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Crosstalk between gut
microbiota and host immune
system and its response to
traumatic injury
Hanif Ullah1†, Safia Arbab2†, Yali Tian1†, Yuwen Chen1,
Chang-qing Liu1, Qijie Li1* and Ka Li1*

1Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key
Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of
Nursing, Sichuan University, Chengdu, Sichuan, China, 2Lanzhou Institute of Husbandry and
Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
Millions of microorganisms make up the complex microbial ecosystem found in

the human gut. The immune system’s interaction with the gut microbiota is

essential for preventing inflammation and maintaining intestinal homeostasis.

Numerous metabolic products that can cross-talk between immune cells and

the gut epithelium are metabolized by the gut microbiota. Traumatic injury elicits

a great andmultifaceted immune response in theminutes after the initial offense,

containing simultaneous pro- and anti-inflammatory responses. The

development of innovative therapies that improve patient outcomes depends

on the gut microbiota and immunological responses to trauma. The altered

makeup of gut microbes, or gut dysbiosis, can also dysregulate immunological

responses, resulting in inflammation. Major human diseases may become more

common as a result of chronic dysbiosis and the translocation of bacteria and the
Abbreviations: GI, gastrointestinal; SCFAs, short-chain fatty acids; DAMPs, damage-associated molecular

patterns; GALT, gut-associated lymphoid tissue; NF-kB, nuclear factor kappa-B; TLRs, Toll-like receptors;

GIT, gastrointestinal tract; SBAs, secondary bile acids; MALTs, mucosa-associated lymphoid tissues; mLNs,

mesenteric lymph nodes; ILFs, isolated lymphoid follicles; ILCs, innate lymphoid cells; IFN, interferon; NOD,

nucleotide-binding oligomerization domain; DCs, dendritic cells; PRRs, pattern recognition receptors;

PAMPs, Pathogen- associated molecular patterns; FXR, farnesoid X receptor; PXR, pregnane X receptor;

AhR, aryl hydrocarbon receptor; Aldh1a1aldehyde, dehydrogenase 1a1; cNK, Conventional natural killer;

DSS, dextran sulfate sodium; NKT, Natural killer T; TNFa, tumor necrosis factor alpha; IFNg, interferon

gamma; TGF-b, transforming growth factor-b; HDAC, butyrate on histone deacetylase; PPAR-g, peroxisome

proliferator-activated receptor gamma; NAFLDs, nonalcoholic fatty liver diseases; IBDs, inflammatory bowel

disorders; CVDs, cardiovascular diseases; ALD, alcoholic liver disease; CKDs, chronic kidney diseases; PD,

programmed death; PDAC, pancreatic ductal adenocarcinoma; CRC, colorectal cancer; CARS, compensatory

anti-inflammatory response syndrome; DAMPs, damage-associated molecular patterns; MODS, Multifil

organ dysfunctions syndrome; LPS, lipopolysaccharide; MDD, major depressive disorder; FMT, fecal

microbiota transplantation.
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products of their metabolism beyond the mucosal barrier. In this review, we

briefly summarize the interactions between the gut microbiota and the immune

system and human disease and their therapeutic probiotic formulations. We also

discuss the immune response to traumatic injury.
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1 Introduction

The interactions between the host immune system and the

microbiota that live in the human gastrointestinal (GI) tract,

known as the gut microbiota, constitute a dynamic area of

research. Metabolites from the gut microbiota interact both directly

and indirectly with host immune cells, playing important roles in

inflammatory signaling (1). The absorption and digestion of nutrients

are facilitated by gut microorganisms. By secreting digestive enzymes

and boosting enzymatic activity, gut microorganisms contribute

significantly to the host’s nutritional digestibility and aid in

nutrient harvesting (2). Inflammation and host immunity are

closely regulated by the gut microbiome. Dietary probiotics

increase immunity and reduce host animal inflammatory reactions

(3). The gastrointestinal tract is among the body’s important

immunological organs (4). The intestinal barrier, which protects

the host from infections, is a multilayer system made up of

immunological, chemical, mechanical, and microbiological barriers

(5). Certain bacteria metabolize complex carbohydrates to produce

short-chain fatty acids (SCFAs), which influence host immune cells

and provide colonocytes with carbon (6, 7). Traumatic injury initiates

a complex and dynamic immune response within minutes of initial

injury; these reactions are a direct result of tissue injury and

hemorrhage instead of an infection (8). This “sterile inflammation”

is usually caused by immune cell release of damage-associated

molecular patterns (DAMPs) from necrotic and injured cells (9),

cytokine release, and complement activation (10). Traumatic injury

causes approximately 8% of all deaths worldwide each year, making it

one of the most common causes of death worldwide (11). Trauma is

caused by earthquakes, typhoons, fires, traffic accidents, falls from

high altitudes, etc. (12). Furthermore, the cumulative incidence of

severe trauma has been rising globally over the past decade (13).

Immune system control, food metabolism, human growth and

development, and other critical physiological processes are

influenced by intestinal microbes (14). In both health and disease

control, the relationship between the host and microbes is important.

The diversity of the gut microbiota is strongly influenced by several

host characteristics, including age, environment, nutrition, and

lifestyle. Nonetheless, food is believed to be one of the main

variables (modifiers) involved in adjusting the gut microbiota (15).
02
The human microbiome exhibits promising potential for modifying

malnutrition, enhancing nutrient uptake, and using energy from

diverse food sources. Additionally, microbes are essential for the

metabolism of xenobiotics. Different gut microorganisms change the

chemical structures of medications, pollutants, and numerous

insecticides during xenobiotic metabolism (16). An essential part of

the immunological barrier is formed by diffuse immune cells and gut-

associated lymphoid tissue (GALT). Because gut-associated lymphoid

tissue can detect and scavenge harmful microorganisms, it can

prevent abnormal immune responses and preserve the equilibrium

of host immunity. The nuclear factor kappa-B (NF-kB) signaling

pathway and Toll-like receptors (TLRs) are involved in the

development of immunological tolerance (17, 18). Numerous

studies have detailed the tremendous impact that commensal

bacterial metabolites have on immune cells, including conventional

T lymphocytes (adaptive response) and dendritic cells (innate

immunity). However, the local presence of T cells also helps the

immune system mount quick effector responses (19). The gut

microbiota and host immunity have intricated, dynamic, and

context-dependent relationships. Here, we summarize and highlight

significant recent findings as well as fundamental ideas that connect

the microbiome to immune system development and function. In

addition, we discuss the challenges and potential benefits of using

microbiome-targeted approaches to investigate the etiology of disease

and the human immune system’s response to traumatic injury.
2 The gut microbiota and
immune dysregulation

The gastrointestinal tract (GIT) harbors a substantial collection

of microorganisms known as the gut microbiota. The human gut

consists of a population of approximately 1000 species and 7000

different types of bacteria, mostly gram-negative Bacteroidetes

(which include Bacteroides and Prevotella) and gram-positive or

gram-negative Firmicutes (including the species Lactobacillus,

Eubacterium, and Clostridium). The gut microbiota comprises

genes that are 100–150 times more abundant than those found in

the human genome (20–22). The majority of the gut microbial

community is composed of the fol lowing five phyla:
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Verrucomicrobia, Actinobacteria, Proteobacteria, Firmicutes, and

Bacteroidetes (22, 23). The bacterial population in the small

intestine is quite low, particularly in the duodenum and jejunum.

This is because of the relatively fast movement of the bacteria and

the low pH caused by several digesting enzymes (24). Aerobes,

facultative anaerobes, and anaerobes are among the organisms

found in the gut. A total of 99% of the gut microbiota comprises

anaerobes (25). The intestinal microbiota can be divided into three

groups based on how they affect the gut (26), (1) physiological

bacteria, which are the predominant anaerobic bacterial

communities found in the gastrointestinal system and primarily

consist of Bacteroides, Lactobacillus, and Bifidobacterium; (2)

opportunistic pathogens, which include Klebsiella pneumonia and

Escherichia coli and are primarily facultative aerobes; and (3)

pathogenic bacteria, such as Clostridium perfringens (27). Within

the human host, the gut microbiota functions as a “superorganism,”

assisting in food absorption, generating metabolites that nourish the

host, guarding against infection, preserving the structure and

function of intestinal epithelial cells, and controlling host

immunity (28, 29). In a state of balance known as “eubiosis,” the

gut microbiota exists in healthy individuals. However, when a

disease occurs, the gut microbiota enters an unbalanced state of

dysbiosis when a decrease in helpful commensals, an increase in

opportunistic pathogens, or both occur (30). During pregnancy, the

embryo’s stomach inside the uterus is sterile (31). However, as soon

as the baby comes into contact with the community, microbes begin

to colonize the gastrointestinal system, creating a stable gut

microbial population (32). Bifidobacterium species are among the

first microorganisms to populate the gut. The newborn’s delivery,

postnatal nutrition, gestational age, degree of hygiene, and medicine

all have an impact on the dynamics of gut microbiome colonization

(33). The gut microbiota composition is influenced by genetic

factors, the environment, age, and food (34).

The gastrointestinal (GI) tract, also known as the digestive

system, is a complex system responsible for breaking down food,

absorbing nutrients, and eliminating waste products. It includes the

mouth, esophagus, stomach, small intestine, large intestine (colon),

and anus. The GI tract plays a vital role in maintaining overall

health, and any disorders or diseases in this system can significantly

impact quality of life. Some common conditions affecting the GI

tract include irritable bowel syndrome (IBS), gastroesophageal

Reflux Disease (GERD), Inflammatory Bowel Disease (IBD),

Peptic Ulcer Disease, Gastroenteritis (inflammation of the

stomach and intestines), and Cancer.

