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Tertiary lymphoid structures (TLS) represent the ectopic aggregations of immune

cells arising during chronic inflammation or tumor progression. In cancer, TLS

are often associated with beneficial clinical outcomes in patients undergoing

immunotherapy, underscoring their prognostic and predictive significance.

Mature TLS, characterized by germinal centers and areas of T-cell and B-cell

aggregation, are considered primary locations for activating and maintaining

both humoral and cellular anti-tumor immune effects. Despite their recognized

importance, the mechanisms driving the formation of mature TLS in cancer and

their influence on the immune response within tumors remain insufficiently

understood. Therefore, this review aims to comprehensively explore the

structural composition, development mechanisms, maturity impact factors,

immunological function, and innovative therapeutic strategies of mature TLS

within the tumor microenvironment. The research summarized herein offers

novel insights and considerations for therapeutic approaches to promote TLS

generation and maturation in patients with cancer, representing a promising

avenue for future cancer therapies.
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1 Introduction

Over the past decade, immunotherapeutic interventions utilizing

immune checkpoint inhibitors (ICIs) have exhibited notable

therapeutic efficacy across a range of solid tumors, encompassing

melanoma, triple-negative breast cancer, and non-small cell lung

cancer (NSCLC) (1–3). In a recent phase 2 trial focused on surgically

resectable NSCLC, neoadjuvant immunochemotherapy, when

contrasted with neoadjuvant chemotherapy, significantly enhanced

surgical feasibility, 24-month progression-free survival (PFS), and

24-month overall survival (OS) (4). Despite advances, current

diagnostic markers for guiding ICI therapy, such as tumor

mutational burden (TMB) and programmed death-ligand 1

(PD-L1)/programmed death-1 (PD-1) expression status, have

limitations. PD-L1-negative or low-expressing NSCLC patients can

benefit from immunocheckpoint inhibitor therapy (5–7).

Additionally, the positive predictive effect of high TMB on ICI

efficacy does not extend to all cancer types; some specific TMB-low

cancers, including malignant gliomas, Merkel cell carcinomas, and

Kaposi’s sarcomas, also respond positively to anti-PD-1 therapy (8–

10). These observations indicate that PD-1 and TMB are not perfect

predictive markers for immunotherapy efficacy, and they face

challenges in accurately and comprehensively identifying the

beneficiaries of immunotherapy. Thus, there remains an unmet

need for reliable predictive biomarkers for immunotherapy in

patients with cancer; identifying additional biomarkers is essential.

The presence of tertiary lymphoid structures within tumor

tissue prior to treatment correlates with a favorable prognosis for

patients, with increased TLS numbers associated with the

effectiveness of neoadjuvant immunotherapy (11), which

underscores the predictive and therapeutic significance of TLS in

immunotherapeutic prognostication (12, 13). The prognostic value

of TLS is influenced by their location, density, and maturity (14, 15).

In particular, the first-line battleground for superior intra-tumoral

anti-tumor immune responses is mature TLS with a well-defined

structure and robust immune functionality. The maturation of TLS,

marked by the formation of a germinal center (GC), signifies active

anti-tumor immune responses, exhibiting a pronounced correlation

with enhanced prognosis in cancer immunotherapy across a

spectrum of solid tumors, including esophageal squamous

carcinoma, bladder cancer, and pancreatic ductal carcinoma (16–

18). Notably, active B cells within mature TLS contribute to potent

humoral immunity, and also augment T cell-mediated immune

responses. While mature TLS exhibit robust anti-tumor immune

activity in cellular and humoral immune responses, the precise

mechanisms governing their formation and functional pathways

remain elusive.

In this review, we first elucidate the definition of mature tertiary

lymphoid structures and describe the cellular composition of

mature TLS. Next, we delve into the mechanistic aspects

governing the formation of mature TLS and scrutinize their

immunological functions. Finally, we propose the induction of

mature TLS formation as novel tumor immunotherapy to provide

innovative directions for clinical oncology treatment.
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2 Definition of a mature tertiary
lymphoid structure

Lymphoid tissues and organs serve as effective bastions against

pathogenic invasion. However, in cases of persistent chronic infection,

the body necessitates the establishment of a transient command center

proximal to the site of infection to orchestrate rapid immune cell

mobilization. This emergent lymphoid tissue, known as tertiary

lymphoid structure, manifests as an ectopic aggregation of immune

cells, evolving in response to sustained chronic inflammation, such as

chronic infections, allograft rejection, and autoimmune diseases, where

inflammatory signaling persists over extended periods (19–21).

Remarkably, TLS are also a ubiquitous feature across most tumors,

including NSCLC, melanoma, and colon cancer (22–24). The mature

TLS comprise distinct compartments, including the high endothelial

venule (HEV) expressing PNAd, a B-cell area, and a T-cell area.Within

the T-cell zone, CD4+ T cells, CD8+ T cells, and mature dendritic cells

(DCs) constitute the cellular constituents, while the B-cell zone

predominantly harbors follicular dendritic cells (FDC) and B cells

(11). Fibroblastic reticular cells (FRCs) are observed at the peripheries

of the TLS. FDCs are primarily located within the core of the B-cell

population and play pivotal roles in antigen presentation and B-cell

activation. HEV facilitates lymphocyte recruitment and transit to sites

of inflammation. In brief, the TLS serve as a strategic locale for localized

immune cell interactions.

Current studies propose a staging system for the maturity staging

of TLS, delineated as follows: (1) Early TLS (E-TLS), characterized by

the T- and B-cell aggregates but no B-cell follicles and FDCs; (2)

Primary follicle-like TLS (PFL-TLS), identified by the presence of a

CD21+ FDC network within the B-cell area, lacking GC responses;

and (3) Secondary follicle-like TLS (SFL-TLS), distinguished by the

presence of a GC region containing CD21+CD23+ FDCs within the

B-cell area. This configuration facilitates the selection of B cells

possessing high-affinity B-cell receptors (BCRs) and fosters B-cell

differentiation and activation (25–27). The structural and

compositional features of TLS at various stages of maturity are

described in Figure 1. Based on the aforementioned analysis, we

deduce that truly mature TLS exhibit distinct yet adjacent zones

enriched with T and B cells alongside activated FDCs within the B-

cell compartments. Furthermore, mature TLS display evident B-cell

class switching within the follicles, plasma cell (PC) differentiation,

and conspicuous signs of GC responses (28). Briefly, mature TLS

typically encompass CD21+CD23+ FDC networks and Ki67+CD23+

GC B cells (13, 29–31). Following prior research findings, we define

secondary follicle-like TLS as representative of genuine manifestation

of mature TLS in this review.
3 Main infiltrating cells of mature TLS

3.1 CD8+ T lymphocytes

CD8+ T lymphocytes serve as the principal effector phenotype of

T cells, capable of recognizing and targeting tumor cell surface
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antigens, thereby eliminating them through the release of granzymes,

