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Unraveling the impact of SARS-
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and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States,
6Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen,
Copenhagen, Denmark
Throughout the COVID-19 pandemic, the emergence of new viral variants has

challenged public health efforts, often evading antibody responses generated by

infections and vaccinations. This immune escape has led to waves of

breakthrough infections, raising questions about the efficacy and durability of

immune protection. Here we focus on the impact of SARS-CoV-2 Delta and

Omicron spike mutations on ACE-2 receptor binding, protein stability, and

immune response evasion. Delta and Omicron variants had 3–5 times higher

binding affinities to ACE-2 than the ancestral strain (KDwt = 23.4 nM, KDDelta =

8.08 nM, KDBA.1 = 4.77 nM, KDBA.2 = 4.47 nM). The pattern recognition molecule

mannose-binding lectin (MBL) has been shown to recognize the spike protein.

Here we found that MBL binding remained largely unchanged across the variants,

even after introducing mutations at single glycan sites. Although MBL binding

decreased post-vaccination, it increased by 2.6-fold upon IgG depletion,

suggesting a compensatory or redundant role in immune recognition. Notably,

we identified two glycan sites (N717 and N801) as potentially essential for the

structural integrity of the spike protein. We also evaluated the antibody and T cell

responses. Neutralization by serum immunoglobulins was predominantly

mediated by IgG rather than IgA and was markedly impaired against the Delta

(5.8-fold decrease) and Omicron variants BA.1 (17.4-fold) and BA.2 (14.2-fold). T

cell responses, initially conserved, waned rapidly within 3 months post-Omicron

infection. Our data suggests that immune imprintingmay have hindered antibody

and T cell responses toward the variants. Overall, despite decreased antibody

neutralization, MBL recognition and T cell responses were generally unaffected
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by the variants. These findings extend our understanding of the complex interplay

between viral adaptation and immune response, underscoring the importance of

considering MBL interactions, immune imprinting, and viral evolution dynamics

in developing new vaccine and treatment strategies.
KEYWORDS

SARS-CoV-2, variants of concern, delta, omicron, mannose-binding lectin, MBL,
immune imprinting, vaccine
Introduction

Almost two years after the official end of the COVID-19

pandemic, the emergence of novel SARS-CoV-2 variants with

enhanced viral fitness has not been stopped. 1These novel

variants, classified by the WHO as variants of interest (VOI) or,

in the worst cases, variants of concern (VOC), are characterized by a

persistent accumulation of mutations primarily in their spike

proteins. By mediating the binding to the angiotensin-converting

enzyme 2 (ACE-2) receptor in host cells, the spike protein is the

main determinant of infection (1). Furthermore, the spike protein is

the antigen used in most available vaccines and the main target for

protective neutralizing antibodies (nAbs), and as such, mutations

occurring within the spike gene may give rise to variants with

enhanced transmissibility and immune evasive capabilities (2).

Indeed, the variability of the spike protein is probably to blame

for the rise of breakthrough infections that have prolonged the

COVID-19 pandemic.

The B.1.617.2 strain was identified in India in the state of

Maharashtra in October 2020 (3, 4), rapidly spreading through

India and worldwide, outcompeting the alpha VOC. It was

designated as the Delta VOC by WHO in May 2021 (5). The

Delta spike protein carried mutations never seen before in previous

VOCs, and known mutations affecting sites important for antibody-

mediated neutralization (6–8). In the period from July to December

2021, it accounted for virtually all new COVID-19 cases, only to be

swiftly replaced by the B.1.1.529 strain. This strain was first

identified in South Africa at the end of November 2021. Despite

border closures and travel restrictions, B.1.1.529 spread unhindered

worldwide and was designated as the Omicron VOC in a matter of

days (9). Early reports showed that Omicron had gained a fitness

advantage over Delta in terms of enhanced transmissibility (10, 11),
yme 2; BLI, biolayer

obilized metal affinity
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but resulted in milder infections and fewer hospitalizations (12).

This decline in virulence may be the result of attenuated replication

of Omicron in the upper and lower respiratory tracts compared to

the ancestral Wuhan strain—hereafter referred to as wild-type (wt)

—and the Delta variant due to its lower fusogenicity (13, 14). This

first Omicron wave was caused by the BA.1 subvariant (Pango

lineage B.1.1.529.1), which was itself almost immediately replaced

by the BA.2 subvariant (Pango lineage B.1.1.529.2). Worryingly,

timely reports monitoring the transmission of these subvariants

showed not only that BA.2 was substantially more transmissible

than BA.1 (15–17), but that it also caused more severe

infections (16).

