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Inflammation is a normal immune response in organisms, but it often triggers

chronic diseases such as colitis and arthritis. Currently, themost widely used anti-

inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are

accompanied by various adverse effects such as hypertension and renal

dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for

inflammation and mitigate side effects. Herein, this review focuses on the

therapeutic effects of various BAPs on inflammation in different body parts.

Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating

inflammation, such as regulating the release of inflammatory mediators,

modulating MAPK and NF-kB signaling pathways, and reducing oxidative stress

reactions for immunomodulation. This review aims to provide a reference for the

function, application, and anti-inflammation mechanisms of BAPs.
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1 Introduction

Inflammation is a normal immune response of the body’s innate and adaptive immune

systems to infections (1), which can protect the body from damage caused by external toxins

and stimuli (2). It is a way to self-heal, repair damaged tissues, and combat pathogens (3).

However, the attack of inflammatory factors will result in cellular necrosis and the reduction

of metabolic and immune functions, eventually leading to tissue damage and organ

dysfunction. The duration of inflammation is different, which could be divided into acute

and chronic inflammation (4). Many chronic diseases are associated with inflammation,

including arthritis, inflammatory bowel disease (5), cardiovascular diseases (6), osteoporosis

(7), cancer (8), and obesity (9). Therefore, combating inflammatory damage is one of the

major health challenges of the 21st century. Non-steroidal anti-inflammatory drugs

(NSAIDs), such as aspirin and ibuprofen, are a class of chemically synthesized anti-

inflammatory drugs that do not contain steroid structures (10). They are the most widely
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used anti-inflammatory drugs. However, numerous studies have

shown that NSAIDs have various side effects on the host, including

hypertension, nephrotic syndrome, cardiovascular toxicity, acute

renal failure, and gastrointestinal complications (1). Additionally,

antibiotics can be used to treat inflammation, but they can induce to

the emergence of antibiotic-resistant superbugs. Therefore, there is an

urgent need to explore new strategies for anti-inflammation. Since the

first antimicrobial peptide Cecropins was discovered in 1981, the

antibacterial and anti-inflammatory activity of peptides has attracted

more and more attention from academia (11). Research has described

that the peptide GPETAFLR possessed anti-inflammatory activity,

effectively inhibiting neuroinflammation and maintaining stability in

the central nervous system (12).

BAPs refer to short-chain amino acid sequences with active

biological functions within organisms, typically consisting of 2 to 20

amino acid residues interconnected by peptide or amide bonds (13).

The arrangement and combination of these amino acid residues are

different and can form linear or cyclic structures (13). The sources of

BAPs are diverse, mainly including animals, plants, microorganisms,

marine organisms, soy products, milk, and fermented products (14).

When BAPs remain inactive within parent proteins, they can become

active upon enzymatic release through peptide cleavage (15). Apart

from being generated through the hydrolysis of parent proteins, BAPs

can also be produced via microbial fermentation. In order to obtain

BAPs with specific activity, specific proteases with a wide range of

functions are usually used for hydrolysis (16).

Peptides offer several advantages over traditional drugs in

disease treatment (17). For example, their low molecular weight

allows them to penetrate membranes effectively (18, 19), making

them more potent (20). Furthermore, bioactive peptides (BAPs)

have the potential for targeted therapy with minimal or negligible

toxicity, even at low concentrations (21). Inflammation occurs after

the activation of inflammatory pathways by triggering factors,

leading to the release of inflammatory agents (22). Concurrently,

the anti-inflammatory characteristics of BAPs may be influenced by

molecular weight, amino acid composition (hydrophobic amino

acids, positively charged amino acids, specific amino acids), and

amino acid position (3).

This review provides a detailed overview of the research status

of BAPs in the treatment of skin inflammation, intestinal

inflammation, pulmonary inflammatory disease, arthritis, and

ocular inflammation. Subsequently, it delves into the

immunomodulatory mechanisms employed by BAPs in the

treatment of inflammation, such as regulating the release of

inflammatory mediators, modulating mitogen-activated protein

kinase (MAPK) and nuclear factor kB (NF-kB) signaling

pathways, and reducing oxidative stress response for

immunomodulation. The aim is to seek new strategies for

inflammation treatment and provide references for the

development and application of anti-inflammatory peptides.
2 The functions of BAPs

BAPs exhibit a wide array of functions including antimicrobial,

ant ioxidat ive , ant i- inflammatory, memory-enhancing,
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antithrombotic and antihypertensive activities, regulation of

gastrointestinal absorption, appetite suppression, opioid

modulation, immune modulation, and cell regulation. According to

different functions, BAPs are mainly divided into anti-inflammatory

peptides, antimicrobial peptides (AMPs), antioxidant active peptides,

anticancer active peptides, antihypertensive peptides, and

neuropeptides (Table 1). Anti-inflammatory peptides can modulate

immune responses and alleviate inflammation. They can suppress the

production of pro-inflammatory cytokines and the activation of

inflammatory pathways, or directly interact with immune cells.

BAPs with antibacterial activity are called AMPs.The activity of

AMPs may be attributed to their ability to effectively disrupt

bacterial cell walls or membranes with a strong negative charge,

exerting their action with cations and their hydrophobic effect (15).

