
(n= 38)

Phenogroup II
(n= 34)

Phenogroup III
(n= 24)

Phenogroup IV
(n= 71)

P value

Clinical characteristics

Age, yrs 31.0 (26.0–37.0) 29.0 (22.0, 33.0) 32.0 (26.0, 37.3) 30.0 (25.3, 35.8) 34.0 (28.0, 37.0) 0.125

Male 146 (87.4%) 30 (78.9%) 28 (82.4%) 24 (100.0%) 64 (90.1%) 0.046

JAS 18 (10.8%) 8 (21.1%) 6 (17.6%) 1 (4.2%) 3 (4.2%) 0.015

Age at onset, yrs 23.0 (20.2, 28.0) 21.0 (18.5, 24.0) 25.0 (20.8, 28.3) 23.0 (20.2, 28.5) 25.0 (22.0, 30.0) 0.125

Disease duration, yrs 6.0 (2.0, 10.0) 7.0 (3.0, 12.0) 5.0 (2.0, 13.3) 5.0 (3.0, 8.5) 6.0 (2.0, 10.0) 0.840

HLA-B27 (+) 148 (88.6%) 35 (92.1%) 32 (94.1%) 21 (87.5%) 60 (84.5%) 0.483

Peripheral arthritis history 70 (41.9%) 12 (31.6%) 11 (32.4%) 12 (50.0%) 35 (49.3%) 0.165

Enthesitis history 71 (42.5%) 18 (47.4%) 11 (32.4%) 10 (41.7%) 32 (45.1%) 0.579

Smoking status 0.712

None 127 (76.0%) 30 (78.9%) 26 (76.5%) 16 (66.7%) 55 (77.5%)

Ever smokers 40 (24.0%) 8 (21.1%) 8 (23.5%) 8 (33.3%) 16 (22.5%)

Alcohol consumption 0.143

None 145 (86.8%) 35 (92.1%) 32 (94.1%) 18 (75.5%) 60 (84.5%)

With drinking habit 22 (13.2%) 3 (7.9%) 2 (5.9%) 6 (25.0%) 11 (15.5%)

ESR, mm/h 7.0 (2.0, 18.0) 17.0 (7.0, 49.5) 8.5 (2.0, 19.3) 4.0 (2.0, 11.5) 6.0 (2.0, 13.0) < 0.001

CRP, mg/L 3.4 (1.0, 10.9) 6.5 (2.3, 29.5) 5.6 (1.0, 13.7) 4.1 (1.0, 9.6) 3.0 (0.5, 8.3) 0.021

NSAIDs 161 (96.4%) 36 (94.7%) 32 (94.1%) 22 (91.7%) 71 (100.0%) 0.148

TNFi 88 (52.7%) 19 (50.0%) 17 (50.0%) 17 (70.8%) 35 (49.3%) 0.303

TNFi duration, month 4.0 (0.0, 24.0) 30.0 (13.0, 48.0) 20.0 (11.5, 38.0) 20.0 (6.0, 27.0) 21.0 (11.0, 36.0) 0.905

MRI findings

Joint effusion 147 (88.0%) 36 (94.7%) 29 (85.3%) 20 (83.3%) 67 (94.4%) 0.174

BME 75 (44.9%) 22 (57.9%) 13 (38.2%) 12 (50.0%) 28 (39.4%) 0.230

Enthesitis-t 61 (36.5%) 16 (42.1%) 12 (35.3%) 6 (25.0%) 27 (38.0%) 0.582

Enthesitis-i 10 (6.0%) 6 (15.8%) 0 0 4 (5.6%) 0.023

Enthesitis-p 34 (20.4%) 12 (31.6%) 1 (2.9%) 4 (16.7%) 17 (23.9%) 0.009

(Continued)
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as juvenile-onset AS (JAS). Among the 167 patients, 70 (41.9%) or

71 (42.5%) patients had history of peripheral arthritis or enthesitis,

respectively. Besides, 40 (24.0%) patients were ever-smokers and 22

(13.2%) patients had drinking habit.
Frontiers in Immunology 06
Joint effusion was the most frequent MRI finding (147, 88.0%),

followed by BME (75, 44.9%), erosion (62, 37.1%), fat lesion (59,

35.3%), joint space narrowing (38, 22.8%) and sclerosis (9, 5.4%).