perforins, and cytokines via diverse mechanisms (32). Given their

potent tumor-killing capabilities, CD8+ T cells have long been a focal

point in cutting-edge research on anti-tumor strategies. However, it is

worth noting that although the proportion of TLS CD8+ T cells is

relatively small, these cells predominantly localize to the periphery of

PFL-TLS, exerting their significant anti-tumor effects primarily by

migrating into the tumor stroma (23), suggesting that TLS CD8+ T

cells play a pivotal role in anti-tumor immunity. A significant

increase in the infiltration of neoantigen-reactive CD8+ T cells has

been observed in the presence of mature TLS across various cancer

types, exhibiting a positive correlation with patient survival. This

indicates the TLS-mediated recruitment of CD8+ T cells,

consequently augmenting CD8+ T cell-mediated anti-tumor

responses, highlighting mature TLS as dominant loci of CD8+ T-

cell immune activity (16, 33, 34). In patients with stage III lung

adenocarcinoma undergoing adjuvant chemotherapy, the proportion

of CD8+ CD103+ tissue-resident memory T cells (TRM) in TLS

significantly increased with the maturation of TLS, with a more

favorable prognosis linked to mature TLS displaying the CD103+

TRM high phenotype (35). Moreover, the secretion of the B-cell

chemokine CXCL13 by chronically activated CD8+ T cells exposed to

fibroblast-derived TGF-b has been shown to enhance B-cell spatial

distribution and promote TLS maturation (36, 37). Additionally, a

study identified antigen-sensitized, semi-clonal, activated, and

differentiated tumor-infiltrating B cells (TIL-B) in gastric cancer,

indicating their role primarily as antigen-presenting cells (APCs). The
Frontiers in Immunology 03
study also found that TLS exhibited markedly elevated mRNA

expression levels for functional factors of CD8+ T cells, including

CCL21, perforin, CXCL13, granzyme B (GZMB), and PD-L1,

compared to non-TLS, suggesting that TLS are pivotal sites for T-

cell cellular immunity (38). Another study demonstrated that tumors

positive for mature TLS exhibited increased infiltration of CD8+ T

cells, and the presence of TLS was significantly associated with

improved objective response rates (ORRs) and OS in patients with

high CD8+ T-cell density. Conversely, no similar correlation was

observed in patients with low CD8+ T-cell density, indicating that

sustained anti-tumor immune responses necessitate critical

cooperation between T cells and mature B cells within TLS; the

presence of CD8+ T cells alone may be insufficient (31). These

findings underscore the supportive role of mature TLS in facilitating

CD8+ T-cell activity, emphasizing the synergistic interactions

between T cells and mature B cells within TLS. TLS represent a

critical site for the activation and proliferation of CD8+ T cells,

suggesting that despite their low abundance, CD8+ T cells may

exhibit potent anti-tumor effects within the TLS. Further

investigations are warranted to elucidate the precise contribution of

CD8+ T cells to the overall anti-tumor efficacy of TLS.
3.2 Follicular helper T cells

Follicular helper T cells (Tfhs) constitute a specific subset of

CD4+ T lymphocytes. Current literature predominantly defines
FIGURE 1

The structure and composition of TLS with different maturity. Early TLS (E-TLS) represent a dispersed cell aggregate comprising T and B cells along
with stromal cells. Primary follicular-like TLS (PFL-TLS) are characterized by a B-cell zone containing CD21+FDC and a T-cell zone, lacking a
germinal center reaction and exhibiting a denser lymphocyte arrangement. Secondary follicular-like TLS (SFL-TLS) consist of a B-cell zone housing
proliferative germinal centers composed of B cells, plasma cells, and CD21+CD23+FDC, as well as a T-cell zone hosting DCs and Tfh cells. SFL-TLS
display a pronounced germinal center reaction, with infiltrating lymphocytes being notably abundant and densely distributed within the TLS at this
stage. HEVs are discernible across all three TLS forms, while FRCs are predominantly around PFL-TLS and SFL-TLS structures. TLS, tertiary lymphoid
structures; E-TLS, early TLS; PFL-TLS, primary follicular-like TLS; SFL-TLS, secondary follicular-like TLS; HEV, high endothelial venule; DC, dendritic
cell; FDC, follicular dendritic cell; Tfh, follicular helper T cell; FRC, fibroblastic reticular cell. Created with Biorender.com.
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authentic Tfh cells as CXCR5+ PD-1+ ICOS+ BCL6+ IL-21+ CD4+

T cells (39). Within TLS, Tfhs typically represent a prominent

subpopulation within the T-cell compartment, commonly localized

adjacent to B-cell compartments, with mature TLS displaying

notable expression of Tfhs signature factors (40). Guided by

specific chemokines, Tfhs migrate to the B-cell compartment,

where they actively participate in GC responses and facilitate B

cell-mediated immune responses, thereby playing roles in the

maintenance of mature TLS (41, 42). In breast cancer, the active

TLS have been correlated with the heightened expression of IL-21

and IFN-g, secreted by Tfhs, suggesting that Tfhs drive the GC

response within active TLS (43). Moreover, the differentiation of Ki-

67+TIL-B was also found to be closely associated with the

localization of CD4+ PD-1+ Tfhs within the GC, further

validating the presence of active TLS. Collectively, Tfhs play a

central role in both the establishment and functionality of mature

TLS, particularly in regulating B-cell responses, GC reactions, and

the sustainability of active TLS.

The favorable prognosis observed in immunotherapy associated

with mature TLS may be intricately linked to Tfh cells. Across

various cancer types, patients exhibiting pathological responses to

ICI therapy showed significantly more Tfh and B-cell infiltration in

tumor tissues compared to non-responders (44–46). These clinical

benefits may stem from the modulation of PD-1 inhibition on Tfh

cells by ICI treatment. Notably, pembrolizumab has been observed

to bind to CD38+ Tfh-like cells within the TLS of bladder cancer,

suggesting that Tfh cells represent a primary target of ICI within the

CD4+ T-cell compartment (47). Given that the majority of Tfhs

exhibit high PD-1 expression, PD-1-mediated inhibition can impair

antigen-induced maintenance of Tfh cells, which conduce to limit

Tfh cell numbers and prevent the production of low-affinity

antibodies (48–50). Consequently, anti-PD-1 treatment may

alleviate Tfh inhibition, thereby promoting differentiation of naïve

CD4+ T cells into Tfh cells, consequently bolstering Tfh cell

numbers and facilitating B-cell differentiation and antibody

production (45). These observations are further corroborated in

patients with melanoma undergoing ICI treatment, where increased

B-cell differentiation and elevated IFN gene expression suggest an

expansion in Tfh cell populations (51). Furthermore, Tfh-derived

CXCL13 orchestrates the migration of CXCR5+ B lymphocytes to

sites of chronic inflammation, thereby fostering TLS and GC

formation (52). Highly differentiated Tfh cells have been shown

to induce robust TLS formation and enhance B-cell recruitment.

Conversely, reductions in Tfh cell populations result in

compromised TLS, diminished immune infiltration, and

weakened tumor control; however, these features can be restored

following the transfer of pathogen-specific CD4+ T cells (53, 54).