They may also attack microbial membranes or cytoplasmic

components, altering their cellular functions and leading to cell

death (23). AMPs can inhibit the synthesis of cell walls, nucleic

acids, and proteins by engaging various enzymes within target cells

(23). AMPs possess minimal to provoke resistance (24), thereby

conferring a natural advantage over antibiotics for combating

microbial infections. Han et al. (25) discovered that AMPs

containing tryptophan can downregulate the expression of DNA

replication initiation genes in cells, consequently demonstrating

efficacy in combating multidrug-resistant Pseudomonas aeruginosa.

The antioxidant effect of BAPs can slow down or prevent cellular

damage (26). With the disturbance of the prevailing environment,

oxidative stress reactions occur, resulting in the release of free

radicals, which may contribute to health issues, including cancer,

cardiovascular, and other diseases (27). These peptides primarily

consist of 5-16 hydrophobic amino acids (27). They typically include

tyrosine, whose phenolic side chain serves as an important scavenger

of free radicals (28). Hydrophobic amino acids can increase the

penetration rate of peptides to cell membranes, and enhance the

ability of peptides to reach mitochondria, which is one of the main

sites of free radical production (29, 30). An important feature of the

antioxidant activity of BAPs is their hydrophobicity. It helps protect

the polyunsaturated fatty acids and other lipophilic targets from

oxidation (29, 30). Teng et al. (31) reported that jellyfish peptides

(JPHT-2) were effective antioxidants which could scavenge free

radicals. The peptides enhanced the levels of superoxide dismutase

(SOD) and inhibited oxidative damage by H2O2. Gao et al. (32)

reported a new anti-inflammatory peptide from sturgeonmuscle, and

found that it can effectively inhibit the release of NO, IL-6 and IL-1b,
increase the SOD activity in the LPS-induced RAW264.7 cells, and

down-regulate MAPK pathway. Zhou et al. (33) described that milk

casein-derived peptide OEPVL could regulate the release of nitric

oxide (NO) and the production of cytokines IL-4, IL-10, IFN-g, and
TNF-a in vivo, thereby achieving the purpose of inhibiting LPS-

induced inflammation.
3 Anti-inflammation of BAPs

As infection affects or damages different organs within the body,

an inflammatory response occurs to combat infection, address

injury, and facilitate self-repair. However, inflammatory factors
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1413179
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1413179
TABLE 1 The names/sequences and source of BAPs with different functions.

Species Peptide names/sequences Source Reference

Anti-inflammatory peptides

GPETAFLR Lupinus angustifolius L. (34)

DAPAPPSQLEHIRAA,
AADGPMKGILGY

Lateolabrax maculatus (35)

SSEDIKE Amaranth proteins (36)

Lectin Red algae Amansia multifida (37)

VHYAGTVDY Sturgeon muscle (32)

PRRTRMMNGGR Juice of cooked tuna (38)

KQSESHFVDAQPEQQQR Simulated gastrointestinal digestion of extruded
adzuki bean protein

(39)

MSCP Chanos chanos (40)

VVNEGEAHVELVGPKGNKETLEYES,
AMPVNNPQIHDFFL

Beans (Phaseolus vulgaris var. pint) (41)

WNLNP OPEH (Crassostrea hongkongensis) (42)

Antimicrobial peptides

Turgencin A Arctic sea squirt Synoicum turgens (43)

Myticusin-beta Mytilus coruscus (44)

Temporin-1CEh Rana chensinensis (45)

EQLTK Bovine a-L A (46)

ISGLIYEETR,
IGNGGELPR,
ILVLQSNQIR

Saccharina longicruris (47)

cNK-2(RRQRSICKQLLKKLRQQLSDALQNNDD) Chicken NK-lysin (48)

Clavanin-MO
(FLPIIVFQFLGKIIHHVGNFVHGFSHVF-NH2)

Hemocytes of marine tunicates (48)

Phylloseptin-PV1 Phyllomedusa vaillantii (49)

GDVIAIR Chia seed (50)

TSKYR,
STVLTSKYR,
TSKYR

Human hemoglobin: active peptide a137-141 (51)

AGLAPYKLKPIA Ovotransferrin (52)

YPWTQR,
ITMIAPSAF,
DSYEHGGEP,
VVSGPYIVY

Egg yolk (53)

Antioxidant active peptides

GGAW Octopus (54)

JPHT-2 Jellyfish (31)

WSVPQPK Human b-CN (55)

VPP,
IPP

Whey protein concentrate (WPC) (56)

GAPGPQMV Skipjack tuna (K. pelamis) bones (57)

GPGGFI N. septentrionalis skin (58)

SMRKPPG Peony (P. suffruticos) seed (59)

YFPH Limanda aspera (60)

GFPGRLDHWCASE Flaxseed (Linum usitatissimum) (61)

Finger millet (Eleusine coracanac) protein hydrolysate (62)