Enthesitis was also a prevalent MRI finding and three subtypes were
FIGURE 3

Dendrogram shows the process of unsupervised hierarchical clustering. Heatmap shows results of the cluster analysis of patient clinical profiles and
MRI-detected lesions. ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; TNFi, tumor necrosis factor inhibitor; JAS, juvenile-onset
ankylosing spondylitis; Peri_history, Peripheral arthritis history; E_history, Enthesitis history; BME, bone marrow edema; Enthesitis-t, enthesitis at
greater femoral trochanter; Enthesitis-i, enthesitis at ischial tuberosity; Enthesitis-p, enthesitis at pubic symphysis.
TABLE 1 Continued

Total
(n= 167)

Phenogroup I
(n= 38)

Phenogroup II
(n= 34)

Phenogroup III
(n= 24)

Phenogroup IV
(n= 71)

P value

MRI findings

Sclerosis 9 (5.4%) 4 (10.5%) 3 (8.8%) 0 2 (2.8%) 0.169

Erosion 62 (37.1%) 23 (60.5%) 13 (38.2%) 5 (20.8%) 21 (29.6%) 0.004

Fat lesion 59 (35.3%) 14 (36.8%) 13 (38.2%) 5 (20.8%) 27 (38.0%) 0.472

Narrowing 38 (22.8%) 17 (44.7%) 7 (20.6%) 2 (8.3%) 12 (16.9%) 0.002

Radiological outcomes, (missing = 65)

BASRI-hip 1.0 (1.0, 3.0) 2.0 (1.0, 4.0) 2.0 (1.0, 3.0) 1.0 (0, 2.0) 1.0 (1.0, 2.0) 0.027

Radiological-defined
hip involvement 45/102 (44.1%) 16/26 (61.5%) 11/20 (55.0%) 3/13 (23.1%) 13/43 (30.2%) 0.019
Data are n (%) for categorical variables and median (interquartile range) for continuous variables, respectively. JAS, juvenile-onset ankylosing spondylitis; ESR, erythrocyte sedimentation rate;
CRP, C-reactive protein; NSAIDs, non-steroidal anti-inflammatory drugs; TNFi, tumor necrosis factor inhibitor; BME, bone marrow edema; Enthesitis-t, enthesitis at greater femoral trochanter;
Enthesitis-i, enthesitis at ischial tuberosity; Enthesitis-p, enthesitis at pubic symphysis; BASRI-hip, Bath ankylosing spondylitis radiology hip index. Bold text highlighted significant differences.
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identified based on anatomic location: ischial tuberosity (enthesitis-

i, 10 (6.0%)), greater femoral trochanter (enthesitis-t, 61 (36.5%))

and pubic symphysis (enthesitis-p, 34 (20.4%)). Detailed patient

characteristics and MRI findings were shown in Table 1.
Radiomic features and
phenotypes derivation

1422 radiomic features were extracted based on T2WI MRI

images. After removing redundant and instable features, 1321

robust radiomic features were identified and used for model

construction. The agglomerative hierarchical clustering model

identified four phenotypes of patients (Figure 3). Characteristics

including demographics, clinical variables, serum inflammation

markers and previous treatments across the four phenotypes were

presented in Table 1.

Phenotype I consisted of 38 (22.8%) patients. Compared to the

others, it included more younger (median age 29.0 years, IQR (22.0,

33.0)) and JAS (8, 21.1%) patients. Besides, patients in phenotype I

had longer AS duration (7.0 (3.0, 12.0)) and significantly elevated
Frontiers in Immunology 07
serum inflammatory markers (17.0 (7.0, 49.5) and 6.5 (2.3, 29.5) for

ESR and CRP, respectively). Phenotype II consisted of 34 (20.4%)

patients. As similar to phenotypes I, phenotypes II included patients

with high rate of juvenile-onset (6, 17.6%) and elevated serum

inflammatory markers (8.5 (2.0, 19.3) and 5.6 (1.0, 13.7) for ESR

and CRP, respectively). The TNFi use rate in phenotypes II was

similar to that in phenotype I (50.0% vs 50.0%, P=0.593) but

phenotypes II had shorter duration of TNFi use than phenotypes

I (20.0 (11.5, 38.0) vs 30.0 (13.0, 48.0), P=0.043).