Tfh cells augment the effector function of CD8+ T cells through the

secretion of IL-21 and IL-4, achieving a positive response to anti-

PD-1 therapy (55, 56). Collectively, these findings underscore the

critical role of Tfh cells not only in facilitating GC reaction and B-

cell response but also in promoting CD8+ T-cell response, thus

highlighting their potential as a crucial factor in enhancing

immunotherapy efficacy.
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3.3 B lymphocytes

Tumor-infiltrating B cells predominantly reside within TLS,

primarily concentrated in the central region of mature TLS, where

genes associated with GC B cells and plasmablasts are enriched. In

contrast, the gene expression signatures of initial B cells are always

absent (57). PCs may be found distributed throughout the interior

or periphery of the TLS (58) (59). Characteristic B cells within

mature TLS, identified as BCL6+, AID+, Ki67+, CD23+, and CD20

+ GC B cells, exhibit distinctive molecular profiles of mature TLS.

These B cells play a crucial role in TLS maturation, actively

participating in the complete GC reaction, a critical process in

TLS development. Within the GCs of mature TLS, B cells undergo

selective activation, clonal expansion, somatic hypermutation

(SHM), and class switch recombination (CSR) (51, 60).

Subsequently, these B-cell clusters differentiate into plasma and

memory B cells, generating antibodies specific to tumor-associated

antigen (TAA) (16, 58). The heightened presence of B-cell memory

features and PCs within mature TLS is associated with improved

prognostic outcomes in cancer treatment, underscoring a

significant humoral immune role for B cells within mature TLS

(33, 51). In short, the unique structural characteristics of TLS make

them prominent functional sites for B cells in the tumor

microenvironment (TME).

The GCs within mature TLS serve as primary sites for B-cell

proliferation and activation, generating robust humoral immunity.

PCs and memory B cells within mature TLS contribute significantly

to the potent humoral immune response and are strongly associated

with favorable prognoses in immunotherapy. Research in NSCLC

has revealed heightened PC signaling in tumors with TLS, leading to

significantly increased OS following anti-PD-L1 therapy (59, 61).

Several pivotal studies have also demonstrated that positive

responses to tumor immunotherapy in patients with melanoma,

renal cell carcinoma, and soft tissue sarcoma are linked to

augmented B-cell infiltration and the presence of TLS (23, 26,

51). Furthermore, investigations have indicated that extended PFS

in individuals receiving immunotherapy for head and neck

squamous cell carcinoma is associated with enriched populations

of overall B cells, GC B cells, or PCs. Transcriptomic analyses have

corroborated these findings, revealing significant expression of B

cell-related genes in patients who respond favorably to tumor

immunotherapy (62, 63). These data underscore the significance

of B-cell presence and function within mature TLS in promoting

prolonged survival and improved treatment responses in patients.
3.4 Follicular dendritic cells

FDCs represent distinct non-hematopoietic stromal cells

involved in the GC response; these cells are distinguished by their

long surface dendrites and predominantly located within PFL-TLS

and SFL-TLS within tumor environments (17, 31, 64). Although the

precise origin of FDC progenitor cells remains elusive, activated

local stromal cells have been observed to differentiate into FDCs
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following interactions with migrating immune cells within TLS (65,

66). FDCs in follicles facilitate the selection of high-affinity mature

B cells primarily through antigen presentation to mediate TLS

maturation. This process involves competitive binding of B cells

to antigens displayed on the surface of FDCs, with those

demonstrating optimal antigen binding receiving initial survival

signals and subsequent coactivation signals from Tfh cells, thus

promoting further B-cell affinity maturation (67). Moreover, FDCs

possess the ability to bind and internalize nonhomologous immune

complexes (ICs) derived from B cells via complement receptors 1

and 2. Upon internalization, these ICs are retained within non-

degradable circulating compartments of FDCs and periodically

presented on the cell surface, allowing for interaction with

antigen-specific B cells to drive BCR affinity maturation and

enhance B-cell specificity for antibodies (68). In addition to

presenting antigens for GC B-cell selection, FDCs attract Tfh cells

and B cells to form B-cell follicles by secreting CXCL13 and regulate

T-cell activation by expressing PD-L1 and PD-L2 (69).

Additionally, FDCs regulate IL-4 availability within GCs and

facilitate the generation of memory B cells through IL-4Ra

signaling (70). In summary, the immune function of FDC is an

essential manifestation of the powerful anti-tumor immune effects

of mature TLS.

As crucial components of mature TLS, FDCs significantly

contribute to favorable prognoses by orchestrating the activation

and maturation of B cells. One study demonstrated that activated B

cells undergo proliferation and differentiation within mature TLS

containing GCs characterized by the presence of CD21+CD23+

FDCs and Tfh cells, suggesting that comprehensive B-cell

maturation occurs within this microenvironment (71).

Furthermore, another investigation identified a network

comprising CD23+ FDCs, PNAd+ HEVs, and BCL6+CD20+ B

cells within GC-positive TLS in renal carcinoma, considering these

distinctive cells and structures as indicative markers of mature TLS.

Remarkably, a substantial correlation was observed between these

markers and the densities of IgG+ and IgA+ PCs (57). Notably,

patients harboring SFL-TLS with CD21+CD23+ FDCs exhibited

more favorable prognoses in immunotherapy compared to those

with PFL-TLS containing only CD21+ FDCs (25, 28), potentially

attributed to enhanced BCR diversity within SFL-TLS, along with

increased plasma and memory cell differentiation and the presence

of GC responses (72), which highlights the differential functionality

of FDCs in these two TLS types, suggesting that while FDCs may

activate B cells effectively within SFL-TLS, their activity may be

diminished or insufficient within PFL-TLS. These findings

underscore the significance of FDC-mediated activation of B-cell

proliferation and differentiation within mature TLS, contributing to

the high density of PC infiltration observed in tumors hosting

mature TLS. Additionally, FDCs within TLS can secrete CXCL13 to

attract B cells towards the tumor site, thereby promoting the

formation and sustenance of TLS. Based on the above studies, it

is rational to speculate that functional FDC may be the dominant

factor that differentiates mature TLS from immature TLS in terms

of anti-tumor immune efficiency.
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4 Specific mechanisms and factors
influencing the formation and
maturation of tertiary
lymphoid structures

4.1 Exploration of the mechanisms of
tertiary lymphoid structure formation
and maturation

Considering the excellent anti-tumor immune capabilities of

mature TLS, investigating the formation mechanisms of mature

TLS offers valuable insights for interpreting their functionality and

devising strategies to induce TLS formation. This paper will explore

the developmental and maturation mechanisms of TLS along the

general developmental pathway, encompassing the progression

from early TLS to primary follicle-like TLS to secondary follicle-

like TLS (refer to Figure 2).