The intestine consists of multiple layers including the mucosa,

submucosa, muscularis propria, and serosa. The mucosa is of

particular interest in terms of the microbiome and includes the

epithelium, lamina propria, and muscular mucosa (35). The inner

most epithelial layer is held together by complex junctions. From

the most superficial, these include tight junctions, adherens

junctions, and desmosomes (36). Together, these prevent

intestinal contents from translocating outside the gastrointestinal

tract but can be affected by various disease states. The mucosa and

gut epithelial cells act as physical barriers to prevent endotoxemia

and infections. Short-chain fatty acids (SCFAs) and secondary bile

acids (SBAs), two metabolites of the gut microbiota, control gut
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permeability through immunomodulation. Th1 differentiation and

effector activity are enhanced in naïve T cells by the gut microbiota-

derived metabolite inosine, which is generated by Bifidobacterium

and A. muciniphila (37). Intestinal permeability is thought to be

increased by gut microbiota dysbiosis due to a “leaky gut,” which

permits opportunistic pathogens and their microbial products/

toxins to enter the bloodstream and eventually mount an

inflammatory response. Therefore, gut microbiota-mediated

immune responses are critical for preventing intestinal

permeability (38, 39). Numerous recognized metabolites,

including those that are sulfur- and phenol-containing and that

can damage intestinal epithelia, interfere with intercellular tight

junctions (TJ), and promote bacterial translocation, provide

support for this idea (40). These outcomes result in inflammatory

diseases, immune cell dysfunction, and an inability to eradicate

invasive pathogens (41). The intestinal microbiota has a role in the

maturation and development of the early immune system.

Dysregulation of the microbiota-gut-brain axis can result in

metabolic, psychological, and neurological diseases (42).

Tight junction (TJ) proteins play a crucial role in maintaining

intestinal permeability, which is essential for regulating the

interactions between the microbial community in the gut and the

immune system. TJ proteins, such as occludin, claudins, and

junctional adhesion molecules (JAMs), form a barrier between

intestinal epithelial cells, controlling the passage of molecules and

ions through the paracellular pathway. When TJ proteins are

disrupted or altered, intestinal permeability increases, allowing

toxins, undigested food particles, and microorganisms to cross the

epithelial barrier and interact with the immune system. This

increased permeability can lead to, activation of immune cells, such

as macrophages and dendritic cells, which can trigger pro-

inflammatory responses, Increased antigen presentation, leading to

an enhanced immune response and potentially contributing to

autoimmune diseases. Changes in the gut microbiota composition,

as altered permeability can influence the growth and survival of

different microbial populations, and Production of pro-inflammatory

cytokines, which can further exacerbate intestinal permeability and

contribute to a vicious cycle of inflammation. Conversely, a healthy

intestinal epithelial barrier, maintained by intact TJ proteins, prevent

excessive microbial translocation and reduces immune system

activation. Promote a balanced gut microbiota, supporting immune

homeostasis and enhancing the production of anti-inflammatory

cytokines, contributing to a tolerant immune environment.
3 Interaction between the gut
microbiota and host immunity

The host’s innate and adaptive immune systems are trained and

developed in particular by its microbiome, and the immune system

coordinates the preservation of important aspects of host-microbe

symbiosis (43). The gut microbiota, mesenteric lymph nodes,

specialized epithelial cells, innate and adaptive immune cells, and

related metabolites make up the majority of the intestinal immune

system (44). The metabolites produced by gut microbes are
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important for inflammatory signals because they interact with host

immune cells both directly and indirectly (1). Through intestinal

epithelial cells, the gut microbiota and metabolites can control the

growth and activity of the immune system (45). The immune

system consists of two branches, innate and adaptive, which

interact to defend the body against both internal and external

threats. The “first line of defense” is the innate immune system,

which responds quickly and broadly to an immunological stimulus.

Granulocytes, natural killer cells, dendritic cells, and macrophages

are components of innate immunity; they engulf pathogens and

release cytokines and chemokines. Cytokines generate lymphocytes,

such as B cells, which generate antibodies specific to the particular

pathogenic insult, and T cells, which are primarily divided into

helper T cells, cytotoxic T cells, and regulatory T cells (Treg cells).

These cells are the foundation of adaptive immunity in addition to

drawing in more innate immune cells (46).
3.1 The gut microbiota and innate
immune system

3.1.1 Gut-associated lymphoid tissues and the
mucosal defense system

GALTs line the direct path between the host and the

environment and are a component of mucosa-associated
Frontiers in Immunology 04
lymphoid tissues (MALTs). Innate immune cells in GALTs serve

as the first line of defense for the gut mucosa. The primary

responsibilities of immune cells include nonspecifically identifying

pathogens, triggering the innate immune response, and presenting

antigens to trigger the adaptive immune system downstream.

GALTs play a critical role in maintaining immunological

tolerance to commensal bacteria. The balance between the human

immune system and the gut microbiota depends on the dual role

of GALTs.

The mesenteric lymph nodes (mLNs), appendix, isolated

lymphoid follicles (ILFs), Peyer’s patches, and crypt patches are

the principal histological components of GALTs (Figure 1) (47).

M cells, one of the constituent cells of GALTs, are capable of

transferring antigens but cannot process or display them (48);

conventional lymphocytes, such as helper T cells (Th cells) (49);

and additional atypical lymphocytes, such as innate lymphoid cells

(ILCs) (50). The innate immune cells include membranous cells,

neutrophils, eosinophils, basophils, natural killer cells, and

macrophages. In particular, neutrophils and macrophages may

consume pathogens because of their phagocytic activity. Innate

immune molecules contain complement, lysozyme, and interferon

(IFN). Nucleotide binding, oligomerization domain-like

receptors, Toll-like receptors (TLRs), and other pattern

recognition receptors are necessary for the activation of

nonspecific host immunity (51). Several studies have revealed
FIGURE 1

Host immune responses to the intestinal microbiota. To maintain intestinal homeostasis, a number of immune mechanisms interact with gut bacteria
in harmony. Through Toll-like receptors (TLRs), goblet cells secrete mucin glycoproteins, plasma cells release IgA, and epithelial cells secrete
antimicrobial proteins. After migrating to Peyer’s patches and mesenteric lymph nodes, where B cells develop into IgA-secreting plasma cells,
dendritic cells (DCs) absorb microorganisms. Furthermore, intestinal DCs isolated from Bacteroides fragilis polysaccharide A (PSA) induce regulatory
T (Treg) cells, which are responsible for producing IL-10. Furthermore, the microbiota composition can be altered by antimicrobial proteins secreted
by host cells. M cell; interleukin 10 (IL-10). Macrophages carry out their regular duties after migrating to the digestive tract lamina propria.
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that the gut microbiota is necessary for the structural assembly of

GALTs. The systemic immune response and the local

immunological response to the gut microbiota are largely

dependent on GALTs. Through Pattern Recognition Receptors

(PRR-PAMP recognition and epigenetic modulators such as

SCFAs, the gut microbiota changes the structural development

of GALTs and primes their immunological response to activate

host defense functions and maintain tolerance against commensal

bacteria. In the pathophysiology of autoimmune illnesses, GALTs

—particularly mesenteric lymph nodes—are the first to trigger

gut-driven immune responses, which may have changed the

immune response at the systemic level (52).

To protect the host body from infections, redundant systems

make up the defense mechanisms. The two primary PRRs that are

involved in the initial recognition of the gut microbiota are Toll-like

receptors (TLRs) and nucleotide-binding oligomerization domain

(NOD) molecules (53). The primary and most researched class of

pattern recognition receptors (PRRs) is the Toll-like receptor (TLR)

family. In the intestine, PRRs are extensively expressed on and in

IECs, as well as in macrophages and dendritic cells (DCs). Pathogen-

associated molecular patterns (PAMPs) on both pathogens and

commensals are recognized by PRRs (54). An adequate immune

response to a microorganism is triggered once it has been identified,

internalized, or entered the epithelial layer (53). A plethora of

intracellular signaling pathways, such as those involving kinases,

transcription factors, and adaptor molecules, are activated by PRRs

upon recognition of PAMPs. This signaling induces infection in the

host and initiates proinflammatory and antimicrobial responses.