Phenotype III consisted of 24 (14.4%) patients and phenotype IV

included 71 (42.5%) patients. They shared similar characteristics that

patients were neither apt to be JAS (4.2% and 4.2% for phenotype III

and IV, respectively) nor had elevated serum inflammatory markers

(ESR 4.0 (2.0, 11.5) and 6.0 (2.0, 13.0), CRP 4.1 (1.0, 9.6) and 3.0 (0.5,

8.3) for phenotype III and IV, respectively). As for TNFi treatment,

the duration of TNFi use in phenotype III (20.0 (6.0, 27.0)) and IV

(21.0 (11.0, 36.0)) were comparable to phenotype II (20.0 (11.5, 38.0),

despite more frequent TNFi use in phenotype III (50.0%, 70.8% and

49.3% for phenotype II, III and IV, respectively, P= 0.905).

Therefore, according to their exposure on known clinical factors

associated with hip involvement, phenotype I and II could be
B

C D

A

FIGURE 4

Validation of radiomic-derived phenotypes by consensus clustering. (A): Consensus matrix when k = 4. (B) Consensus CDF curves when k=2 to 6.
(C) Relative alterations in CDF Delta area plot. (D) Cluster-consensus value of each phenotype when k=2 to 6.
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labelled as high-risk while phenotype III and IV were at low-risk for

hip involvement in AS.
Validation of radiomic-derived phenotypes
by consensus clustering

To assess the robustness of the derived 4-phenotype structure of

radiomics data, we performed consensus clustering to validate the

radiomics-based phenotypes. Based on the consensus matrix

(Figure 4A), CDF curve (Figure 4B), Delta area plot (Figure 4C),

k = 4 was identified as the optimal value for phenotyping the AS

patients. Additionally, as expected, these four phenotypes had high

cluster-consensus values (Figure 4D), indicating strong stability

among the radiomic-derived phenotypes.
Interpretation of four phenotypes by
MRI findings

Both phenotype I and II manifested high prevalence of

structural lesion. More specifically, the high-risk phenotypes were

associated with significantly higher prevalence of erosive lesion [36

(50.0%) vs 26 (27.4%), odds ratio (OR) 2.65 (95% CI 1.39, 5.06)]

and joint space narrowing [24 (33.3%) vs 14 (14.7%), OR 2.89 (95%

CI 1.37, 6.12)] than the low-risk, whereas they did not differ for

sclerosis and fat lesion. In contrast, phenotype II had lower

prevalence of active lesions than phenotype I (joint effusion

(85.3% vs 94.7%, P=0.243), BME (38.2% vs 57.9%, P=0.096),
Frontiers in Immunology 08
enthesitis-t (35.3% vs 42.1%, P=0.554), enthesitis-i (0 vs 15.8%,

P=0.026) and enthesitis-p (2.9% vs 31.6%, P=0.002)), which

reflected that phenotype II had severe structural damage but less

active inflammatory lesions on MRI.

As for acute inflammatory signs, the high-risk phenotypes had

comparable prevalence of joint effusion [65 (90.3%) vs 87 (91.6%),

OR 0.46 (95% CI 0.18, 1.19)], BME [35 (48.6%) vs 40 (42.1%), OR

1.30 (95% CI 0.70, 2.41)] and enthesitis-t [28 (38.9%) vs 33 (34.7%),

OR 1.20 (95% CI 0.63, 2.26)] than the low-risk phenotypes.

Nevertheless, phenotype I and IV had significantly higher

prevalence of enthesitis-i (15.8% and 5.6%, respectively, P=0.023)

and enthesitis-p (31.6% and 23.9%, respectively, P=0.009)

compared to phenotype II and phenotype III (enthesitis-i: 0 for

both, enthesitis-p: 2.9% and 16.7%, respectively). MRI findings

across the 4 phenotypes were presented in Table 1 and inter-

group differences were visualized in Figures 3, 5.
Prediction of radiographic outcomes
by phenotypes

102 patients received pelvis X-ray exams at a 2-year interval

after taking MRI exams. Patients in phenotype I and II had

significantly higher BASRI-hip scores than phenotype III and IV

(median (IQR) of scores were 2.0 (1.0, 4.0), 2.0 (1.0, 3.0), 1.0 (0, 2.0)

and 1.0 (1.0,2.0), respectively, P=0.027). Likewise, after adjusting for

confounding factors including JAS, age, duration, smoking status

and ESR, the high-risk phenotypes (phenotype I and II) were 3

times more likely to have radiological-defined hip involvement
FIGURE 5

Chord diagrams showing differences in MRI findings among phenotypes. BME, bone marrow edema; Enthesitis-t, enthesitis at greater femoral
trochanter; Enthesitis-i, enthesitis at ischial tuberosity; Enthesitis-p, enthesitis at pubic symphysis; FL, Fat lesion.
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(BASRI-hip ≥ 2) than the low-risk [27 (58.7%) vs 16 (28.6%),

adjusted OR 2.95 (95% CI 1.10, 7.92)].