(Continued)
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can attack cells, leading to cell death, reduced cellular metabolism,

and compromised immune function (3). BAPs can treat skin,

intestine, lung, joint and eye inflammation, etc (Figure 1). BAPs

can regulate the inflammatory pathways, the levels of cytokines or

gut microbiota, and alleviate oxidative stress (Table 2).
3.1 Skin inflammation

The skin serves as a physical barrier between internal and

external environments (107). Various factors can induce

inflammatory responses in the skin, primarily due to immune

dysregulation caused by internal diseases, infections, and allergic

reactions. Skin inflammation is a primary manifestation of chronic

autoimmune inflammatory diseases such as psoriasis, atopic

dermatitis (AD), and lupus erythematosus (108). Approximately,

60 million people suffer from psoriasis, a chronic, systemic,

immune-mediated inflammatory skin disease (109). As previously

described, the synthetic peptide LKEKK (150-500 mg) combined with
Frontiers in Immunology 04
Aldara cream containing 5% imiquimod was applied to the ears of the

imiquimod-induced psoriasis mouse model (80). After 6 days of

treatment, the thickness of mouse ears was significantly reduced,

indicating that the development of inflammation was effectively

inhibited. Traditional medications for AD often yield unsatisfactory

results. Lee et al. (83) reported a short peptide TPS240 and

investigated its therapeutic effect in a DNCB-induced AD mouse

model. The control group was treated with the same concentration of

dexamethasone. Finally, it was found that the symptoms of AD in the

TPS240 group were alleviated, and the skin damage was significantly

restored by using 5 mg/kg TPS240. The body weight of mice treated

with 5 mg/kg dexamethasone decreased and the organs contracted

abnormally. TPS240 exerts its anti-AD effect by inhibiting the

activation of NF-kB and STAT3, which is similar to

dexamethasone and has no side effects. These results indicated that

TPS240 would be a safe and effective drug for AD. Systemic lupus

erythematosus (SLE) is an autoimmune disease that can promote

chronic inflammation (110). It has been reported that the artificial

peptide pConsensus, which blocks the PD-1/PD-1 ligand 1 pathway
TABLE 1 Continued

Species Peptide names/sequences Source Reference

TSSSLNMAVRGGLTR,
STTVGLGISMRSASVR

VECYGPNRPQF Algae (Chlorella vulgaris) protein waste (63)

IDHY,
VVER

Water-soluble protein (Gracilariopsis chorda)
(64)

VLPVPQK Milk (65)

Anticancer active peptides

Callyaerins A-F,
Callyaerins H

Callyspongia aerizusa (66)

Bowman-Birk-type PI Phaseolus acutifolius (67)

Homophymine A Marine sponge Homophymia sp. (68)

FIMGPY Skate (Raja porosa) cartilage protein hydrolysate (69)

Antihypertensive peptides

IVDR,
WYK,
VASVI

Paralichthys olivaceus (70)

VHVV Soybean (71)

ERYPIL,
VFKGL,
WEKAFKDED,
QAMPFRVTEQE

Egg white hydrolysate (72)

DGVVYY Seed meal of tomato (73)

BCH,
BCH-III

Chicken blood (74)

PPL,
PAP,
AAP

Iberian dry-cured ham (75)

Neuroactive peptides

Doppelganger-related peptides Cone snail toxins (76)

Arginine vasopressin Hypothalamus (77)

Glucagon-like peptide-1 Proglucagon derived peptide (78)

Human urotensin-II Central nervous system (79)
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in untreated mice, promotes tolerance and inhibits SLE (111). Schall

et al. (112) reported the peptide P140 could clear harmful T and B

cells, and normalize the immune response in lupus-susceptible mice.

Additionally, due to the skin’s susceptibility to various injuries,

wounds disrupt its environmental barrier, leading to a cascade of

inflammatory responses. Controlling inflammation is crucial for

maintaining skin health. Li et al. (113) demonstrated that the

peptide OA-RD17 extracted from Odorrana-andersonii skin tissue

could activate MAPK to promote macrophage proliferation and

migration, block inflammation and propel wound healing by

inhibiting NF-kB. OA-RD17 could accelerate the regeneration of

full-thickness skin wounds in mice, showing that the repair rate of

skin wounds was nearly 100%. At the same time, it had a certain

repair effect on deep second-degree burns and isolated skin wounds

of diabetic patients. OA-RD17 could up-regulate the expression of

miR-632 and promote the regeneration of full-thickness skin wounds

in rats, and the repair rate reached 92.4%. Therefore, BAPs with their

antimicrobial and immune-modulating functions offer efficacious

therapeutic approaches for wound healing and skin inflammation.
3.2 Intestinal inflammation

The intestine plays a crucial role in human health, serving as a site

for digestion and nutrient absorption, and the largest organ of the
Frontiers in Immunology 05
immune system (114). The intestinal barrier is essential for separating

the external environment from the host’s internal environment. As

the intestine is exposed to pathogens or other toxic substances,

inflammatory responses occur under the influence of harmful

stimuli (115). Enteritis is a prevalent inflammatory bowel disease.

So far, the main methods used clinically for enteritis treatment

include drug therapy, dietary interventions and surgical treatment.

However, the treatment outcomes are often unsatisfactory. Therefore,

it is very important to find a better and safer treatment method. BAPs

have immunomodulatory and anti-inflammatory effects, making it

possible to effectively treat intestinal inflammation and provide a new

treatment for enteritis. Zhi et al. (116) reported that walnut-derived

peptide leucine-proline-phenylalanine (LPF) could promote the

repair of the intestinal epithelial barrier, reduce levels of pro-

inflammatory cytokines, and exert protective and restorative effects

on DSS-induced colitis in mice. It was found that the number of

apoptotic cells in the treatment group was significantly less than that

in the DSS group. The percentages of reduction in the three groups of

DSS + 50 mg/kg LPF, DSS + 100 mg/kg LPF, and DSS + 200 mg/kg

LPF on the 10th day were 50.00%, 41.18%, and 57.35%, respectively.

In addition, 16S rDNA sequencing results showed that 100 mg/kg

LPF had a regulatory effect on the intestinal flora of colitis mice.