Signal transduction pathways caused by PRR ultimately lead to the

activation of gene expression and the manufacture of various

molecules such as cytokines, chemokines, cell adhesion molecules,

and immunoreceptors. The protective effects of proinflammatory

cytokines, such as IL-8, IL-12, and IL-23, are mediated by the

downregulation of these cytokines, while T regs produce anti-

inflammatory cytokines, such as IL-10 (55, 56). DCs expose naive

T cells to antigens, and the release of anti-inflammatory cytokines

initiates both local and systemic tolerance (57). IECs, immune cells,

and metabolites of the intestinal flora can all mediate crosstalk

between the innate immune system and the intestinal flora. By

binding to g protein-coupled receptors (GPCRs), SCFAs can

control the release of inflammatory and anti-inflammatory

compounds, such as TNF-a, from immune cells and IECs. Anti-

inflammatory molecules include b-defensins. Moreover, SCFAs

influence IECs via a variety of signaling pathways to promote the

formation of mucus layers. By binding to GPR131 and the farnesoid

X receptor (FXR), secondary bile acids (SBAs) control the expression

of immunological chemicals, including antimicrobial peptides, by

macrophages and IECs. By attaching to the pregnane X receptor

(PXR) and the aryl hydrocarbon receptor (AhR), tryptophan

metabolites regulate the release of immunological chemicals such as

IL-22 by IECs and ILC3s (58). Through GPR109a, SCFAs also

promoted the differentiation of T cells into Treg cells and inhibited

the growth of Th17 cells by causing the production of IL-10 and

aldehyde dehydrogenase 1a1 (Aldh1a1) in intestinal macrophages

and dendritic cells (DCs) (59). Furthermore, valeric acid decreases the

expression of IL-17a, which supports intestinal homeostasis, and
Frontiers in Immunology 05
increases IL-10 production in Th17 cells by enhancing glycolysis

through HDAC inhibition (60). Butyrate increases Th1 cell

expression of B lymphocyte-induced maturation protein 1 (Blimp-

1), which stimulates the production of IL-10 and reduces the

propensity of Th1 cells for inflammation. These effects are

mediated by GPR43 and activate the STAT3 and mammalian

target of rapamycin (mTOR) pathways (61).

3.1.2 Innate lymphoid cells
The innate compartment of GALTs is composed primarily of

innate lymphoid cells (ILCs). Recombinant activating gene (RAG)-

mediated antigen receptor gene rearrangements are not necessary

for the generation of ILCs, which is the primary characteristic that

sets ILCs apart from T or B cells (62). T cells mediate cell-mediated

immunity, while B cells mediate immunity. B cells can become

memory B cells and plasma cells after becoming activated by an

antigen; plasma cells can then release antibodies. Like

immunoglobulins, antibodies include IgA, IgD, IgE, IgG, and

IgM. Helper T cells (Th cells), memory T cells, cytotoxic T cells

(Tc cells), and regulatory T cells (Treg cells or Tregs) are the

different types of T cells. Target cells are attacked by cytotoxic T

lymphocytes, which then cause the target cells to undergo apoptosis.

Through the secretion of many cytokines, helper T cells can assist

Tc and B cells in performing immune responses. Treg cells

modulate the immunological response. Due to its influence on T-

cell activation and the regulation of IgA secretion, the gut

microbiome plays a role in the control of particular immune

systems (63). The development of B cells, which are responsible

for producing antibodies, is facilitated by the gut microbiota. Short-

chain fatty acids, which are products of the gut microbiota, promote

the development of B cells into cells that produce antibodies (64).

Flagellin from symbiotic strains stimulates the production of

retinoic acid, which can cause B-cell differentiation (65). There

are three main subpopulations of ILCs. Like Th1 cells, Group 1 ILCs

secrete the signature cytokine interferon (IFN)-g in a manner

dependent on T-bet or TBX21 (66). Group 2 ILCs are

distinguished from Th2 cells by their reliance on GATA3 and

their capacity to release IL-5 and IL-13 (67–69). Group 3 ILCs

release the indicator cytokines IL-17 and IL-22 and, like Th17 and

Th22 cells, need on the transcription factor RORgt (69). Group 3

ILCs consist of the CD4+ CD3– CCR6+ subset, namely, LTi cells,

and the ILC3 subpopulation that does not express the tissue homing

factor CCR6 (70).

3.1.3 Natural killer cells
Conventional natural killer (cNK) cells are known as the only

cytotoxic population of ILCs. The ability of these cells to

discriminate between “nonself” and “self” through the signaling

pathway system, which comprises activating and inhibitory

receptors, makes them special (71). The cNK cell pool comprises

a tissue-resident compartment and a circulating compartment. A

considerable fraction of circulating cNK cells is found in the blood

and primary lymphoid organs, such as the spleen and bone marrow.

The majority of the biological characteristics of the tissue-resident

cNK cell compartments in the gut intraepithelial layer and lamina

propria layer are shared with other cNK cell compartments (72). In
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1413485
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ullah et al. 10.3389/fimmu.2024.1413485
contrast to circulating cNK cells, these cNK cells have greater

cy to tox ic i ty and cytok ine genera t ion capac i ty . The

pathophysiology of autoimmune disorders is unclear in relation

to the importance of the variable cNK cell phenotype between the

afflicted tissue and periphery. However, comparing these cNK cells

to circulating cNK cells revealed greater cytotoxicity and cytokine

generation capacity. However, the importance of the variable cNK

cell phenotype between the afflicted tissue and periphery is still

unknown (73). Future research is needed to determine the precise

role that cNK cells play in the pathophysiology of autoimmune

disorders, particularly to about the activating and inhibitory

receptors that are influenced by the gut microbiota.

3.1.4 Phagocytes: macrophages and
dendritic cells

The immune cell population that is closely associated with the

gut microbiota consists of phagocytes, which include macrophages

and dendritic cells, as well as other nonimmune cells, such as IECs,

that can present antigens and carry out phagocytosis. The immune

system’s ability to recognize pathogenic microbes and tolerate

symbiotic bacteria is greatly aided by gut phagocytes, which are

essential for maintaining gut homeostasis.

The resident macrophages in the gastrointestinal tract are

notable for their tissue residency. The lamina propria,

intraepithelial layer, epithelial layer, and GALT feature Peyer’s

patches, isolated lymphoid follicles, and mLNs are the primary

locations of gut macrophages. A significant fraction of gut

macrophages (Tim-4- macrophages) are produced directly from

circulating monocytes, in contrast to tissue-resident macrophages

in other organs, such as the skin or liver (74). Moreover, the gut

microbiota may influence the primitive hematopoiesis of myeloid

cells in the yolk sac early on and in the bone marrow later on, which

may facilitate the development of peripheral myelocytes, including

macrophages. Due to a compromised host defensive immunological

response mediated by myeloid cells, the absence of gut commensal

flora greatly increases vulnerability to bacterial infection (75).

Dendritic cells share some of the features of macrophages, such

as their distribution in the gut and phagocytosis. However, dendritic

cells are special because of their potent capacity to present antigens

to the adaptive immune system and digest them. Two subsets of

gut-dendritic cells can be distinguished by differences in the

expression of CD11b, the chemokine receptor CX3 CR1, and

CD103 (aE integrin) (76). The presence of gut commensal flora

allows CD103+ dendritic cells to migrate from the intestine to

mLNs, where they can then stimulate T-cell migration to the gut

lumen to initiate an immune response through chemotaxis, which is

dependent on CCR7 (77). Another unique type of dendritic cell,

CD103–CD11b+ CX3 CR1+, resembles macrophages but is less

effective at activating T cells and migrating. Nonetheless, this

particular subset of dendritic cells is thought to possess the ability

to generate transepithelial dendrites, engulf invasive enteric

pathogens, and subsequently present and process antigens (78).

However, when there is a dysbiosis of the gut microbiota, as in the

Salmonella infection model, CD103+ dendritic cells congregate in

the enteric epithelium layer and form trans-epithelial dendrites to
Frontiers in Immunology 06
phagocytose pathogenic bacteria (79). However, research using the

Myd88-knockout mouse model, the antibiotic-induced colitis

model, and the dextran sulfate sodium (DSS)-induced colitis

model all led to the same conclusion: CX3 CR1+ dendritic cells

show a great ability to migrate to mLNs and present antigens (80).

Dysbiosis, on the other hand, may disrupt the balance of the

immune system, leading to the presentation of self- or

commensal flora-associated antigens in an improper way that

exacerbates disease.
3.2 The gut microbiota and
adaptive immunity

Adaptive T cells are the primary contributors to cellular

immunity and protect the host’s homeostasis from immune-

mediated inflammatory diseases. The gut microbiota can promote

T-cell development, enabling T cells to quickly react to signals from

the intestinal lumen environment and mount adaptive immune

responses (81).

3.2.1 Gut microbiota CD8+ T and CD4+ T cells
T cell growth, function, and differentiation are impacted by the

commensal microbiota to maintain host immunological

homeostasis. T cells, which are divided into CD4+ and CD8+ T

cells, are primarily responsible for regulating adaptive immune

responses. Cytotoxic CD8+ T-cell activity and Th cell polarization

are induced by a particular commensal microbiome (82).

Nonetheless, upon monoclonal colonization, the intestine

adaptive immune phenotype is severely disrupted by a particular

strain of Fusobacterium varium. Compared to other bacteria, F.

varium induced a higher frequency of colonic double-negative cells

(CD4−CD8−TCRb+) and dramatically decreased the populations

of CD4+ and CD8+ T cells. Furthermore, F. varium significantly

inhibited a broad set of genes involved in the metabolism of bile

acids, which has been demonstrated to be intimately linked to

immunological function (83). A recent study demonstrated that the

microbiome functions as an antigen for T cells and that some

microorganisms, such segmented filamentous bacteria (SFB), aid in

the formation of thymic T cells that are specific to the microbiota.