At the onset of the TLS formation, stromal cells or lymphocytes

present at sites of chronic inflammation or tumor secrete

chemokines such as CXCL13 and IL-7, thereby attracting

lymphoid tissue-inducing (LTi) cells to the tumor site; B cells,

Th17 cells, and M1 macrophages act as potential LTi cell

candidates. Cancer-associated fibroblasts (CAFs), mesenchymal

cells, and endothelial cells substitute for lymphoid tissue

organizer (LTo) cells. Paracrine signaling of IL-7 induces LTi cells

to express lymphotoxin a1b2 (LTa1b2) and bind to lymphotoxin b
receptor (LTbR) on activated LTo cells. This LTbR signaling

stimulates LTo cells to secrete vascular endothelial growth factor

C (VEGFC), consequently facilitating HEV formation. Notably,

differing from an LTbR-dependent pathway, M1 macrophages

function as LTi cells via the TNF-a/TNFR axis between M1

macrophages and LTo cells (73). Additionally, IL-17 secreted by

LTi cells binds to IL-17R on LTo cells. Ultimately, the LTa1b2/
LTbR, TNF-a/TNFR, and IL-17/IL-17R signaling pathways

promote the secretion of adhesion molecules (MADCAM1,

ICAM1, and VCAM1) and chemokines (CXCL12, CXCL13,

CCL19, and CCL21) by LTo cells. These molecules attract

additional stromal and hematopoietic cells into the tumor and

recruit lymphocytes via HEVs, initiating early TLS formation (12,

74–76).

The progression of TLS development entails the segregation of

homeostatic chemokines, which establish compartmentalized zones

of nascent lymphoid follicles. This process induces spatial structural

alterations in the TLS, characterized by CCL19+ and/or CCL21+

FRCs and CXCL13+ FDCs. CCL19+ and CCL21 orchestrate the

spatial distribution of CCR7+ T cells, and CXCL13 directs the

spatial distribution of CXCR5+ B cells, ultimately forming distinct

T- and B-cell zones (52, 77). Through this mechanism, the TLS

transitions into the primary follicle-like TLS stage. Notably, FDCs,

which are non-migratory and essential components of PFL-TLS,

pose a lingering question regarding their origin within TLS.

Although some studies have proposed that FDCs in secondary

lymphoid organs may derive from perivascular mural cells (78), the
frontiersin.org
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specific source of FDCs in TLS remains unknown. It has been

suggested that localized cellular responses trigger inflammation in

the vascular endothelium, attracting membrane-bound LTa1b2 LTi
to the site of inflammation. These cells then bind to LTbR on LTo

cell surfaces, leading to LTo cell amplification and CXCL13

secretion. CXCL13, in turn, attracts B cells transvascularly to the

site of FDC development (79). Additionally, LT and TNF-a
secreted by B cells stimulate perivascular mural cell proliferation

and upregulate Mfge8/CXCL13 expression (80). In the presence of

B cells, pre-FDCs undergo further development into functional

FDCs expressing CD21/35 and FcgRIIb, gaining the ability to

capture ICs (78, 81). However, whether this proposed mechanism

of FDC development applies to the evolution of early TLS to

primary follicle-like TLS remains unclear.

As primary follicle-like tertiary lymphoid structures progress, B

cells within the TLS internalize and process novel antigens,

presenting them to helper T cells and receiving co-stimulatory

signals. Subsequently, B cells competitively receive signals from Tfh

cells, and positively selected B cells will enter into the dark zone,
Frontiers in Immunology 06
differentiate into PCs, or do further clonal expansion and SHM.

After multiple rounds of expansion and SHM, the affinity of BCRs is

enhanced. Subsequently, a significant influx of B cells with diverse

affinities migrates to the GC light zone, competing for binding to

the limited antigen presented on FDCs. B cells loaded with

abundant antigens have heightened opportunities to bind to Tfh

cells in the light zone, thus receiving co-activation signals vital for

B-cell selection. This process heavily relies on the CD40L–CD40

interaction between Tfh cells and B cells. Surviving B cells return to

the dark zone of the GC, where they undergo repeated rounds of cell

proliferation and SHM to further refine their BCR affinity.

Conversely, some B cells differentiate into plasma or memory

cells and exit the GC, while those failing to receive activation

signals from FDCs are prone to apoptosis (66, 82). This

progression coincides with the transition from CD21+ FDCs in

the PFL-TLS stage to CD21+CD23+ FDCs in the SFL-TLS stage,

concomitant with B-cell differentiation and maturation. Notably,

heightened CD23 expression is pivotal for FDC activation and

maturation, facilitating their integration into GC responses (78).
FIGURE 2

Schematic representation of the progression of TLS development and maturation. The initiation of TLS formation commences with the release of
CXCL13 and IL-7 by stromal cells, which prompts the recruitment of LTi cells into tumor tissues. B cells, Th17 cells, NK cells, and DC cells take on
the role of LTi cells. CAFs, mesenchymal cells, and endothelial cells substitute for LTo cells. Paracrine signaling of IL-7 induces LTi cells to express
Ta1b2 and bind to LTbR on activated LTo cells. This LTbR signaling stimulates LTo cells to secrete VEGFC, consequently facilitating HEV formation.
Additionally, IL-17 secreted by LTi cells binds to IL-17R on LTo cells. The LTa1b2-LTbR and IL-17-IL-17R signaling pathways promote the secretion of
adhesion molecules (MADCAM1, ICAM1, and VCAM1) and chemokines (CXCL12, CXCL13, CCL19, and CCL21) by LTo cells, attracting lymphocytes to
infiltrate tumor tissues via HEVs, thus initiating the formation of E-TLS. Subsequently, CCL19/CL21 and CXCL13 orchestrate the compartmentalized
distribution of CCR7+ T cells and CXCR5+ B cells, respectively, leading to the organized arrangement of TLS and the transition to the primary
follicle-like TLS stage. Finally, with the assistance of FDCs and Tfh cells, the germinal center reaction ensues, facilitating SHM, B-cell clonal selection,
and the generation of high-affinity antibodies within the TLS. This maturation process culminates in the progression to SFL-TLS. LTi, lymphoid
tissue-inducing cell; LTa1b2, lymphotoxin a1b2; LTbR, lymphotoxin b receptor; VEGFC, vascular endothelial growth factor C; CAFs, cancer-
associated fibroblasts; SHM, somatic hypermutation. Created with Biorender.com.
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Mature FDCs exhibit increased surface expression of adhesion

molecules and Fc receptors, enhancing their antigen-capture

capacity (80, 83). However, the precise mechanisms governing the

molecular alterations in FDCs remain elusive. As memory B cells

and PCs emerge and high-affinity antibodies are generated, TLS

progress toward a secondary follicle-like phase. We postulate that

the phenotypic shift in FDCs constitutes a crucial aspect of TLS

maturation, yet the specific mechanisms driving the transition from

primary to secondary follicular TLS remain unidentified.