Additionally, Rahabi et al. (117) reported that fish collagen peptide

Naticol®Gut could also be used to treat colitis. It directly acts on

macrophages, polarizing them into an anti-inflammatory,
FIGURE 1

Scheme of the treatment of organ inflammation by BAPs.
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TABLE 2 Application of BAPs in the treatment of inflammation of various organs.

Organ Peptide names Disease type Peptide activity Reference

Skin

LKEKK Psoriasis ↑ IL-10, IFN-g
↓ IL-17

(80)

MHP1-AcN Psoriasis ↓ IL-6, IL-23, IL-17A (81)

AES16-2M Atopic dermatitis ↓ CD4 T cells
↓ TSLP

(82)

TPS240 Atopic dermatitis Inhibition of NF-kB and STAT3 activation (83)

AMP-IBP5 Atopic dermatitis ↑ TJ barrier function (84)

ARA290 Systemic lupus erythematosus ↓ IL-6, MCP-1, TNF-a
↑ TGF-b
Suppressing the level of serum ANAs and anti-dsDNA
autoantibodies
Inhibiting the inflammatory activation of macrophages
Promoting the phagocytic function of macrophages

(85)

Intestinal

rVIPa Colitis ↓ TNF-a, MPO activity, serum endotoxin, TLR4
↑ IL-10
↑ occluding, ZO-1, NF-kB p65, IkBa

(86)

R7I Intestinal inflammation Inhibition of TLR4 and NF-kB expression
↑ SOD and GSH-PX
↓ MDA

(87)

MOP Colitis Inhibiting JAK-STAT pathway’s activation
Regulating gut microbiota and its metabolites

(88)

TBP Ulcerative colitis ↑ SOD and GSH-Px
↓ LPS, IL-6, TNF-a
↑ Gene expression of TJ protein
↑ SCFAs
Restoring intestinal flora

(89)

Cecropin A (1-8)-LL37 (17-30) Intestinal inflammation ↓ TNF-a, IL-6, IFN-g
↓ Apoptosis
↓ Markers of jejunal epithelial barrier function

(90)

Lung

PS1-2 Fungal pneumonia ↓ Activity of TLR-2
↓ TNF-a

(91)

7-amino acid peptide (7P),
(Gly-Gln-Thr-Tyr-Thr-Ser-Gly)

Allergic lung inflammation ↓ Airway hyperresponsiveness
↓ Airway inflammation
↓ Th2 responses

(92)

IDR-1002 Pneumonia ↓ IL-6, TNF-a (93)

Hydrostatin-SN1 Acute lung injury ↓ TNF-a, IL-6, IL-1b (94)

Joint

AKP Osteoarthritis ↓ HIF-2a and downstream genes (95)

AESIS-1 Rheumatoid arthritis Downregulation of STAT3 signaling (96)

KPs Adjuvant-induced arthritis Inhibiting IL-1b-related inflammation and
MMPs production

(97)

GLPP Rheumatoid arthritis ↓ TNF-a, IL-1b, IL-6, MMPs, BCL-2, OPN, b-Catenin,
HIF-1a
↑ Bax
Inhibiting NF-kB and MAPK signaling pathways

(98)

IQW Ankylosing spondylitis ↓ IL-6, IL-1b, TNF-a
↑ CAT, GSH-PX, SOD

(99)

Alamandine Rheumatoid arthritis ↓ IL-6, IL-23 and IFN-g mRNA expression
↓ TNF-a, IL-6, IL-17
↑ IL-10

(100)

Eyes
R9-SOCS1-KIR Uveitis Inhibiting nuclear factor kB and p-p38 pathways (101)

WP-17 Uveitis Inhibition of NF-kB pathway activation (102)

(Continued)
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immunotolerant, and antioxidative phenotype through an MR-

dependent mechanism. For enteritis, antibiotics are often used for

treatment, but their long-term use can lead to increased antibiotic

resistance, posing a significant challenge. Sun et al. (118) reported

that AMP R7I with anti-proteolytic properties could reduce

inflammatory factors and maintain intestinal barrier function. The

histological examination of the intestine showed that the tissue

structure in the 20 mg/kg R7I group was basically normalized with

only a small amount of isolated epithelial cells, and R7I could restore

the normal morphology of the intestine. In addition, this peptide

plays a crucial role in the treatment of murine bacterial enteritis and is

helpful in finding effective strategies for the treatment of enteritis.
3.3 Lung inflammation

Pneumonia is a prevalent respiratory illness that involves

inflammation in the lungs (119). Its occurrence is associated with

respiratory viruses, common gram-negative or gram-positive

bacteria, and mycobacterium (120, 121). Pneumonia has a

complex etiology, and traditional treatment methods mainly

involve the use of antibiotics, which can effectively reduce the

incidence and mortality of pneumonia. However, issues such as

antibiotic resistance, low bioavailability, and strong side effects exist

(92, 122). Therefore, there is a necessity to discover novel treatment

approaches. BAPs as a novel therapeutic drug may have potential in

the treatment of pneumonia. Zhao et al. (92) reported that 7-amino

acid peptide (7P), as a synthetic analog peptide, could effectively

reduce bronchial contraction, inhibit acute inflammatory

cytokines (TNFa, IL-1b and IL-6) and Th2 cytokine responses

(IL-5, IL-4 and IL-13), and has certain effects on relieving airway

hyperresponsiveness, airway inflammation and Th2 response. The

results inferred that 7P could reduce allergic lung inflammation. It

made a new option for addressing allergic pulmonary

inflammation. Additionally, peptide modification can also be

employed to improve the therapeutic effects. Moreira et al. (123)