These cells are classified as CD4+ T cells and CD8+ T cells, and

their primary function is to regulate adaptive immune responses

(84). Immune protection against intracellular pathogens, such as

viruses and bacteria, as well as tumor surveillance, depend mainly

on CD8+ T cells (85). Recent research has shown that CD8+ T-cell

activity is mediated by microbial metabolites. Two important

SCFAs, butyrate and propionate, limit the activation of CD8+ T

lymphocytes via regulating the synthesis of IL-12 through antigen-

presenting cells (APCs) (86). According to Luu et al., pentanoate

generated by Megasphaera (M.) massiliensis stimulates effector

CD8+ T-cell activity. Adoptive T-cell treatment was found to be

more effective when M. massiliensis was present, as evidenced by

higher expression of TNFa and IFNg (87). The innate and adaptive

immune systems’ wide range of immunological responses are

controlled by natural killer T (NKT) cells. By releasing cytokines,
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they have the ability to destroy target cells and alter the immune

response (88). Sphingomonas species are representative NKT cell

stimulators and are gram-negative bacteria that are primarily found

in the natural environment. NKT cell activation and IFNg release
are stimulated by glycosphingolipids and glycosylceramides from

Sphingomonas because they function as microbial antigens (89). By

inhibiting NKT cell growth in neonatal mice, sphingolipids made by

B. fragilis regulate homeostasis. This suggests that the NKT cell-

microbiota network is essential for maintaining the delicate balance

between excessive inflammation and defensive responses. Hepatic

NKT cell accumulation is impacted by microbial bile acids, which

mediate CXCL16 expression. Bile acids changed by Clostridium

species raise the levels of CXCL16 in liver sinusoidal endothelial

cells. Furthermore, hepatic NKT cell recruitment has demonstrated

remarkable anticancer effects on EL4 lymphoma tumors (90, 91).

The development of CD4+ T helper cells into subsets with a variety

of effector roles that are best suited for host defense against invasive

pathogens—such as Th1s, Th2s, Th17s, Tfhs, and iTregs—is a

critical step in the adaptive immune response process (92).

Immune system homeostasis is largely dependent on the balance

among these subtypes.

3.2.2 Regulation of gut microbiota Th1 cells
Th1s and Th2s mediate distinct immune responses on the basis

of their unique expression patterns of cytokines and transcription

factors (93). Th1 cell responses are induced in the gut by the

Klebsiella (K.) genus, which includes K. aeromobilis and K.

pneumoniae. The colonized Klebsiella treatment of GF mice

intestines promotes Th1 cell proliferation and results in Th1 cell

augmentation in the intestine (94). It has also been demonstrated

that probiotic bacteria alter Th1 cell function. Th1 cells are closely

connected to the probiotic Lactobacillus strains that are used.

Lactobacillus (L.) plantarum (95) and L. salivarius (96) enhanced

the production of Th1 cytokines, tumor necrosis factor alpha

(TNFa), and interferon gamma (IFNg). Furthermore, through the

activation of macrophages, lactobacillus strains isolated from

fermented foods increase TNFa release while concurrently

decreasing levels of the Th2 cytokine interleukin (IL)-4 (97). Th2

cells release IL-4, IL-5, and IL-13, which are important components

of humoral immunity, helminth infection defense, and the

development of chronic inflammatory disorders such allergies and

asthma (98). It has been found that some strains of Lactobacillus

and B. fragilis suppress Th2 activity by enhancing Th1 activity first

(97, 99). Th17 cells are responsible for the production of IL-17, a

strong proinflammatory cytokine that damages tissue and plays a

role in the etiology of autoimmune and inflammatory

diseases (100).

3.2.3 The gut microbiota and Th17 cells
Th17 cells are T cells that are highly proinflammatory and

implicated in immune clearance from extracellular fungi and

bacteria (101) and play a critical role in the intestinal mucosal

immune defense system. Th17 cells also use class switch
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recombination to stimulate B-cell proliferation and antibody

production (102), It is necessary for the development of tertiary

lymphoid follicle-like structures and ectopic lymphoid follicles in

target organs (103, 104). Th17 differentiation is generally induced

by the synergy between transforming growth factor-b (TGF-b) and
IL-6, and the development and maintenance of Th17 cells are

supported by IL-23 (105). Through a number of methods, the gut

microbiota promotes the constitutive production of Th17 cells in

the LP (106). Initially, the combination of IL-6 and TGF-b to

enhance Th17 development is only activated when DCs identify and

phagocytose infected apoptotic cells (107). Another important

indicator of Th17 induction is the adherence of commensal

bacteria to ECs. SFB is one of the most potent Th17 inducers

among symbionts (108, 109). According to Koji and Ivanov, gut

microorganisms control the development of Th17 cells. Following

investigations, it was shown that gram-positive segmented

filamentous bacteria (SFB), also known as “Candidatus

Arthromitus,” stimulate the development of Th17 cells and the

release of various cytokines, including IL-17 and IL-22 (110, 111).

Prevotella is an additional bacteria that causes strong Th17 cell and

cytokine release in the colon of mice (112).

3.2.4 Regulatory effect of the gut microbiota
on Tregs

Treg cells are essential for immune response modulation,

immunological homeostasis, and immune tolerance to self-and

nonself-innocuous antigens, all of which contribute to the prevention

of autoimmune disorders (113). Treg cells are similarly impacted by

Bifidobacterium strains, and it has been demonstrated that

Bifidobacterium (Bi.) infantis and Bi. Bifidum operate to stimulate

the production of Treg cells (114). Lacticasei bacillus casei stimulates the

growth of Treg cells and the release of IL-10, while Lactobacillus strains

are involved in the differentiation and activity of Treg cells (115). By

targeting the majority of immune cells, tregs can either directly or

indirectly induce immunological tolerance through contact-dependent

mechanisms, immunomodulatory cytokines (such as IL-10, TGF-b,

and IL-35), or metabolic disruption of target cells (116). Tregs are

divided into two major categories inside the host. Induced regulatory T

(iTreg) cells are generated de novomostly by naïve conventional T cells

in the intestinal immune niche, while CD4+CD25+Foxp3+ natural

regulatory T (nTreg) cells develop from immature precursor cells in the

thymus (117). The majority of intestinal Tregs (iTregs) are separated

into two categories based on the expression of extra TFs. The first

subset consisted of the colon’s predominant RORg+ Treg cells. These

cells are important regulators of Th17 and group 3 innate lymphoid

cells, and they also express the nuclear hormone receptor RORg and the

transcription factor c-Maf (118). The second subtype of Helios- and

Gata3-expressing cells were Helios+ Treg cells, which are primarily seen

in the small intestine and are associated with pathways relevant to IL-33

(119). According to research, colonic Treg induction can be effectively

induced by any one of the five Bacteroides species (Bacillus intestinalis,

Bacillus caccae, Bacillus thetaiotaomicron, Bacillus vulgatus, and Bacillus

massiliensis) (120).
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4 Short-chain fatty acid
microbial metabolites

SCFAs are saturated fatty acids with chain lengths ranging from

one to six carbon atoms and are the main products of the

fermentation of dietary fiber in the colon (121). The gut produces

between 500 and 600 mmol of SCFAs each day, depending on the

diet’s fiber level (122). Acetate (C2), propionate (C3) and butyrate

(C4) are the most abundant SCFAs in the human body and the most

abundant anions in the colon (123). After intraluminal injection in

an isolated rat colon loop, acetate and butyrate, but not propionate,

enhanced mucin secretion. Butyrate altered the expression of the

MUC2 gene, which in turn promoted the formation of mucin in the

colon of mice (124). Some bacteria, including Faecalibacterium

prausnitzii, Roseburia intestinalis, and Anaerostipes butyraticus

(125), ferment to break down complex carbs and produce short-

chain fatty acids (SCFAs) (6), which control the immunological

system of the host and provide colonocytes with carbon (7). As a

fundamental part of the innate immune system, intestinal epithelial

cells (IECs) use both passive and active mechanisms to identify and

ingest stem cell factor (SCFAs), which have an impact on the

intestinal milieu. The majority of ingested butyrate is metabolized

by IECs, whereas the liver mostly absorbs propionate, and larger

amounts of acetate enter the bloodstream. The production of

transforming growth factor b (TGF-b) in IECs is induced by

butyrate derived from commensal bacteria. This process is

mediated by the inhibitory effect of butyrate on histone

deacetylase (HDAC) and through transcription factor-specific

protein binding to the core promoter. This leads to the expression

of TGF-b1 in IECs and the subsequent convergence of Tregs in the

gut (126, 127). The gut microbiota, particularly butyrate-producing

bacteria, ferments fibers into fermentation products such as SCFAs

when the gut is in a homeostatic state. The activation of

mitochondrial oxidation is dependent on peroxisome proliferator-

activated receptor gamma (PPAR-g), which is stimulated by these

SCFAs. This results in a decrease in epithelial oxygenation.

Additionally, SCFAs, including GPR109A, GPR41, and GPR43,

which reduce inflammation in the gastrointestinal tract, directly

bind G protein-coupled receptors (GPCRs) on the surface of

immune cells and epithelial cells. When SCFAs enter host cells by

diffusion or transport, their metabolism occurs, and/or histone

deacetylase (HDAC) activity is inhibited (128). Enterobacteriaceae

use virulence factors to induce neutrophil transepithelial migration

during dysbiosis of the gut. This migration reduces the luminal

concentration of short-chain fatty acids, including butyrate, by

depleting SCFA-producing bacteria. The ensuing metabolic

reprogramming of the epithelium increases lactate and oxygen

(O2) bioavailability in the lumina (128).
5 Gut microbiota dysbiosis in
human disease

Dysbiosis of the human gut microbiome has been linked to a

variety of diseases (22). Studies on humans and animals have
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shown that gut dysbiosis—indicated by differences in the variety

and frequency of the microbial population that makes up the gut

flora—is associated with immunological dysregulation, aberrant

brain protein aggregation, inflammation, and decreased neuronal

and synaptic maturation (129). The intestinal microbiota has been

shown to play a major role in both health and disease based on the

findings of current epidemiological, physiological, and omics-

based investigations as well as cellular and animal studies (130).