Given the considerable structural and functional similarity

between TLS and secondary lymphoid organs (SLOs), many

current insights into TLS formation and maturation are

extrapolated from studies centered on SLOs. However, disparities

in fine structure and tumor immune microenvironment (TIME)

between TLS and SLOs may constrain the direct application of SLO

formation mechanisms to TLS. Additionally, our understanding of

the cellular and molecular mechanisms orchestrating TLS

formation predominantly originates from models of autoimmune

diseases and chronic infections. Hence, while these mechanisms

offer valuable insights, they should be regarded as references rather

than definitive guidelines for understanding TLS formation in the

context of cancer.
4.2 Factors influencing the development
and maturation of tertiary
lymphoid structures

Besides the elusive process of TLS evolution towards maturity,

the determinants influencing TLS formation and maturation remain

poorly understood. Ongoing investigations suggest that various

factors may contribute to TLS maturation, including bacterial

infections, tumor pathological characteristics, tumor type, TLS

location, treatment regimen, and tumor-draining lymph nodes

(TDLNs). For instance, analysis of single-cell RNA-Seq data from

human gastric tissues reveals that Helicobacter pylori-infected

stomachs tend to exhibit activated phenotypic B cells implicated in

the formation of mature TLS (84). Furthermore, neuroendocrine-

differentiated gastric cancers manifest a higher abundance of less

mature TLS compared to those lacking neuroendocrine attributes,

with a high infiltration frequency of naïve B-cells, regulatory T cells,

and exhausted CD8+ T cells, and elevated PD-L1 expression (85).

The cancer type may also impact TLS organization; investigations

into TLS immunophenotypes in bladder and renal cell carcinomas

indicate a higher likelihood of detecting mature TLS with GCs in

bladder cancer. Moreover, discrepancies in the TIME surrounding

TLS are observed between the two tumors; compared to renal cancer,

TLS in bladder cancer are characterized by a heightened proportion

of CD8+, FOXP3+, and PD-L1+ cells (18). Moreover, the maturation

of TLS could be influenced by TDLNs, where diminished IFN-g
signaling from B cells and natural killer (NK) cells leads to reduced

infiltration of memory B-cell populations in the TDLNs and

subsequently hampers the transportation of B cells from TDLNs to

the primary tumor site, thus impeding TLS maturation within the

tumor (86). Neoadjuvant chemotherapy has been shown to

compromise TLS maturation and lead to GC loss (29).
Frontiers in Immunology 07
Furthermore, observations reveal a discrepancy in TLS distribution

based on tumor location; for instance, left colon cancers exhibit a

higher prevalence of early-stage TLS, whereas right colon cancers are

more inclined towards follicular TLS, indicating a potential

correlation between TLS maturity and tumor site (24). In clear cell

renal cell carcinoma, E-TLS and PFL-TLS are predominantly found

in the distal region of the tumor, characterized by elevated

frequencies of PD-L1-overexpressing tumor-associated

macrophages and regulatory T-cell infiltration. Conversely, SFL-

TLS is primarily distributed in the proximal tumor region (87).

Notably, melanoma cases feature fully developed TLS with Ki67+

AID+ B cells predominantly in skin metastases, whereas FDCs are

identified in select lung, muscle, and intestinal metastases but are

absent in brain metastases, hinting at a potential association between

TLS maturity and metastatic organ site (88). In summary, TLS

maturation are subject to multifaceted influences. Future research

endeavors should delve deeper into the underlying factors affecting

TLS formation and maturation, thereby enriching the theoretical

framework for TLS-induced immunotherapy.
5 Immunological functions of mature
TLS associated with favorable
prognosis for immunotherapy

These studies collectively converge on the conclusion that

tumors characterized by mature TLS, high densities of B cells,

PCs, tumor-reactive T cells, and antibodies targeting TAA typically

exhibit favorable clinical outcomes and display effective responses

to immunotherapy compared to tumors lacking these features. This

phenomenon may be attributed to the significant influence of TLS

maturity on the functional status and distribution of B cells within

the TME, where infiltrating B cells within immature TLS tend to be

naïve and inactive. Furthermore, additional research indicates a

positive correlation between TLS maturity and the level of CD8+ T-

cell infiltration into the tumor mesenchyme, suggesting that tumors

harboring mature TLS may benefit from immunotherapy owing to

heightened infiltration of activated CD8+ T cells in the

mesenchyme. In essence, mature TLS foster an advantageous

spatial environment conducive to B-cell maturation and

differentiation, as well as the activation of CD8+ T cells, thus

emerging as a critical hub within the TIME for orchestrating

superior anti-tumor immune responses (refer to Figure 3).
5.1 The germinal centers of mature TLS are
microanatomical structures in which B-cell
receptor mutations and antibody
affinity mature

The GC arises from the extensive proliferation of antigen-

specific B cells upon activation, marked by activation-induced

cytidine deaminase (AID), which initiates processes like SHM and

CSR to modulate immunoglobulin affinity and maturation. B cells

typically undergo SHM and CSR within GCs, where they are
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regulated by FDCs and Tfh cells to differentiate into memory B cells

and long-lived PCs capable of producing high-affinity antibodies,

critical for executing B cell-mediated immune responses.

Noteworthy is the prevalence of GCs within intra-tumoral mature

TLS, with recent studies elucidating the sequential maturation

stages leading to GC formation within small cell lung cancer

TLS (60).

Numerous studies have documented GC responses within TLS

tumors. For instance, in NSCLC, Germain et al. identified AID
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expression in GC-positive TLS, a pivotal enzyme facilitating B-cell