pegylated the synthetic peptide LyeTx I-b derived from natural

LyeTx I, and reported that pegylated LyeTx I-b exhibited significant

therapeutic effects against multidrug-resistant Acinetobacter

baumannii-induced pneumonia. LyeTx I-bPEG increased the

anti-biofilm activity. At 16 mM and 32 mM, LyeTx I-bPEG

reduced the carbapenem-resistant Acinetobacter baumannii
Frontiers in Immunology 07
biofilm by 33 ± 4% and 26 ± 8%, respectively, compared with

untreated cells. Furthermore, Jin et al. (124) designed two derived

peptides GHbK4R and GHb3K based on the maternal peptide GHb.

Vancomycin reduced lung bacteria in mice to 7.8 × 107 CFU/g,

whereas GHb3K and GHbK4R decreased lung bacteria to 5.3 × 105

and 5.4 × 105 CFU/g. These results demonstrated that these

peptides had significant therapeutic effects in a mouse model of

acute pneumonia caused by Staphylococcus aureus infection. PS1-2

peptide is active against fluconazole-resistant Candida albicans, can

inhibit the activity of TLR-2 and the expression of TNF-a, and has

anti-fungal and anti-inflammatory functions for intratracheal

infection induced by Candida albicans (91). However, there is

limited research on the use of BAPs for the treatment of human

pneumonia. It still needs a good strategy to treat pneumonia.
3.4 Joint inflammation

Arthritis is a common inflammatory disease which affects the

joints and surrounding tissues. It can be acute or chronic, leading to

joint pain, swelling and difficulty movement in severe cases.

Arthritis has a high prevalence and encompasses various types,

including osteoarthritis, rheumatoid arthritis, and psoriatic arthritis

(125). Osteoarthritis is a progressive disease and a major cause of

chronic disability (126). Peptides offer a new therapeutic approach

for osteoarthritis. Wu et al. (127) validated that the anti-

inflammatory capacity of skipjack tuna elastin peptides in a

zebrafish model could inhibit the JAK2/STAT3 signaling pathway,

suppress inflammation and protect cartilage. Rheumatoid arthritis

is an autoimmune disease that can lead to joint and bone damage

(128, 129). For rheumatoid arthritis, Kim et al. (96) reported that a

synthetic peptide AESIS-1 could inhibit STAT3-mediated signaling

by upregulating SOCS3 expression, resulting in the decrease of

Th17 cells. Psoriatic arthritis is a chronic systemic inflammatory

disease affecting the skin, joints, and tendons (130). Wixler et al.

(131) discovered small splenic peptides (SSPs) in the spleen, which

could target dendritic cells and transforming them into tolerant

cells, thus differentiating naive CD4 cells into regulatory T cells

expressing Foxp3. SSPs had anti-inflammatory effects in vivo, and

restore peripheral tolerance, effectively inhibiting the development

of psoriatic arthritis. In addition, ankylosing spondylitis and gouty

arthritis could be treated by using BAPs. Ankylosing spondylitis is
TABLE 2 Continued

Organ Peptide names Disease type Peptide activity Reference

TSP Dry eye disease Regulating Bax/Bcl-2 signal pathway Inhibiting iNOS and
COX-2
Moderating ROS/Nrf2/HO-1 axis
Apoptosis inhibiting

(103)

Others

P140 Periodontitis ↓ TNF-a, INF-g
↓ Infiltration of activated lymphocytes

(104)

Nal-P-113 Periodontitis ↓ IL-1b, TNF-a (105)

Bomidin Periodontitis Downregulation of MAPK and NF-kB signaling pathways
Activation of Keap1/Nrf2 pathway

(106)
↑ and ↓ indicated increase and decrease, respectively.
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an immune-mediated chronic inflammatory rheumatic disease that

most commonly affects the spine (132). Liu et al. (99) reported that

BAPs IQW could treat mice with ankylosing spondylitis, delay

disease progression, alleviate inflammation in the intervertebral

joints, and reduce the concentration of pro-inflammatory factors.

Gouty arthritis is caused by inflammation triggered by the

deposition of urate crystals in the joints and surrounding tissues

(108). Commonly used medications include colchicine,

corticosteroids, NSAIDs, and adrenocorticotropic hormone, but

these drugs have certain side effects such as nausea and

gastrointestinal toxicity. Therefore, there is an urgent need to

develop new drugs to treat gouty arthritis (133). Yan et al. (134)

described that BAPs mastoparan M (Mast-M) extracted from wasp

venom could inhibit the MAPK/NF-kB signaling pathway and

reduce oxidative stress, thereby blocking the activation of the

NLRP3 inflammasome and effectively treating gouty arthritis.