Although the field of study on the complex gut microbiota is still

in its early stages and there is still a lack of understanding about its

functional characteristics, some encouraging studies have revealed

that they point to an enormous opportunity for revolutionizing

both therapeutic approaches and the pathophysiology of diseases

(130–132). Several studies have provided evidence in favor of the

concept that the gut microbiota regulates immunity, energy

homeostasis, weight gain or loss, and illnesses associated with

obesity (133).

Food supplements and diets have a large impact on the microbial

makeup of the gut and how it changes over time. High-fat diets

increase the risk of developing conditions, including diabetes,

metabolic syndrome, and obesity, all of which are connected to

notable alterations in the composition of the gut microbiota. The

probability of intestinal dysbiosis increases when the circadian

physiological rhythm is disturbed, and this may contribute to the

etiology of a number of inflammatory and metabolic diseases,

including cancer, diabetes, and intestinal inflammatory diseases

(134). Dysbiosis of the gut, or unfavorable changes in the makeup of

gut microbes, can lead to inflammation, oxidative stress, and insulin

resistance in addition to weakening the mucosal barrier and

dysregulating immunological responses. The translocation of bacteria

and their metabolic products across the mucosal barrier, as well as

chronic dysbiosis of the gut, can lead to a rise in the prevalence of

several disorders. An altered gut microbiota has been linked to several

serious human diseases, including obesity, diabetes, hypertension, and

neurological and neurodevelopmental abnormalities (22, 130).

Similarly, several nonalcoholic fatty liver diseases (NAFLDs),

inflammatory bowel disorders (IBDs), hepatocellular carcinoma,

cardiovascular diseases (CVDs), alcoholic liver disease (ALD),

chronic kidney diseases (CKDs), and cirrhosis are associated with

gut microbiota and its metabolites (135–137). A state called “dysbiosis”

refers to the variation in the gut microbiota composition, which causes

many diseases, including inflammatory bowel disease (IBD), diabetes,

obesity, neurological disorders, cardiovascular disease, colorectal

cancer, and autoimmune diseases as shown in Table 1.

A substantial amount of immune cell activation and cytokine

release during severe trauma cause microvascular constriction,

tissue hypoxia, and a significant amount of neutrophil activation

and aggregation, which are subsequently coupled with adhesion

molecules. It increases the permeability of capillaries and allows a

high number of inflammatory cells to infiltrate distant organs by

acting on the surface of endothelial cells (9). Proinflammatory and

anti-inflammatory chemicals are in dynamic equilibrium during the

physiological response stage, and the immune system ’s

inflammatory response is largely stable to prevent an overly

strong inflammatory response or immunosuppression and to

lessen additional trauma-related tissue damage (152). The gut
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TABLE 1 Gut microbiota dysbiosis and associated human disease.

Disease Causation vs bacteria that decrease Changes in microbiota or increase
in number

Reference

Colorectal cancer Prevotella, Ruminococcusspp.,
Pseudobutyrivibrio ruminis

Acidaminobacter,
Phascolarctobacterium, Citrobacter farmer

(138)

Liver disease Alistipes, Bilophila, Veillonella,
Faecalibacterium, Ruminococcus,
Bifidobacterium, Prevotella, Coprococcus, Veillonellaceae,
Prevotellacopri, Faecalibacterium,
Haemophilus

Claustridum, Bacteroidetes,
Betaproteobacteria, Lactobacillus.,
Collinsella, Corynebacterium,
Prevotellaceae, Ruminococcus,
Sarcina, Sutterellaceae,
Enterobacteriaceae, Bacteroidaceae

(139)

Diabetes: Diabetes
type1

Lactobacillus, Bifidobacterium, Blautia coccoides, Eubacterium
rectal, Prevotella, Firmicute

Clostridium, Bacteroides, Veillonella (140)

Diabetestype2 Firmicutes, Clostridia, Lactobacillus,
Eubacteriumrectale

Bacteroids-PrevotellaVerses
Clostridiacocoides, Betaproteobacteria,
Bacteroidetes/Firmicutes

(141)

HIV Clostridia, Bacteroidia, Lactobacilli,
Bifidobacteria

Erysipelotrichaceae, Proteobacteria,
Enterobacteriaceae, Candidaalbicans
Pseudomonas aeruginosa

(142)

Alzheimer
disease

Probiotic treatment did not meaningfully change other factors
including oxidative stress and inflammation, but it may have a
good impact on AD patients’ cognitive function.

probiotic supplementation containing: Bifidobacterium bifidum
Lactobacillus casei,
Lactobacillus fermentum and Lactobacillus acidophilus,

(143)

Parkinson
disease

When mucosal and stool samples with Parkinson’s disease,
several genes were shown to be downregulated in the stool
microbiota of these people; the microbiota composition of the
mucosal and stool samples was linked to substantial changes in
patients with PD.

Bacterial increase: Proteobacteria, Betaproteobacteria,
Coprococcus, Blautia, Akkermansia, Oscillospira, Roseburia,
Bacteroides; bacterial decrease: Faecalibacterium,
Firmicutes, class Clostridia

(144)

Parkinson
disease

Change in the fecal microbiota may contribute to the
development of PD; Prevotellaceae was decreased in people
with Parkinson’s disease, and a high abundance of this genus
was not indicative of having PD; Prevotellaceae may serve as a
biomarker to rule out PD because of their great abundance.

Bacteria decrease,
Provotellaceae; the abundance of
Ruminococcaceae could be associated with levels
of Provotellaceae

(145)

Autism Children with autism have higher concentrations of Suterella
spp. in their feces, and Ruminococcus torques is also more
prevalent and may be linked to GI issues in these kids.

Bacteria increase: Ruminococcus torques and Suterella (146)

Autism A less diversified microbiome was found in autistic children,
and the intestinal microbiota was linked to GI problems.
Bacteria reduction: Veillonellaceae Coprococcus and Prevotella;
main phyla in the microbiota of patients with autism:
Bacteroidetes and Firmicutes;

most rich genera: Akkermansia, Bifidobacterium, Bacteroides,
Faecalibacterium, and Subdoligranulum

(147)

Autism Detected a connection between bacterial populations and genes
expressed in the colon of autistic children; the source of these
intestinal abnormalities is still under investigation.
Bacteria decrease: Bacteroidetes

Bacteria increase; Bacteroidetes, Firmicutes, Lachnospiraceae
and Ruminococcaceae, Betaproteobacteria,

(148)

Depression GF animals colonized with a “depression microbiota “had
additional symptoms compared
to control GF animals.
Bacteria reduction: Acidaminococcaceae,
Rikenellaceae, Lachnospiraceae,
Veillonellaceae, Bacteroidaceae, and Sutterellaceae

Lactobacillaceae Coriobacterineae, Clostridiales,
Streptococcaceae, Actinomycineae
Lachnospiraceae Erysipelotrichaceae, Ruminococcaceae, and
Eubacteriaceae:

(149)

Depression An improved understanding of the association between the
microbiota and occurrence of particular bacteria with
symptoms associated with depression resulted from
examination of fecal samples from people with and without
depression.
Bacteria lessening: Prevotellaceae Erysipelotrichaceae,
Lachnospiraceae., Veillonellaceae Bacteroidaceae,
and Ruminococcaceae

Rikenellaceae Enterobacteriaceae,
Acidaminococcaceae, Porphyromonadaceae,
and Fusobacteriaceae,

(150)

Anxiety Probiotic administration has been linked to better mental
health; nevertheless, this probiotic combination had no

Probiotic supplement Lactobacillus casei, Bifidobacterium
logum, LA5 and Bifidobacterium lactisBB12, Bifidobacterium

(151)

(Continued)
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microbiota controls the development and operation of immune

cells that live in the central nervous system, including microglia

(153), and influences peripheral immune cell activity, which

controls the immune response of the central nervous system

(154). The complicated ecosystem known as the gut microbiota is

necessary for tissue healing, nutrient metabolism, and host defense

against infection (155). Food-related sensory stimulation is absent

from enteral nutrition delivery, although it can modulate the

intestinal flora to control the inflammatory response. After

trauma, the body needs more energy than usual, which is

reflected in a high metabolic state. Several trials have

demonstrated that emulating feeding increases salivation,

efficiently stimulates gastrointestinal motility, removes oral germs

and viruses, and significantly improves depressive symptoms

(156, 157).
6 Trauma

Trauma is the term used to describe the destruction of tissue

structure, dysfunction, and/or psychological damage caused by

environmental, biological, chemical, physical, or psychological

factors (158). Physical trauma consists of injury to the body, such

as from accident, fall or violence, while the psychological trauma

consists of emotional and mental injury resulting from extreme

stress or shock, such as abuse, neglect or witnessing a

traumatic event.
6.1 Traumatic brain injury and
gut microbiota

Numerous preclinical and human investigations have been

done to understand how traumatic brain injury (TBI) affects

dysbiosis and the intestinal microbiota. Acute fecal microbiome

studies following traumatic brain injury show alterations in bacteria

composition and diversity compared to controls 24 hours after

injury (159). Hou et al. demonstrated changes in microbial

composition, variations in beta diversity at days 3 and 7, and a

decrease in alpha diversity at 3 days after injury in male rats with

TBI (160). Bao et al. reported modifications in the microbial

composition but failed to find any abnormalities in alpha- or

beta-diversity seven days after damage in a male mouse model of

TBI (161). Nicholson et al. examined the microbiome at two

hours24 hours, 3 days, and 7 days following traumatic brain

injury, they discovered acute reductions in alpha-diversity by day

three, shifts in beta-diversity at days one and three, and

modifications in the makeup of microorganisms (162). In the
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same way, a male mouse model of TBI demonstrated a significant

drop in the Chao1 index one hour after damage, which continued

for a week along with changes in beta-diversity and microbial

composition (163). In a different study, male rats with traumatic

brain injury (TBI) showed sustained abnormalities in beta-diversity

at 4, 30, and 60 days after injury, although microbiome alterations

in terms of alpha-diversity at 3 days vanished after 1 month (164).