SHM, CSR, and immunoglobulin gene conversion (89). Multiple

research cohorts have observed that the characterization of BCR

libraries aligns with antigen-driven clonal expansion, with SHM

levels correlating with survival among tumor-associated B-cell

(TAB) populations (90–93). Consistent findings indicate a

positive association between increased mature TLS counts and B-

cell expansion, heightened BCR diversity, augmented frequencies of

memory B cells, plasmablast/PC-like B cells, and activated CD69+ B
FIGURE 3

Immunological functions of mature TLS. (A) Within the SFL-TLS, B cells interact with FDCs and Tfh cells, stimulating B cells to undergo clonal
expansion, SHM, clonal selection, and differentiation into antibody-producing plasma cells and memory B cells. Plasma cells migrate from the TLS to
the tumor bed along the fibroblast track and produce tumor-associated antibodies. (B) Anti-PD-L1 therapy can disrupt the binding of PD-L1 to
CD80, thus relieving the inhibition of BCR signaling imposed by the PD1/PD-L1 complex on B cells, leading to B-cell activation and enabling more
efficient antigen presentation to T cells; this process also promotes the differentiation of B cells into plasma cells and memory B cells. Activated B
cells liberated from ICI serve as APCs to present TAAs and activate T cells. (C) DCs positioned within the T-cell zone of the TLS contribute to antigen
presentation and the activation of both CD4+ and CD8+ T cells. (D) Antibodies exert their anti-tumor effects through the ADCC and ADCP pathways
mediated by macrophages and NK cells. In the CDC pathway, antibodies can bind to complement C1q, initiating a classical complement activation
cascade (C2–C9), which culminates in forming membrane-attacking complexes that lyse cancer cells.(E) Mature DCs play a pivotal role in eliciting
antigen-specific effector T-cell responses through antigen presentation. Complexes of IgG and antigen peptides selectively bind to both activating
(FcgRIII) and inhibitory (FcgRIIB) receptors on the surface of DCs, modulating DC maturation. Interaction with activating FcgRIII triggers the ITAM,
leading to downstream activation responses mediated by src and syk kinases. Conversely, engagement with inhibitory FcgRIIB activates the ITIM,
which counteracts ITAM-mediated activation signals. By blocking FcgRIIB, ICs preferentially activating FcgRIII, promoting DC maturation and initiating
T-cell responses. Moreover, binding of antibody IgA to the PIGR on the tumor cell surface induces transcriptional alterations, including upregulation
of tumor cell inflammatory pathways (TNF signaling and IFN-g receptor signaling), endoplasmic reticulum stress-related genes (CHOP/DDIT3
signaling), and pro-apoptotic genes, while downregulating DNA repair pathways and genes associated with tumor progression (such as EPH). These
changes enhance the susceptibility of tumor cells to attack by CD8+ T cells. BCR, B-cell receptor; PD-1, programmed death-1; PD-L1, programmed
death-ligand 1; ICI, immune checkpoint inhibition; APC, antigen-presenting cell; TAA, tumor-associated antigen; MHC, major histocompatibility
complex; TCR, T-cell receptor; DC, dendritic cell; ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-dependent cellular
phagocytosis; IgA, immunoglobulin A; IgG, immunoglobulin G; ITAM, immunoreceptor tyrosine-based activation motif; ITIM, immunoreceptor
tyrosine-based inhibition motif; IC, immunocomplexes; PIGR, polyimmunoglobulin receptor. Created with Biorender.com.
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cells in patients with melanoma (23, 51). Moreover, a study on

breast tumors by Liu et al. revealed distinctions in surface marker

expression between intra-tumoral B cells and peripheral blood B

cells; the expression of co-stimulatory proteins such as CD86 was

found to be upregulated, whereas the expression of CD23 was

downregulated in intra-tumoral B cells, and CD23 is a negative

regulator of B-cell activity and was downregulated in mature B cells

that undergone SHM and CSR (94). Notably, investigations into

renal cell carcinoma indicated that in tumors harboring dense TLS

and PCs, PCs were predominantly distributed around the B-cell

follicles, synthesizing IgG or IgA antibodies capable of binding to

tumor cells, indicating that PCs in the tumor can produce anti-

tumor antibodies in situ (57), corroborating findings from studies

on soft tissue sarcoma and NSCLC (58, 89, 95). Pancreatic ductal

adenocarcinomas harboring TLS exhibit an elevated presence of

memory B cells compared to tumors lacking TLS. Within the TME,

the presence of TLS correlates with a decrease in IgD+ and IgM

+/IgD+ naive B cells relative to peripheral blood, suggesting

potential antibody class switching within the TLS (28). Mature

TLS display an augmented proportion of B-cell memory

characteristics and PCs, which produce a highly selective antibody

repertoire, activate the complement pathway, and initiate antibody-

dependent cytotoxicity (ADCC), thereby enhancing the anti-tumor

effects of TLS (96). In conclusion, a series of studies indicate that

within the GCs of mature TLS, processes including B-cell selection,

activation, antibody affinity maturation, antibody class switching,

and PC differentiation occur, resulting in the local generation of

anti-tumor antibodies . Mature TLS thus serve as an

immunologically active site for anticancer B cells (53, 97, 98).
5.2 B cells act as antigen-presenting cells
to activate T cells and promote T-cell anti-
tumor responses

Mature TLS host a higher abundance of functionally activated B

cells, characterized by elevated levels of major histocompatibility

complex (MHC) class II and B7 molecules on their surface

compared to B cells within immature TLS, facilitating enhanced

antigen presentation and T-cell activation (99). Specifically, B cells

uptake and process tumor-released antigens, generating antigenic

peptide–pMHC complexes. Co-stimulatory molecules on B-cell

surfaces interact with corresponding receptors on T cells,

providing crucial co-stimulatory signals for dual T-cell activation,

thereby augmenting T-cell immune responses (100). B cells

function as specialized APCs proficient in processing MHC class I

and class II antigens, leading to their presentation to CD8+ and

CD4+ T cells, thereby fostering T-cell priming and activation (101).

Single-cell transcriptome analysis of melanoma samples unveiled a

transcriptional upregulation of CD40LG and CD83 in Tfh and B

cells within mature TLS, respectively. Moreover, Cellchat analysis

delineated interactions within the MHC I/MHC II pathway between

B cells and CD8+ T cells/CD4+ T cells, suggesting antigen

presentation and subsequent T-cell activation orchestrated by B

cells. Consistent with these observations, the study further

demonstrated that enhanced B-cell infiltration and increased BCR
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diversity following ICI therapy facilitated B-cell presentation of

diverse tumor antigens, thereby fostering the activation of Tfhs and

CD8+ T cells post-immunotherapy (102). Furthermore, in

colorectal and gastroesophageal cancers, a substantial presence of

CD86+ B cells has been reported, primarily localized within the

lymphoid follicles of the TLS and exhibiting a positive correlation

with TLS abundance. These B cells demonstrate the capacity to elicit

T-cell responses against cancer-testosterone antigens in vitro (103).

Analogous findings emerged from a study of human papillomavirus

(HPV)+ oropharyngeal squamous cell carcinoma, revealing a

positive correlation between the density of CD20+ TIL-B

interacting with CD8+ tumor-infiltrating lymphocytes (TILs) and

the infiltration frequency of HPV-specific CD8+ T cells (104); the

density of B-/T-cell interactions was further associated with a

favorable prognosis for immunotherapy, with B-cell exhaustion

following anti-CD20 immunotherapy resulting in diminished

tumor infiltration by macrophages and CD8+ T cells (105). In

conclusion, TLS within TME serve as the primary niches for B cells

and offer sustained assistance for activating T cells.

PCs may mediate effective antigen presentation by DCs to T

cells by secreting antibodies. Studies on ovarian cancer have

identified a correlation between PCs and heightened levels of

CD8+, CD4+, and CD20+ TILs, alongside the expression of

various cytotoxicity-associated gene products. Moreover, the

therapeutic benefits of CD8+ TILs are observed only in the

presence of PCs, underscoring the collaborative synergy between

T and B cells in bolstering anti-tumor immunity (58). Notably, B

cells and PCs preferentially express immunoglobulin A (IgA),

which can be internalized by tumor cells via binding to the

polymeric immunoglobulin receptor (PIGR) in an antigen-

independent manner, rendering tumor cells more susceptible to T

cell-mediated cytotoxicity (106, 107). Furthermore, research by

Kalergis et al. has elucidated that ICs can selectively bind to

agonistic Fcg receptors (FcgRIII) on DCs, promoting DC

maturation and subsequent T-cell activation, thereby amplifying

T-cell responses (108). These findings collectively suggest that

therapies aimed at enhancing humoral immunity may offer

superior efficacy compared to interventions merely targeting T

cells, particularly in malignancies exhibiting resistance to

checkpoint inhibitors.
5.3 Plasma cell-derived antibodies
participate in anti-tumor immune
responses as activators of
acquired immunity

PCs are predominantly clustered around mature TLS,

constituting approximately 90% of the tumor stroma (58, 109). In

ovarian cancer, the upregulation of an autoantigen, matrix

metalloproteinase 14, has been identified as a driver of B-cell

activation and subsequent autoantibody production within TLS

(110). Furthermore, PC aggregations are observed near TLS and

adjacent to follicle-centered B cells. Concurrently, IgG, IgM, and

IgA deposits on tumor cells, while notably absent in healthy tissues

(111), suggest the local production of antibodies within TLS. This
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phenomenon is associated with prolonged survival in patients with

tumors rich in TLS (112). Functionally, these antibodies exert anti-

tumor effects both directly, targeting specific antigens on tumor

cells, and indirectly through mechanisms such as ADCC, antibody-

dependent cellular phagocytosis (ADCP), and complement-

dependent cytotoxicity (CDC). Subsequently, NK cells and

macrophages eliminate dying tumor cells, releasing tumor

antigens that DCs can capture in the peritumoral region.