Hence, BAPs have good therapeutic effect on joint inflammation.
3.5 Eyes inflammation

Eye inflammation is a common ocular condition that can occur

from the surface of the eye to intraocular tissues (135). As

threatened by inflammation, the eye tissues can sustain damage

over the short or long term (136). The causes of eye inflammation

are varied, including pathogen infections such as bacterial, fungal,

and viral infections, as well as non-infectious factors like external

environmental stimuli and allergic reactions (137). The treatment of

eye inflammation mainly involves the use of anti-inflammatory

drugs and antibiotics for medication or surgical methods. However,

these approaches have certain drawbacks such as drug side effects

and long recovery times. In recent years, more BAPs with

therapeutic potential have emerged. Lu et al. (102) designed a

peptide called WP-17, which targeted the toll-like receptor 4

(TLR4) to inhibit the activation of the NF-kB pathway. The

highest dose of WP‐17 (10 mg/eye) strikingly decreased the

protein levels of TNF‐a and IL‐6 in the aqueous humor of rats by

77.26% and 85.67%, respectively. WP-17 has shown promising

therapeutic effects in rat uveitis. Similarly, Ho et al. (138)

reported that a 29-mer peptide derived from pigment epithelium-

derived factor could inhibit the expression of matrix

metalloproteinase-9 and pro-inflammatory cytokines on murine

dry eye. In addition, Zeng et al. (103) described that tilapia skin

peptides (TSP) impeded the generation and development of dry eye

disease via inhibition of apoptosis (19.4%), inflammation, and

oxidative stress.
3.6 Other inflammation

The oral cavity is an important part of the human body and

serves as the starting point of the digestive system. The oral cavity

harbors a rich microbial population, constituting the second
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abundant microbial community in the human body after the gut,

with over 700 identified oral microbial species (139, 140).

Disruption of the oral microbiota can lead to an increase in local

TH17 cells, which are associated with oral immunity and

inflammation (141). Dysbiosis of the oral microbiota can lead to

periodontitis, a common oral disease caused by pathogens invading

the periodontal tissues such as the gums (142, 143). BAPs can

inhibit bacterial growth and reduce inflammation. Akiyama et al.

(104) reported the role of peptide P140 in a mouse model of

periodontitis, and found that treatment with P140 effectively

alleviated inflammation in gingival tissues, reduced lymphocyte

infiltration, and lowered the expression of pro-inflammatory

mediators. In addition, liver injury can also be treated by

bioactive peptides. Zhu et al. (144) described a peptide

HEPFYGNEGALR isolated and identified from Apostichopus

japonicus. This peptide can activate the Nrf2/HO-1 pathway,

block the nuclear translocation of NF-kB, alleviate oxidative stress
and inflammation, and alleviate acute alcoholic liver injury caused

by excessive alcohol intake. Besides, BAPs have a certain ability in

the treatment of myocarditis. Cortistatin is a small molecule

bioactive peptide (145). Delgado-Maroto et al. (146) reported the

therapeutic effect of cortistatin in experimental autoimmune

myocarditis, and found that it could inhibit the inflammatory

response driven by cardiomyogenic T cells.
3.7 Clinical application of BAPs

Peptides and peptidomimetics are emerging as an important

class of clinic therapeutics (147). However, their application is

hindered by their poor stability, short half-life, and low retention

rate (148). It was reported that cyclic peptide structures had high

topological flexibility, and their shape changes without

transforming the amino acid composition sequence could not

alter their properties (149). Therefore, molecular grafting is a

good choice. It has been demonstrated that bradykinin

antagonists were conjugated onto cyclic peptide scaffolds for the

inflammation treatment (150). And sustained-release peptide

analogues can be used for clinical treatment (151). BAPs are

widely used to regulate inflammatory pathways and inflammatory

factors to treat inflammation in clinics. Brimapitide (XG-102), a

peptide bound to the N-terminal sequence of c-Jun, inhibits JNK by

competing with endogenous c-Jun. In this way, it suppresses

inflammation caused by JNK. This drug is currently under Phase

III (149). Thymosin alpha-1 is an immunostimulatory peptide. It

can regulate the immune system, enhance T cell function, inhibit

the release of pro-inflammatory cytokines, and promote the

production of anti-inflammatory cytokines (152). It is clinically

used to treat hepatitis B (153). Since one century ago, more than 80

peptide drugs have reached the market for a wide range of diseases,

including diabetes, cancer, osteoporosis, multiple sclerosis, HIV

infection and chronic pain (154). However, there are still few

peptides as clinical drugs for the treatment of inflammation.
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4 Anti-inflammatory mechanism
of BAPs

4.1 Regulation of the release of
inflammatory mediators

Chemical substances released by cells or produced by body

fluids during the inflammatory process, which participate in or

cause the inflammatory reaction, are referred to as inflammatory

mediators. They mainly include prostaglandins, NO, cytokines like

interleukins (IL) (e.g., IL-1b, 2, 6, and 8), chemokines, etc. (155). As

activated through toll-like receptors (TLR), these innate immune

cells induce the release of IL-6 and TNF-a, along with transforming

growth factor-b, which facilitates cell proliferation (156). The NF-

kB and MAPK are also key pro-inflammatory intermediaries that

are produced after TLR activation (157). Cytokines are low

molecular weight glycoproteins produced and secreted by

different cells, which can regulate the proliferation and

differentiation of immune cells (158). They can be divided into

two major categories: pro-inflammatory and anti-inflammatory

factors. Pro-inflammatory factors such as IL-1b and TNF-a
further induce the inflammatory response, while anti-

inflammatory factors such as IL-10 can promote the resolution of

the inflammatory response (159). Many studies show that BAPs can

regulate the release of inflammatory mediators. Tornatore et al.