Zhang et al. showed jejunal injury only 2 hours after TBI and

hemorrhagic shock in rats, with evidence of caspase-1-positive cells

and pyroptotic cells which resolved by day 30 (165). When male

mice were given a TBI, examination of the small intestine revealed

villous reduction, a decrease in Paneth cell lysozyme present, and an

increase in caspase-3 levels, which are suggestive of apoptosis (159).

Some investigations looked into possible links between dysbiosis

and bone formation, post-traumatic epilepsy, neurologic sequelae,

and post-traumatic stress disorder in light of the results of

microbiome changes following traumatic brain injury. According

to the study, post-traumatic epilepsy can be categorized according

to the makeup of microbes (166). One day after TBI, a mouse study

revealed an abrupt drop in the expression of neuronal markers in

the duodenum and colonic tissue, which may have an impact on

intestinal peristalsis (167). A study reported 34 patients with

moderate or severe traumatic brain injury (TBI) were compared

to 79 patients without TBI, 297 people with no TBI, and one of the

biggest human investigations of the fecal microbiota post TBI (168).

Brenner et al. collected samples from patients who suffered from

moderate to severe traumatic brain injury (TBI) an average of 28

years after the injury. They found no differences in the microbial

composition, alpha-diversity, or beta-diversity between these

patients and those who had no or mild TBI, indicating that

dysbiosis following TBI resolves at this later stage (168).
6.2 Spinal cord injury and gut microbiota

Spinal cord injury (SCI) has also been studied to evaluate gut

dysbiosis postinjury, although mainly in female animal subjects.

Kigerl et al. performed T9 spinal cord contusion in female mice,

they saw a drop in Bacteroidales and an increase in Clostridiales in

the fecal microbiome at five distinct intervals over the process of 28

days following injury (169). A contusion at the T8–10 level caused

spinal cord injury in female mice, which, two weeks after injury,

showed reduced abundance of Bacteroidetes and increased

Firmicutes and Proteobacteria and differences in beta-diversity

and microbial composition. The sham groups only underwent

laminectomy (170). The study demonstrated increased expression

of proinflammatory factors interleukin-1 beta and interleukin-12 in

the small intestines of injured animals after four weeks (171). A
TABLE 1 Continued

Disease Causation vs bacteria that decrease Changes in microbiota or increase
in number

Reference

negative effects on the hypothalamic−pituitary−adrenal
(HPA) axis.

breve, Lactobacillus acidophilus, Lactobacillus rhamnosus,
Lactobacillus, thermophilus,
bulgaricus Streptococcus
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study of T10 spinal cord contusion in mice showed beta-diversity

differences between injured mice and controls along with different

makeup of microbes at seven days postinjury (172). Studies on

humans have also been conducted to assess how spinal cord damage

affects the microbiome, revealing changes in its diversity and

composition. Within 60 days of the injury, Baz Zocchi et al.

examined the intestinal microbiota of 100 patients and found no

variations in alpha-diversity, although they did find changes in beta

diversity (173). Along with characterizing the microbial makeup of

these patients, they also noted that the degree of dysbiosis varied

according to the degree and completeness of spinal cord injury, and

that patients with spinal cord injury had high concentrations of

Methanobrevibacter, Streptococcus, Enterococus, Klebsiella, and

Akkermansia (173). Compared to healthy controls, Zhang et al.

observed a decrease in alpha-diversity (Simpson), changes in beta-

diversity, and an abundance of genera like Bacteroides, Blautia,

Lachnoclostridium, and Escherichia-Shigella in the fecal

microbiome of 43 male patients with complete spinal cord

injuries at least six months after the injury (174). Patients who

suffered acute SCI had an abundance of Sutterella and Odoribacter

whereas long-term SCI patients had more Clostridiales (175). At an

average of 5.6 months after the injury, Yu et al. examined the

intestinal microbiome of 21 patients with complete SCI and 24

patients with incomplete SCI. They discovered that both groups’

shifts in beta-diversity were similar to those of healthy controls, but

that complete SCI patients’ shift was more pronounced than that of

incomplete SCI patients (176). Lactobacillaceae, Lachnospiraceae,

Eubacterium, Clostridium, and Sutterella were abundant in

incomplete SCI patients, while Coriobacteriaceae, Syngergistetes,

Eubacterium, and Cloacibacillus dominated the gut microbiomes of

complete SCI patients (176). Over all studies demonstrated that the

level of SCI was correlated with gut microbiota profiles.
6.3 Multiple trauma and gut microbiota

Several studies on animals have been carried out to comprehend

the potential effects of multiple traumas on the intestinal barrier and

microbiome. In animal research, more severe models of multiple

injuries, known as polytrauma, have shown both acute and long-

term dysbiosis. Nicholson and colleagues evaluated male rats that

underwent a polytrauma model consisting of a femur fracture,

hemorrhagic shock, and crush injuries to the liver, small intestine,

and skeletal muscle of an extremity. The fecal microbiota was

assessed two hours after the injuries (177). This group observed

that whereas alpha-diversity remained unchanged, beta-diversity

drastically changed along with changes in the microbial makeup;

injured rats had high Lachnospiraceae abundances (177). A

different study of multiple injuries in male rats—a laparotomy,

crush injuries to the liver and skeletal muscles, and a femur fracture

with hemorrhagic shock—showed differences in beta-diversity and

changes in the composition of the microbiome, with higher levels of

Roeburia and Enterobactericeae and lower levels of Rothia and

Streptococcus. However, no significant differences in alpha-

diversity were found at this early stage (178).
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Several studies have been conducted in humans to understand

the effects of multiple and severe injuries on the intestinal

microbiome. Burmeister et al. studied 67 trauma patients with an

average injury severity score (ISS) of 21 and performed a rectal swab

on admission and characterized the microbiome acutely postinjury

(179). This group identified that higher alpha-diversity was

correlated with increased survival; in addition, shifts in beta-

diversity postinjury were correlated with body mass index, sex,

length of hospital stay, length of intensive care unit stay, and

mortality. This study also correlated decreased Firmicutes and

blooms of Prevotella and Corynebacterium in the intestinal

microbiome on admission with survival (179). Nicholson et al.

studied 72 patients admitted after severe injury with an average ISS

of 21 and evaluated changes in the microbiome with serial samples

taken over the course of almost two weeks (180). These results

revealed a rise in alpha-diversity at the beginning of the hospital

stay, but by day five, there was a noticeable decline that lasted for

nearly two weeks without any recovery (180). Similar to this, these

individuals experienced sustained beta-diversity alterations upon

admission, which were even found to be connected with the severity

score of their injuries (180). In addition, compared to healthy

controls at all times, trauma patients in this study displayed a

distinct microbiome profile marked by an abundance of

Proteobacteria and a depletion of Firmicutes (180).

Studies investigated into several treatments to lessen this dysbiosis

in light of the compelling evidence showing the formation of a

pathobiome following a single or a series of injuries. Pre-injury

inulin administration was studied for two months in the same

murine model, and the results showed a change in beta diversity in

the cecal contents at 24 hours, 1.5 months, and three months after the

injury, along with a decrease in pathogenic bacteria and an increase in

bacteria that produce short-chain fatty acids (181). In mice with

traumatic brain injury, Li et al. provided Clostridium butyricum, a

probiotic that produces butyrate, for two weeks prior to and two weeks

following the injury. The results showed that the treatment preserved

colonic occludin expression and reduced the expression of

inflammatory markers in the colon. Additionally, the treated mice

showed fewer brain edema, less neurologic degeneration, and less

neuronal apoptosis (182). Ma et al. revealed enhanced alpha-diversity

and restoration of microbial composition coupled with neuroprotective

effects after giving Lactobacillus acidophilus to mice for one, three, or

seven days following traumatic brain injury (183). In a study by Jing

et al., they used melatonin to treat a spinal cord contusion in a murine

model. After four weeks, the treated mice showed improved postinjury

locomotor testing, restored commensal bacteria in the intestinal

microbiome, and had decreased intestinal permeability with

increased expression of zonulin and occludin in the colon (184).