Antigen-presenting DCs then activate tumor-infiltrating T and B

lymphocytes or stimulate CD4+ Tfh cells within TLS, initiating the

cascade of B-cell proliferation and differentiation.

Several studies suggest that antibodies exert tumor-killing

effects through ADCC, although direct evidence supporting this

theory remains elusive (113, 114). Analysis of The Cancer Genome

Atlas (TCGA) data through bioinformatic approaches revealed a

positive correlation between B-cell characteristics and the

expression of Fc fragments of IgG receptor IIIa (FCGR3A) and

GZMB, indicating potential involvement of ADCC mediated by NK

cells (115). In human renal cell carcinoma, enrichment of IgG and

apoptotic cells around TLS is often accompanied by infiltration of

CD68+ myeloid cells, which are typically positioned near apoptotic

tumor cells; this suggests an indirect implication that TIL-B-derived

antibodies induce ADCP to eliminate tumor cells (57). Colorectal

cancer-related research demonstrated that tumor-infiltrating

macrophages exhibit phagocytic activity against tumor cells in the

presence of anti-tumor IgG in vivo. Additionally, in vitro

experiments highlighted that the uptake of ICs by DCs is

sufficient to initiate anti-tumor T-cell responses (116). Notably,

recent studies in a large cohort of patients with ovarian cancer

revealed that polyclonal IgA antibodies derived from TABs bind to

IgA receptors on tumor cells, triggering pIgR-mediated IgA

transcytosis and impeding tumor growth, ultimately enhancing

tumor cell killing by T cells (106). Collectively, these findings

indirectly suggest that PC antibodies mediate anti-tumor immune

responses through pathways involving ADCC, ADCP, and

other mechanisms.
5.4 Follicular helper T cells of mature TLS
are important participants in B-
cell activation

The potential anti-tumor mechanism of mature TLS involves

the synergistic interaction between Tfh cells and B cells.

Immunofluorescence imaging of TLS confirmed the spatial co-

localization of Tfh and B cells within GCs, supporting T cell–B

cell interactions. This interaction is facilitated by surface co-

stimulatory molecules such as “ICOSL-ICOS” and “CD40-

CD40L,” which support T–B cell crosstalk. Subsequently, B cells

undergo proliferation and differentiation into memory B cells and

PCs, significantly enhancing the anti-tumor efficacy of SFL-TLS (52,

117). Furthermore, studies have elucidated that CD40 on the

surface of Tfh cells binds to CD40L on GC B cells, promoting

positive selection of B cells. Under the influence of various cytokines

(TGF-b, IFN-g, IL-4, IL-21, and IL-6), Tfh cells support the

development of GC B cells into memory or PCs, as well as
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facilitating processes such as SHM and antibody CSR (55, 118,

119). The development of GCs is intricately linked to the

participation of Tfh cells, which drive the differentiation of B cells

into long-lived PCs and high-affinity memory cells (120, 121). B

cells that have not undergone cellular differentiation can re-enter

the GCs during further SHM, leading to further maturation of BCR

affinity (122). Transcriptomic analysis based on TCGA data reveals

elevated expression levels of MAF and CD200, markers associated

with Tfh cells, within mature TLS (40) and that Tfh cells play a

crucial role in promoting the formation of GCs and orchestrating

the differentiation of GC B cells, thereby shaping the anti-tumor

TIME (41, 42). Consistent with these observations, ICI therapy has

been shown to activate Tfh and B cells, producing tumor-reactive

antibodies in murine breast and colon tumor models (123, 124).

These studies underscore the indispensable role of Tfh cells in

facilitating the GC response within mature TLS.
5.5 Mature TLS are vital sites for
lymphocyte communication, promoting
the activation and proliferation of tumor-
reactive CD8+ T cells

Activated CD8+ T cells exert anti-tumor functions via cytolytic

molecules such as granzyme and granzyme lysin or inflammatory

cytokines such as IFN-g and TNF-a (32). Immunofluorescence

staining images of TLS derived from various solid tumors

consistently demonstrate a relatively low presence of infiltrating

CD8+ T cells within the TLS, with CD8+ effector memory T cells

predominantly located at the TLS periphery (31). Nonetheless, the

number of CD8+ T cells infiltrating the tumor stroma outside of

mature TLS increases due to the tumor-killing activity of CD8+ T

cells. The favorable clinical prognosis associated with mature TLS is

likely closely linked to the presence and activity of CD8+ T cells.

Studies indicate a higher presence of CD8+ T cells within

mature TLS compared to immature TLS, with the density of

intra-tumoral CD8+ T cells associated with the fraction of SFL-

TLS. This correlation suggests a potential link between TLS

maturation and the infiltration of cytotoxic T lymphocytes

(CTLs) into the tumor core. Moreover, mature TLS are identified

as an independent low-risk factor for lymph node metastasis,

possibly due to the heightened frequency of cytotoxic lymphocyte

infiltration in TDLNs within the mature TLS group. It is

hypothesized that CTLs originating from mature TLS within

tumors migrate to TDLNs through lymphatic vessels, thereby

preventing lymph node metastasis (30, 125). Researchers also

found that HEV mediated the migration of lymphocytes,

particularly CD8+ T cells, from peripheral tissues to tumor

locations treated with combination immunotherapy and

improved patient survival prognosis (126). Additional studies

have shown increased infiltration of CD8+ T cells in the tumor

stroma of TLS-enriched soft tissue sarcomas. Depletion of these T

cells could provide insights into the relationship between immune

checkpoint therapy and TLS, elucidating why checkpoint inhibitors

may elicit robust anti-tumor immune responses in TLS-enriched

tumor environments (26). In esophageal squamous carcinoma,
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mature TLS exhibit a heightened presence of CD8+ T cells

compared to immature TLS, yet a concurrent reduction in the

expression of MHC class I molecules within mature TLS is

accompanied by an increase in CD4+ Th17 cells, suggesting that

Th17 cells may augment CD8+ T-cell immunity beyond the

confines of TLS within tumor tissues (33, 127). In summary,

while some studies indicate a correlation between mature TLS

and elevated CD8+ T cells within the TLS themself, mature TLS

are also associated with an enrichment of tumor-infiltrating CD8+

T cells outside the TLS. Thus, it is imperative to assess whether the

survival disparities observed in TLS-positive tumors due to CD8+

T-cell density originate solely from the TLS or reflect the overall

CD8+ T-cell density within the TME.