Therefore, according to clinical behaviors, MRI characteristics

and radiographic outcomes, patients in phenotype I and II could be

labeled as “advanced-stage hip involvement”. Patients in phenotype

I concomitantly exhibited significant acute inflammation signs and

demanded anti-inflammatory therapy, especially TNFi treatment.

Phenotype III and IV were assumed as “early-stage hip

involvement”, and phenotype IV was enthesitis-predominant,

whereas patients in phenotype III were not yet identified based

on the current variables.
Discussion

Hip involvement is prevalent in AS and constitutes an

important reason of disability in AS (2, 3). There remains unmet

need that a method can make early and accurate identification of

hip involvement in AS, as early detection means the opportunity to

get timely treatments. Radiomics has gained increasing attention in

the last few years, as a promising quantitative image analyzing

method used for differential diagnosis, prognosis analysis and

identification of responders to therapy (22, 23). In this pilot

study, four distinct phenotypes of AS-related hip involvement

were identified by the integration of MRI radiomics data and

unsupervised ML approach. This study is, to the best of our

knowledge, the first to apply radiomics-based approach to profile

hip involvement in AS. Our study validated the clinical actionability

of using radiomics approach to detect hip involvement in AS, which

offers opportunities for the foundation of a novel method, the MRI

radiomics, to diagnose hip involvement in AS.

A 4-phenotype structure of radiomics data were derived and it

was validated from the perspectives of clinical backgrounds, MRI

signs and radiographic outcomes. Firstly, phenotype I and II were

labelled as high-risk clinical pattern, in that they included more

patients exposed to risk factors associated with hip involvement

than the other two phenotypes (low-risk clinical pattern). Then, we

used conventional MRI findings to validate the phenotyping

structure and interpreted the radiomics-based phenotypes, since

the ‘black-box’ nature of artificial intelligence-based approaches

often provides results that are difficult to understand (24).

Practitioners are more familiar with the clinical implications of

MRI findings rather than radiomic features. Importantly, the

significantly increased prevalence of MRI-detected structural

damage on high-risk than low-risk phenotypes vigorously

supported such clinical patterns. Additionally, patients in

phenotype I had notable acute inflammation signs besides the

presence of structural damage while phenotype IV was assumed

as “enthesitis-predominant”, given the prominent enthesitis

findings on MRI. The profiling of phenotype III was challenging

since it had limited cases number (only 24 patients). Patients in

phenotype III were young and less likely exposed to risk factors

associated with hip involvement, we carefully inferred that their

nonspecific MRI findings may derive from other origins of hip joint

pain, such as stress injury, acute bone marrow edema syndrome or
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femoroacetabular impingement (25, 26), besides the possibility that

they represent a stage, probably the early stage, in the progression of

AS-related hip involvement.

The radiographic outcomes of hip involvement strongly

supported the current phenotyping results. After adjusting for

confounding factors, patients with high-risk phenotypes were

associated with 3.0-fold higher odds of having radiological hip

involvement than the low-risk (ORa 2.95 (95% CI 1.10, 7.92)). This

finding suggested that radiomics-derived phenotyping could predict

the radiographic outcome of hip involvement in AS, which makes

the radiomics method a promising tool in the early identification of

hip involvement in AS. Additionally, consensus clustering analysis

significantly enhances the credibility and robustness of our findings.

These results endorse that the derived phenotypes are not only

statistically sound but also clinically interpretable and meaningful.