Hou et al. studied a model of brain injury in male rats and showed

that administration of brain proteins and Lactobacillus and

Bifidobacterium probiotics resulted in elevated alpha-diversity and

decreased intestinal permeability compared to untreated counterparts

in addition to decreased circulating inflammatory cytokines within two

weeks of injury (160). In a study conducted by Brenner et al., 16 TBI

patients were given Limosilactobacillus reuteri daily for 8 weeks. The

patients’ plasma C-reactive protein levels were found to decrease with
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this probiotic, but there were no differences in alpha- or beta-diversity

or microbial composition when compared to the placebo group (185).
6.4 Immune response to traumatic injury

Traumatic injury initiates concurrent systemic inflammatory

response syndrome and anti-inflammatory compensatory anti-

inflammatory response syndrome (CARS) (186), caused by tissue

damage and hemorrhagic shock, which triggers the release of

damage-associated molecular patterns (DAMPs) from necrotic and

injured cells. Through the activation of pattern recognition receptors

(PRRs), DAMPs activate immunological and complement cells (9),

causing the cytokines that initiate the systemic inflammatory response

to be released to progress (187). Additionally, there is growing evidence

that links DAMP levels to immunological suppression after surgery

and acute injury (188). High-mobility group box protein 1 (HMGB1) is

a type of DAMP that has been demonstrated to be elevated in the blood

after trauma (189), in nuclear and mitochondrial DNA, and in heat

shock protein 13 (190). The function of DAMPs in trauma has been

thoroughly studied elsewhere (191). Within one hour of injury, trauma

patients’ plasma has noticeably higher levels of HMGB1, the most

extensively researched DAMP after trauma (191), with levels according

to the severity of the injury, the start of sepsis, and Multifil organ

dysfunctions syndrome (MODS) (189). In immune cells, HMGB1 has

a variety of proinflammatory effects, including enhancing cytokine

release, reactive oxygen species (ROS) generation (192), and

chemotaxis (193). Additionally, HMGB1 directly impacts the

vascular endothelium by promoting neutrophil adherence, elevating

endothelial permeability, and upregulating the production of adhesion

molecules and cytokine release (194, 195). DAMP-induced cytokine

production is thought to be a major initial component of the systemic

inflammatory response to trauma (196). Increased levels of

proinflammatory cytokines/chemokines, such as interleukin (IL)-1b,

IL-6, IL-8, granulocyte colony stimulating factor (G-CSF), and tumor

necrosis factor a (TNFa), have been reported in a number of

investigations involving critically injured individuals (188, 197).

These alterations appear quite quickly following the original injury

and continue in the hours and days that follow (197, 198). The levels of

numerous anti-inflammatory mediators, including transforming

growth factor-b1, the IL-1 receptor antagonist, and IL-10, also

increase in the circulation at the same time (198). Compared to

patients without multiple organ dysfunction syndrome (MODS),

patients with MODS have higher pro- and anti-inflammatory

cytokine levels upon hospital admission (197, 198). Interestingly,

whole blood from trauma patients treated with lipopolysaccharide

(LPS) produced fewer cytokines/chemokines than whole blood from

healthy controls. This could lead to increased susceptibility to infection

following severe damage (199). Major modifications in neutrophil

function and phenotype are also carried out by traumatic injury

(200). Patients with severe injuries have been found to have surface

expression of CD62L (lower) and CD11b (higher), which are

indications of neutrophil activation (199). Decreased effector

functions (such as phagocytosis and responsiveness) and

immunosuppressive neutrophils may be responsible for trauma
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patients’ increased susceptibility to infection (201). Similarly, there is

a rise in lymphocyte counts during the hyperacute (<2 h) window after

injury (202), and activation of the former is primarily linked to notable

increases in the populations of CD4+, CD8+, and circulating natural

killer (NK) T cells (202). However, over time, the level of lymphocytes

in circulation decreases, and as early as four hours after injury,

significant lymphopenia has been observed in a number of studies

involving trauma patients (202, 203). Reductions in CD4+, CD8+, NK,

and gdT-cell populations have been observed, and these alterations in

T-cell numbers rather than B-cell numbers are responsible for the

overall decrease in lymphocyte number (199, 202). Despite tremendous

progress, there are still many unknowns regarding the immunological

response to severe injury. Preclinical animal models are essential for

improving our fundamental understanding and creating new treatment

approaches that target posttraumatic conditions such as sepsis and

multiple organ dysfunction syndrome (MODS), as clinical research can

be complex, suggesting that early intervention might be important

(204). Blood products are considered to provide numerous advantages

for severely injured patients, including improving tissue perfusion,

replacing lost clotting factors, and restoring endothelial function. They

are regarded as a crucial component of damage-controlled resuscitation

(205). However, the impact of these resuscitation products on the

immune system’s reaction to trauma is still mostly unclear.
7 Therapeutic implications of
gut microbiota

The gut microbiota mediates the efficacy and toxicity of

chemotherapy and immunotherapy. The gut microbiota is to be used

as biomarkers to predict treatment response or adverse reactions and,

at the same time, to be modulated for improving treatment and patient

outcomes (206). Probiotics are live bacteria that affect the gut

microbiota of the host to produce positive effects (207). Two of the

most commonly used probiotic bacteria, Lactobacillus and

Bifidobacterium species, have been shown to enhance mucosal

trophic effects by inducing responses from the intestinal epithelial

cell barrier, inhibiting pathogen colonization, stabilizing the preexisting

microflora, and improving immune system responses (208, 209). The

Bifidobacterium breve probiotic strain (CCFM1025) has demonstrated

positive effects on reducing gastrointestinal and psychological

abnormalities in patients with major depressive disorder (MDD)

(210). Lactobacilli and Bifidobacteria, two well-known probiotic

strains, play key roles in maintaining gut and mental homeostasis

(211). Because of their psychotropic characteristics, lactobacilli and

bifidobacteria are classified as psychobiotics because they can enhance

behavior in people who are depressed or anxious (211, 212). The

Lactobacillus plantarum strain PS128 has been shown to reduce

anxiety-like behavior and sadness in tested animals according to a

study by Liu et al. on adult mice with and without early stress induction

(212). According to research by Tao et al., the probiotic Lactobacillus

GG releases soluble molecules that stimulate the p38 MAPK pathway

to synthesize heat-shock proteins, thereby protecting intestinal

epithelial cells from damage (213). Another study revealed that in

patients withmild tomoderately active ulcerative colitis (UC), VSL#3, a
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high-potency probiotic medical food comprising eight different strains,

could cause remission and prevent inflammatory disease relapse (214,

215). Other probiotics, such as Bifidobacterium bifidum, L. acidophilus

(216), and L. reuteri ATCC55730 (217), have also been associated with

positive outcomes in IBD patients according to previous reports.

Furthermore, the benefits of probiotics have been linked to the

restoration of goblet cell quantity and function as well as the

induction of protective immunoglobulin secretion by the mucosal

immune system in the intestinal tract, including secretory IgA,

protective defensins, and bactericidins (218). Pre- and probiotic

formulations used as food supplements that are also used as

psychobiotics must adhere to the quality requirements of the World

Health Organization legislation. These requirements include the need

for formulations to contain specific microbial strains that are

sufficiently characterized, safe for intended use, supported by positive

results from human clinical trials, designed in accordance with

scientific standards or recommendations from local/national

authorities, and, last but not least, viable and effective at the

appropriate dose during storage (219, 220). Several types of pre- and

probiotic preparations or novel foods might be considered possible

formulations considering their influence on disease incidence.

Emerging evidence suggests that gut microbiota can mediate the

anticancer effects of some chemotherapeutic agents, including 5-

fluorouracil (221), cyclophosphamide (222), gemcitabine (223),

through several mechanisms such as microbial translocation,

immunomodulation, metabolism, enzymatic degradation, and

reduced ecological diversity (224). Since experimental research

indicates that F. nucleatumcan triggers autophagy to confer resistance

to oxaliplatin and 5-fluorouracil, the role of gut microbiota in

chemotherapy resistance has also been examined (225). The gut

microbiota regulates the metabolism and side effects of irinotecan

(CPT-11), a topoisomerase inhibitor prodrug of SN-38 that is

frequently used to treat colorectal cancer (226). The gut microbiota is

required for the effective immune response in immunotherapy (227),

and can affect the response to immune checkpoint inhibitors targeting

the programmed cell death 1 (PD-1)–programmed cell death 1 ligand 1

(PD-L1) axis (227, 228) and the cytotoxic T lymphocyte-associated

antigen 4 (CTLA-4) axis 228. Specific bacteria were positively correlated

with immunotherapeutic response, including Akkermansia muciniphila

(227), Bifidobacterium spp. (228), Eubacterium limosum (229), and

Alistipes shahii (230). Importantly, oral gavage ofA. shahii reconstituted

the immunotherapeutic response against colon tumors in antibiotic-

treated mice (230). In a study that combined shotgunmetagenome data

from three studies on anti-PD-1 antibody response, enrichment of A.

muciniphila and Ruminococcus champanellensisin responders to

immunotherapy was observed despite differences in the primary

studies (231). Probiotics restore the gut microbiota dysbiosis caused

by acute CNS injury, which greatly improves brain injury. One possible

target to help treat acute CNS damage is the gut microbiome (232).