6 New therapeutic strategy: induction
of mature tertiary lymphoid
structure generation

Given the robust immune activity associated with mature TLS,

the induction of their generation emerges as a pivotal strategy in

cancer treatment. Numerous studies have demonstrated that anti-

PD-1 drugs augment the activation of Tfh cells on B cells, thereby

promoting the formation and maturation of TLS in tumor tissues.

Consequently, patients subjected to immunotherapy often exhibit

improved clinical outcomes, potentially attributed to the substantial

infiltration of IgG antibodies within mature TLS (117, 128). The

development and maturation of TLS hinge upon the recruitment of

immune cells facilitated by various chemokines. Hence, the

exogenous provision or augmentation of pre-existing chemokine

secretion represents a promising approach for inducing mature TLS

formation. Notably, lysogenic virus therapy has been shown to

increase cytokine and chemokine levels in the TME, thereby

fostering the recruitment of immune cells to mature TLS sites

(129). Tfh cells and CXCL13 play pivotal roles in the formation of

mature TLS, particularly in the establishment and maintenance of

GCs. GCs have been associated with a balance between Tfh cells and

follicular regulatory T (Tfr) cells within TLS, with a more robust Tfh

cell activity favoring TLS maturation (37, 130). Additionally, TLS

formation can be induced by intra-tumoral infusion of autologous

Tfh cells, which secrete LIGHT, IL-21, and CXCL13. These factors

contribute to the formation of HEVs, with CXCL13 attracting B

cells to migrate to the tumor region and IL-21 supporting recruited

B cells. Collectively, these mechanisms encourage the spontaneous

formation and maturation of TLS in ovarian cancer (131).

Although the laboratory demonstrations of methods for

inducing TLS maturation are promising, their translation into

clinical practice is still in the preliminary exploration phase.

Various challenges, including potential toxicity, lengthy formation

cycles, and uncontrolled TLS emergence (132, 133)[159, 160],

constrain the clinical applicability of these approaches.

Nevertheless, innovative therapeutic strategies aimed at de novo

induction of mature TLS offer significant potential for enhancing

outcomes in patients with cancer. These research advancements

may herald a new era in cancer immunotherapy, ultimately leading

to improved patient outcomes and survival rates.
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7 Conclusion and outlook

Recent research highlighting the prognostic and predictive

significance of TLS in cancer has sparked considerable interest in

studying TLS. The augmented immune response associated with TLS

maturitymay significantly contribute to the favorable prognosis observed

in cancer immunotherapy. Mature TLS are preferential sites for antigen

presentation, T-cell and B-cell activation and differentiation, and

antibody production, facilitating localized induction and maintenance

of the anti-tumor immune response, correlating with favorable

immunotherapy outcomes. However, our current understanding of the

mechanisms by which mature TLS control tumor growth and predict

checkpoint blockade responses remains limited.

The requirement for comprehensive and in-depth research on TLS

deserves considerable attention; based on this review, the authors posit

that forthcoming research related to TLS should prioritize the following

areas. Firstly, the intricate pathways of action and interactions among

cells within the TLS, particularly the specific functions of B cells in

mature TLS and the targets and nature of B-cell antibody antigens, still

need to be fully elucidated. Therefore, further in-depth studies are

warranted to gain insights into the role of mature TLS and B cells in the

immune response against tumors. Moreover, although we can

speculate potential maturation mechanisms of TLS from established

processes in lymphoid follicles, further investigation is imperative to

characterize mature TLS in patients with cancer accurately. This

necessity arises from notable disparities between lymph nodes and

TLS, compounded by the predominant reliance on noncancerous

animal models in current studies examining TLS formation

mechanisms. Additionally, varying perspectives across studies exist

regarding the classification of PFL-TLS as mature TLS; inconsistent

criteria for evaluating TLS maturity will impede the advancement of

TLS-related research. Recent efforts have attempted to categorize TLS

maturity status in patients into grades, yet the oversimplified

classification solely based on the presence or absence of mature TLS

overlooks the potential influence of varying TLS morphologies and

their proportions on maturity levels; the current classification system

needs to improve precision (35). Finally, we summarized various

methodologies for inducing the formation of mature TLS,

encompassing chemotherapy, immunotherapy, cell infusion, and

alternative strategies. Nonetheless, some existing difficulties limit the

clinical application of the above approaches. Hence, there is a pressing

need to advance safer and more dependable TLS induction modalities.

While the significance of TLS in cancer immunotherapy is widely

acknowledged, numerous unresolved inquiries and obstacles persist.

Through meticulous research and innovative methodologies,

researchers are currently addressing the ongoing challenge of

optimizing the application of TLS in cancer therapy.
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Glossary

TLS Tertiary lymphoid structures

ICI Immune checkpoint inhibitor

NSCLC Non-small cell lung cancer

PFS Progression-free survival

OS Overall survival

TMB Tumor mutational burden

PD-1 Programmed death-1

PD-L1 Programmed death-ligand 1

GC Germinal center

TRM Tissue-resident memory T cells

HEV High endothelial venule

DC Dendritic cell

FDC Follicular dendritic cell

E-TLS Early TLS

PFL-TLS Primary follicle-like TLS

SFL-TLS Secondary follicle-like TLS

BCRs B-cell receptors

TIL-B Tumor-infiltrating B cell

APCs Antigen-presenting cells

GZMB Granzyme B

ORRs Objective response rates

Tfhs Follicular helper T cells

SHM Somatic hypermutation

CSR Class switch recombination

ADCP Antibody-dependent cellular phagocytosis

ADCC Antibody-dependent cytotoxicity

CDC Complement-dependent cytotoxicity

ICs Immune complexes

PC Plasma cell

LTi cells Lymphoid tissue-inducing cells

LTa1b2 Lymphotoxin a1b2

LTbR Lymphotoxin b

CAFs Cancer-associated fibroblasts

LTo cells Lymphoid tissue organizer cells

VEGFC Vascular endothelial growth factor C

FRCs Fibroblastic reticular cells

SLOs Secondary lymphoid organs

TDLNs Tumor-draining lymph nodes

(Continued)
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NK cell Natural killer cell

AID Activation-induced cytidine deaminase

MHC Major histocompatibility complex

TILs Tumor-infiltrating lymphocytes

PIGR Polymeric immunoglobulin receptor

IgA Immunoglobulin A

FcgRIII Fcg

TCGA Cancer Genome Atlas

TIME Tumor immune microenvironment

CTLs Cytotoxic T lymphocytes

Tfr cells Follicular regulatory T cells

TME Tumor microenvironment

TAA Tumor-associated antigen

TAB Tumor-associated B cell

HPV Human papillomavirus.
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