Among the reported MRI findings associated with hip

involvement in AS, we don’t know which were of predictive

power for worse outcome or which could discriminate it from

other reasons of hip pain. Our study provided some indirective

evidence for this question. Joint effusion is an indirective MRI

finding of hip synovitis and BME is linked to bone marrow capillary

wall damage and leakage (5). Joint effusion and BME were quite

commonMR findings in AS patients with hip joint pain (7) but they

had a low-level variance among the 4 phenotypes. Erosion, sclerosis

and joint space narrowing were structural lesion findings in MRI,

their roles were quite limited since the target was early diagnosis of

hip involvement. Focal fat infiltration likely reflects post-

inflammatory tissue metaplasia: since the inflammation recedes,

fat metaplasia develops in its place (27, 28). The prevalence of fatty

lesion was comparable in phenotype I, II and IV (36.8%, 38.2% and

38.0%, respectively), despite it subtle decreased in phenotype III

(20.8%). We also found that enthesitis was a prevalent MRI finding

in each phenotype and it comprised one distinct phenotype of

patients. Further studies are needed to dissect the pathophysiologic

significance of fat lesion and enthesitis in hip joints and their value

in sorting out AS-related hip involvement from other origins of hip

joint pain. It is noteworthy that we evaluated the described MRI

signs in a crude mode that whether they existed or not and the

emergence of sophisticated methods such as morphological feature

analysis, quantitative scoring and radiomic feature analysis, had

shed light on exploring of AS-specific MRI findings (10, 29, 30).

Our study has several limitations that should be acknowledged.

Firstly, there existed sampling bias due to various factors, including

relatively young population and a geographical area where AS

population had limited biologics use (31), which may render a

relative high prevalence of hip involvement. Additionally, we

enrolled patients with AS (radiographic axial SpA) rather than

non-radiographic axial SpA, which was assumed as the pre-stage of

axial SpA (1). Further researches are needed to investigate whether

our observations persist across racial, ethnic and the whole SpA

groups. Secondly, we did not set out a specific prediction model or

scoring system for the prediction of hip involvement in AS, which

we believe requires further developed tools as well as external

validation. Rather, we aimed to ascertain the potential of MRI

radiomics approach to profile hip involvement in AS. We believed
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that the novelty predominantly lies in the described methodology,

and perhaps less so in the detected four phenotypes, despite that

they were comprehensively validated. Finally, patients in phenotype

III were not yet identified and the underlying cellular or molecular

level heterogeneity across the four phenotypes were not studied.

In conclusion, our results serve as a proof-of-concept that

unsupervised ML methods could turn complex radiomics data

into interpretable and clinically meaningful classification of hip

involvement in AS. Our findings illuminate a promising approach

to identify hip involvement in AS and its added value in clinical

decision making should be evaluated in prospective studies.
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et al. Inequity in biological DMARD prescription for spondyloarthritis across the globe:
results from the ASAS-COMOSPA study. Ann Rheum Dis. (2018) 77:405–11.
doi: 10.1136/annrheumdis-2017-212457
frontiersin.org

https://doi.org/10.1001/jama.2019.5791
https://doi.org/10.1002/ejhf.1333
https://doi.org/10.1002/ejhf.1333
https://doi.org/10.1016/S2213-2600(21)00461-6
https://doi.org/10.1038/s41746-021-00481-w
https://doi.org/10.1002/art.1780270401
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.2967/jnumed.117.199935
https://doi.org/10.1007/s00330-020-07284-9
https://doi.org/10.1148/radiol.2020191145
https://doi.org/10.3389/fimmu.2022.1046410
https://doi.org/10.3389/fimmu.2023.1084299
https://doi.org/10.1093/rheumatology/keab542
https://doi.org/10.1016/j.mric.2009.06.005
https://doi.org/10.1002/jmri.24725
https://doi.org/10.1002/art.42145
https://doi.org/10.1111/1756-185X.13485
https://doi.org/10.1007/s00330-018-5880-6
https://doi.org/10.1007/s00330-018-5880-6
https://doi.org/10.1093/mr/roab073
https://doi.org/10.1136/annrheumdis-2017-212457
https://doi.org/10.3389/fimmu.2024.1413560
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Radiomics-based machine learning model to phenotype hip involvement in ankylosing spondylitis: a pilot study
	Introduction
	Materials and methods
	MRI image acquisition and preprocessing
	Image evaluation and region segmentation
	Radiomic features extraction and selection
	Phenotype derivation, validation and interpretation
	Validation of radiomic-derived phenotypes
	Statistics

	Results
	Patients and MRI imaging findings
	Radiomic features and phenotypes derivation
	Validation of radiomic-derived phenotypes by consensus clustering
	Interpretation of four phenotypes by MRI findings
	Prediction of radiographic outcomes by phenotypes

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