Traumatic injury is linked to a GM that has a higher concentration of

several different commercially available probiotic species, such as

Eubacterium biforme, Oxalobacter formigenes, and Akkermansia

muciniphilia, but less unique organisms overall. When it comes to

therapeutic and diagnostic targets for traumatic injury, the GM is quite
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promising (179). This finding has led to the possibility of detecting these

core bacteria as predictive biomarkers for immunotherapy response.
8 Challenges and limitations in
immune-microbiome research

Recent research has greatly enhanced our understanding of the

intimate but complicated crosstalk between the microbiome and the

immune system. Nevertheless, many unknowns and challenges remain,

in disentangling microbiome immunity interactions in homeostasis

and disease (43). Different microbiota and metabolites are responsible

for immune activation, while on the other hand, persistent

inflammation can influence the dysbiotic structure and roles of

microbial communities. In most medical disorders, however, a direct

causal association between the microbiome and immunity prior to or

during the early stages of disease has not been established (43). Further

research is needed to fully understand the significance of other yet

underestimated microorganisms, such as viruses, fungi, and parasites,

and how they affect host immunity. Furthermore, a combination of

genetic and environmental factors (such as nutrition, smoking, etc.)

impact the development of numerous diseases with uncertain

etiologies, such as cancer, autoimmune arthritis, and IBD (233). The

relationship between the immune system and the microbiota in the

context of host genetics and environmental stimuli must be thoroughly

studied. It will be possible to better understand how the gut microbiota

and the immune system are cross-regulated in these various and

complicated circumstances by integrating multiomics data sets, such

as metagenomics, single-cell transcriptomics, epigenomics, proteomics,

and metabolomics. Importantly, the microbiome research community

mostly relies on laboratory mice in all of these endeavors, which has

limited translational potential and reproducibility when compared to

“real-life” situations because they have a different microbiota from

“wild” animals and people (234).

The microbiota is currently only studied from one or a few aspects

using methods like 16s rRNA amplicon sequencing for microbiota

profiling or shotgun metagenomic WGS for WGS. In contrast, the

human microbiota plays a complex, multifaceted role in the

pathogenesis of disease. This role is characterized by interactions

with the host that are both structural (such as the profiling of

microbial composition) and functional (such as the identification of

entire genetic pathways). Additionally, these interactions are mediated

by a variety of small molecules, such as metabolites, catabolites, and

signal molecules (235). The challenges specific to multi-omics include

the variability of results resulting from different software pipelines and

an over-reliance on the few publicly available and carefully curated

microbiome databases, which restrict the information to well-

characterized microorganisms, transcripts, proteins, and metabolites

(235). Due to the several difficulties that contemporary microbiota

research must overcome, our understanding of the intricate web of

interactions between resident bacteria and the host is still restricted.

Budgetary constraints have prevented most research from fully

analyzing the human microbiota from a compositional perspective.

This has resulted in a dearth of knowledge regarding the complex
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network of genes, proteins, and metabolic processes that may be

necessary to determine the microbiota’s etiopathogenetic role (236).

There are still significant obstacles to be addressed in this area,

including the need for more sophisticated and all-inclusive

bioinformatic tools to be made more widely available so that non-

bioinformaticians can also benefit from the information that can be

gleaned from meta-omics data and for the cost of analysis per sample

to be lowered in order to make the data more accessible. Additionally,

the lack of standardization in sample collection from various locations,

transportation, and storage, along with the use of heterogeneous

methods for genomic DNA extraction, may introduce bias into the

results by adding to the variability in the quality of bacterial DNA

isolation and partially removing contaminating host DNA.
9 Conclusions and future directions

Both clinical and preclinical studies have suggested that a large

number of immunological mechanisms are linked to the gut

microbiota and a large number of human diseases. Preclinical and

clinical trials should be conducted to better understand how

microbiota can interact with human immune system and disease.

Dysbiosis can be caused on by an unhealthful diet, which includes

taking too many antibiotics and consuming little fruits and

vegetables. The functional importance of intestinal dysbiosis in

maintaining intestinal homeostasis, inducing the intestinal

epithelium’s immune response, and interacting with other factors

via genetic or epigenetic mechanisms is making it an increasingly

important risk factor. The intestinal microbiota is subjected to

changes in both host and exogenous factors, but how dysbiosis is

triggered and leads to chronic inflammation is largely unknown.

Treatment of dysbiosis through fecal microbiota transplantation

(FMT) or prebiotic administration has produced favorable results

in clinical trials; however, both the safety and efficacy of these

treatments must be determined before they can be considered

therapeutic strategies. Targeting the gut microbiota and its

metabolism for autoimmune diseases may be a promising

therapeutic and diagnostic approach. Our understanding of

immune responses to traumatic injury has rapidly increased in the

last decade, but preclinical animal models have played a significant

role in this progress. Future studies must clarify the underlying links

between the GM and immune cell mechanism and response to

trauma. Trauma itself has a greater impact on gut flora and

immune cells. However, the mechanism is still unclear. Probiotics,

including psychobiotics, are crucial in maintaining body homeostasis

in all disorders that have been studied. In the future, additional

research should focus on the impact of psychobiotics on the health

status of patient age range, health issues, and genetic background and

on single- and multi probiotic formulations, dosage, and time of

administration. Future innovations may involve the creation of

synthetic prebiotics and targeted probiotics that are specifically

designed for an individual’s gut microbiota. Strategies to treat
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dysbiosis have centered on microbiota-based therapies, such as

probiotics, prebiotics, precision editing of the microbiota, or fecal

microbiota transplantation, since it was discovered that alterations in

the microbiota composition can contribute to chronic human

diseases. To find these metabolite-producing gut bacteria for

medicinal uses, more research is needed. To provide more effective

medications and diagnostics, more research should be done on

the effects of prebiotic and probiotic use on human health.

The probiotics, prebiotics, and postbiotics’ ability to alter the

composition of gut microbiota and the immune system hold great

promise as a new medical frontier. The gut microbiota to be used as

biomarkers to predict the treatment of patient. These include

methodological difficulties in determining the optimal biomarker

combinations and thresholds, scientific difficulties in verifying

biomarkers across various populations, and technical difficulties in

creating a patient screening test that is both convenient and

reasonably priced. Overcoming these challenges will require

evaluating multiple biomarkers in different ethnic groups of

patients to derive the best diagnostic algorithm across populations.
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a definition. Am J Clin Nutr. (2001) 73:361s–4s. doi: 10.1093/ajcn/73.2.361s

208. Shanahan F. Probiotics in perspective. Gastroenterology. (2010) 139:1808–12.
doi: 10.1053/j.gastro.2010.10.025

209. Sheil B, Shanahan F, O'Mahony L. Probiotic effects on inflammatory bowel
disease. J Nutr. (2007) 137:819S–24S. doi: 10.1093/jn/137.3.819S

210. Tian P, Chen Y, Zhu H, Wang L, Qian X, Zou R, et al. Bifidobacterium breve
CCFM1025 attenuates major depression disorder via regulating gut microbiome and
tryptophan metabolism: A randomized clinical trial. Brain behavior Immun. (2022)
100:233–41. doi: 10.1016/j.bbi.2021.11.023

211. Burnet PWJ, Cowen PJ. Psychobiotics highlight the pathways to happiness. Biol
Psychiatry. (2013) 74:708–9. doi: 10.1016/j.biopsych.2013.08.002

212. Liu Y-W, Liu W-H, Wu C-C, Juan Y-C, Wu Y-C, Tsai H-P, et al. Psychotropic
effects of Lactobacillus plantarum PS128 in early life-stressed and naÃ¯ve adult mice.
Brain Res. (2016) 1631:1–12. doi: 10.1016/j.brainres.2015.11.018

213. Tao Y, Drabik KA, Waypa TS, Musch MW, Alverdy JC, Schneewind O, et al.
Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat
shock proteins in intestinal epithelial cells. Am J Physiology-Cell Physiol. (2006) 290:
C1018–C30. doi: 10.1152/ajpcell.00131.2005

214. Sood A, Midha V, Makharia GK, Ahuja V, Singal D, Goswami P, et al. The
probiotic preparation, VSL# 3 induces remission in patients with mild-to-moderately
active ulcerative colitis. Clin Gastroenterol Hepatol. (2009) 7:1202–9. e1.

215. Shen J, Zuo Z-X, Mao A-P. Effect of probiotics on inducing remission and
maintaining therapy in ulcerative colitis, Crohn's disease, and pouchitis: meta-analysis
of randomized controlled trials. Inflamm Bowel Dis. (2014) 20:21–35. doi: 10.1097/
01.MIB.0000437495.30052.be

216. Kato K, Mizuno S, Umesaki Y, Ishii Y, Sugitani M, Imaoka A, et al. Randomized
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active ulcerative colitis. Alimentary Pharmacol Ther. (2004) 20:1133–41. doi: 10.1111/
j.1365-2036.2004.02268.x

217. Oliva S, Di Nardo G, Ferrari F, Mallardo S, Rossi P, Patrizi G, et al. Randomised
clinical trial: the effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in
children with active distal ulcerative colitis. Alimentary Pharmacol Ther. (2012)
35:327–34. doi: 10.1111/j.1365-2036.2011.04939.x
Frontiers in Immunology 19
218. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY.
Assessment of probiotic potential and anticancer activity of newly isolated vaginal
bacterium Lactobacillus plantarum 5BL. Microbiol Immunol. (2014) 58:492–502.
doi: 10.1111/1348-0421.12175

219. Simon E, Clinoiu LF, Mitrea L, Vodnar DC. Probiotics, prebiotics, and
synbiotics: Implications and beneficial effects against irritable bowel syndrome.
Nutrients. (2021) 13:2112. doi: 10.3390/nu13062112

220. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, et al. Criteria to qualify
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