(157) isolated four peptides from eggs white and these peptides

exhibited anti-inflammatory activities in colitis mice by inhibiting

the production of TNF-a and IL-6 as well as reducing the mRNA-

expressions TNF-a, IL-6, IL17, IL-1b, IFN-g, and MCP-1. Xing

et al. (160) reported that bovine bone gelatin peptides could

alleviate the additional secretion of inflammatory factors IL-6,

NO, and TNF-a induced by lipopolysaccharide (LPS) in

RAW264.7 cells to mitigate DSS-induced colitis. Cresti et al. (161)

conducted efficacy studies on the synthetic peptide SET-M33

targeting gram-negative bacteria by using an LPS-induced

pneumonia model. They found that the peptide effectively

reduced the production of pro-inflammatory cytokines KC, MIP-

1a, IP-10, MCP-1, and TNF-a.
4.2 Regulation of inflammatory
signaling pathways

Inducers like LPS can stimulate and activate key proteins or genes

involved in cellular signaling pathways such as NF-kB pathway (162)

and MAPK pathway (163). The anti-inflammatory peptides inhibit

cell inflammatory responses mainly through the MAPK and NF-kB
pathways. NF-kB pathway is the most important way to regulate the

transcription of pro-inflammatory cytokines such as IL-6, IL-1b and

TNF-a, and also plays a vital role in the expressions of inducible

nitric oxide synthase (iNOS) and COX-2 (164). NF-kB is a family of

transcription factor proteins, including five subunits: p65 (RelA), p50,

p52, Rel, and RelB. After dimer p65/p50 is released into the cytosol, it

can be translocated into the nucleus and initiates target gene

transcription for pro-inflammatory factors, causing inflammation
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(164, 165). MAPK can regulate many cellular activities, including

proliferation, differentiation, death and immune response. The

stimulus and MAP3K phosphorylation can mediate the

phosphorylation of the downstream MAP2K and MAPK, which

contain three subfamilies: p38, extracellular signal-regulated kinases

(ERK1 and ERK2), and c-Jun N-terminal kinase (JNK). In

unstimulated cells, JNK mainly exists in the cytoplasm and partly

distributes in the nucleus. After being stimulated, JNK accumulates in

the nucleus and causes the corresponding gene (IL-1 and TNF-a)
expression, resulting in an inflammatory response (166). BAPs

inhibit the expression of inflammatory genes by blocking NF-kB
andMAPK signaling pathways (Figure 2). The JAK-STAT pathway is

also important for inflammatory response, which can regulate

hematopoietic cell development and inflammatory cytokines (167).

Phosphorylation of JAK and STATs can form the dimer translocated

to the nucleus (168). In addition, the peptide transporter PepT1 can

transport small BAPs to the bloodstream. Therefore, the role of

PepT1 is vital to the bioactivity of BAPs (167). Chei et al. (169)

described that acid-hydrolyzed silk peptide (SP) inhibited LPS-

induced inflammation by modulating the TLR4 signaling pathway,

while clam peptide MMV2 reduced the mRNA levels of

inflammation-related genes induced by LPS in adult zebrafish

(170). Formyl peptide receptors (FPRs), members of the GPCR

family with seven transmembrane domains (171), play important

roles in antimicrobial host defence mechanisms. FPRs recognize

formylated peptides, non-formylated peptides, synthetic small

molecules, and formyl analogs from bacteria and mitochondria to

regulate inflammatory responses that lead to chemotaxis,

degranulation, and oxidative bursts (172). Jin et al. (173) reported

that VLATSGPG (VLA), a DPP-IV inhibitory peptide isolated from

the skin of Salmo Salar, could inhibit the activation of PERK through

the AKT signaling pathway, and increase the expression of IkBa
mRNA through the PERK/IkBa pathway, leading to blocking the

activation of NF-kB p65 and further cell inflammation. Tsuruki et al.

(174) isolated some immunostimulating peptides from soy protein,

which had specific binding sites on mouse or human macrophages

and could stimulate their phagocytic activity.
4.3 Regulation of reduced oxidative
stress response

Oxidative stress is a significant pathological factor that

contributes to various inflammatory diseases. Inflammatory

responses trigger the excessive generation of reactive oxygen

species (ROS) within cells, disrupting the body’s free radical

metabolism and leading to oxidative stress. Moreover, during

oxidative metabolism, excessive ROS can attack cells or tissues,

causing structural and functional damage and exacerbating

inflammatory reactions (175, 176). BAPs can reduce the

generation of ROS. Lee et al. (177) isolated the peptide PPY1

from Pyropia yezoensis, and stated that PPY1 significantly

decreased the ROS levels in LPS-induced macrophages. Oxidative

stress and inflammation are closely related, which can elucidate why

NF-kB is the initial mammalian transcription factor to be

influenced by oxidation (178). NF-kB plays a crucial role in
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FIGURE 2

The mechanism of anti-inflammation of BAPs. Treatment of inflammation by modulating the four signaling pathways, such as NF-kB, MAPK, JAK and
STATs. p, phosphorylation; Ikks, inhibitor of kappa B kinase. Adapted from previous reports (167).
FIGURE 3

ROS activate NF-kB through three pathways. ① Canonical pathway: ROS activates the IKK complex, phosphorylating IkBa. Phosphorylation leads to
ubiquitination and proteasomal degradation of IkBa, resulting in nuclear translocation of the NF-kB complex and gene expression through high-
affinity binding to kB components, ② ROS directly phosphorylate IkBa, subsequently following the same pathway as the canonical pathway,
③ Noncanonical pathway: NIK is activated by ROS through inhibition of phosphatases and oxidation of cysteine residues. The NF-kB activation
pathway relies on IKKa and activates the p52/RelB complex by triggering proteolytic cleavage of the p52/p100 precursor. IKK, IkB kinase; NIK, NF-
kB-inducing kinase. Adapted from previous reports (181).
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mediating inflammatory responses and is regulated by various

mediators, including H2O2 and ROS (178). ROS can modulate

NF-kB through both the Canonical and Noncanonical pathways

(Figure 3). Malondialdehyde (MDA) and glutathione (GSH) are

important markers of oxidative stress. MDA is the final product of

ROS-induced lipid peroxidation, while GSH is an intracellular

antioxidant that protects cells from oxidative stress damage. Peng

et al. (54) identified an active peptide, GGAW, which exhibits

excellent antioxidant functionality. This peptide effectively reduces

the production of ROS, MDA and lactate dehydrogenase (LDH),

and increases the activity of SOD and glutathione peroxidase (GSH-

PX). Consequently, it enhances cell viability and protects IEC-6

cells from H2O2-induced oxidative damage. The Kelch-like ECH-

associated protein 1-(Keap1) Nrf2-antioxidant response element is

the main antioxidant signaling pathway that prevents oxidative

stress and helps maintain the optimum redox steady state in vivo

(179). Hence, the Nrf2 antioxidant signaling pathway can be

stimulated to suppress oxidative stress within the body (167).

Fernando et al. (180) reported that AMVDAIAR, a peptide isolated

from pepsin hydrolysate of krill enhanced antioxidant enzymes SOD,

CAT and GPx, thereby suppressing the oxidative stress in H2O2-

induced hepatocytes and increasing the expression of Nrf2.
5 Conclusions and prospects

BAPs are widely employed in the treatment of inflammation.

This review summarizes the therapeutic effects of BAPs on various

inflammatory diseases such as pulmonary, gastrointestinal,

dermatological, arthritic, oral and ocular inflammations. It also

outlines the anti-inflammatory mechanisms of action of BAPs,

which include modulation of inflammatory mediators’ release,

regulation of inflammatory signaling pathways (NF-kB, MAPK,

and JAK-STAT), and reduction of oxidative stress reactions to

influence the development of inflammation.

BAPs have promising prospects for the preparation of anti-

inflammatory drugs. However, BAPs are commonly implicated

with several challenges, encompassing a short half-life,

susceptibility to proteases, instability, potential toxicities, and other

processing-related issues. Attempts can be made to modify or

transform the BAPs, such as by attaching metal ions, targeting

groups or nanomaterials to maximize their effectiveness. However,

before using BAPs to treat various inflammatory diseases, more
Frontiers in Immunology 11
experiments are needed to obtain additional data on dosages,

pharmacodynamics and pharmacokinetics. Studies should also

investigate the differential effects of BAPs on different populations

to better understand their efficacy. Furthermore, the anti-

inflammatory mechanisms of various types of BAPs require

investigation to ensure their safety in clinical applications.

Additionally, many peptides face challenges in maintaining stability

and functional activity in vivo due to inherent limitations of amino

acids. BAPs can be encapsulated within nanoparticles to improve

their stability. Future efforts should concentrate on finding more

methods to overcome these challenges to maximize the efficacy of

BAPs. In conclusion, BAPs hold great promise as potential

inflammatory therapy. Further research and clinical data are

necessary to support their widespread and safe application.
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Castañeda-Cuevas AL, Yllescas-Gasca L, et al. Effects of tepary bean (Phaseolus
acutifolius) protease inhibitor and semipure lectin fractions on cancer cells. Nutr
Cancer-an Int J. (2012) 64:1269–78. doi: 10.1080/01635581.2012.722246

68. Zampella A, Sepe V, Luciano P, Bellotta F, Monti MC, D'Auria MV, et al. an
anti-HIV cyclodepsipeptide from the sponge Homophymia sp. J Organic Chem. (2008)
73:5319–27. doi: 10.1021/jo800583b

69. Pan X, Zhao YQ, Hu FY, Chi CF, Wang B. Anticancer activity of a hexapeptide
from skate (Raja porosa) cartilage protein hydrolysate in HeLa cells.Mar Drugs. (2016)
14:153. doi: 10.3390/md14080153

70. Oh JY, Je JG, Lee HG, Kim EA, Kang SI, Lee JS, et al. Anti-hypertensive activity
of novel peptides identified from olive flounder (Paralichthys olivaceus) surimi. Foods.
(2020) 9:647. doi: 10.3390/foods9050647

71. Chi-Kang TB, Wei-Wen K, Hsuan DC, Jine-Yuan HD, Chia-Hua K,
Jayasimharayalu D, et al. The soybean bioactive peptide VHVV alleviates
hypertension-induced renal damage in hypertensive rats via the SIRT1-PGC1a/Nrf2
pathway. J Funct Foods. (2020) 75:104255. doi: 10.1016/j.jff.2020.104255

72. Jahandideh F, Chakrabarti S, Davidge ST, Wu JP. Egg white hydrolysate shows
insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes. PloS One. (2017)
12:e0185653. doi: 10.1371/journal.pone.0185653

73. Moayedi A, Mora L, Aristoy MC, Safari M, Hashemi M, Toldrá F. Peptidomic
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