While BA.1 and BA.2 are classified as Omicron sublineages and

not independent variants, they have marked differences. The BA.1

subvariant harbors more than 30 mutations on its spike protein (i.e.

four times the number carried by Delta). Of these, 15 map to the

receptor binding domain (RBD), the mediator of the interaction

with the human ACE-2 receptor in host cells (1), and the main

target for nAbs (18, 19). Some residues, such as K417, E484, and

N501, were already mutated in the previous VOCs Alpha (B.1.1.7),

Beta (B.1.351), and Gamma (P.1), and have been found to potently

diminish neutralization by convalescent and vaccinee sera (20, 21).

The BA.2 subvariant has 28 substitutions and 1 deletion in the spike

protein, 21 of these shared with BA.1, one with Delta (T19I), and

seven unique (D24–26, A27S, V213G, S371F, F376A,

D405N, R408S).

Adding to the concerning succession of evolving SARS-CoV-2

variants, in 2022 it was reported three recombinant lineages—XD,

XE, XF—probably originating from the co-infection in a single host

of the Delta, BA.1, and BA.2 variants (22). The XD recombinant

lineage, first identified in December 2021, is a Delta (AY.4) genome

with the Omicron BA.1 spike sequence and has been reported in

Belgium, the Netherlands, Denmark, and France. The recombinant

lineage XF is also a Delta and BA.1 recombinant, with a breakpoint

at the non-structural protein 3 (NSP3). The XE lineage is a

recombinant of BA.1 and BA.2, containing BA.1 mutations in

NSP1 to 6, and BA.2 mutations in the rest of the genome. XF and

XE are mostly associated with UK-sequenced samples and there is

no evidence of transmission in other EU/EEA countries.

The dramatic accumulation of mutations seen in the Delta and

Omicron spikes has raised concerns that protection from antibodies
frontiersin.org
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or T cells generated from previous infections or vaccination may be

severely compromised. Here, we aimed to provide a comprehensive

overview of the significance of the spike mutations of the Delta,

BA.1, and BA.2 variants, focusing on ACE-2 affinity, protein

stability, and glycosylation; and their contribution to evasion of

recognition by vaccine- and infection-induced antibodies, T cells,

and the humoral innate immune pattern recognition molecule

mannose-binding lectin (MBL). MBL is one of the main

activators of the complement cascade of the innate immune

system (23), recently shown to bind to the SARS-CoV-2 spike

protein and mediate complement activation and direct

opsonization (24). This interaction is highly dependent on the

glycan shield of the spike protein. Beyond the masking of

individual epitopes, changes in the glycan shield may lead to

widespread alterations in the antigenic surface that extend far

from the specific glycan attachment sites (25). To identify the

potential MBL binding sites on the SARS-CoV-2 spike protein,

we selected 12 experimentally verified N-glycan sites and performed

site-directed mutagenesis to evaluate their potential for escaping
Frontiers in Immunology 03
MBL recognition. Additionally, we evaluated the impact of immune

imprinting on antibody-mediated neutralization and T cell

recognition of the Delta and Omicron variants.
Results

Emergence of VOCs and
defining mutations

The location of all consensus mutations in the spike protein of

VOCs Delta (B.1.617.2), and Omicron BA.1 (B.1.1.529.1) and BA.2

(B.1.1.529.2) are depicted in Figure 1A. Delta contains eight

mutations in the spike protein: the three novel substitutions

T19R, G142D, and R158G, and the also novel deletion 157–

158del, clustering in the N-terminal domain (NTD) “supersite”

recognized by all known anti-NTD nAbs (26, 27); L452R, and

T478K in the RBD, both shown to impair antibody binding (6–8);

and D614G, P681R, and D950N, which may improve viral fitness
FIGURE 1

(A) Domain structure of the SARS-CoV-2 spike protein and location of the Delta, Omicron BA.1, and Omicron BA.2-defining mutations. Numbering
and domain boundaries according to the spike wt. NTD, N-terminal domain; RBD, receptor binding domain; RBM, receptor binding motif; FCS, furin
cleavage site; FP, fusion peptide; HR1/2, heptad repeats 1/2; TM, transmembrane domain; IC, intracellular domain. (B) Frequency distribution of
sequences from SARS-CoV-2 VOCs in Denmark from October 2020 to 2nd of January 2023. Modified from https://covariants.org. Only VOCs with
frequencies above 0.05 are plotted. Data for panels A and B from the Nextstrain GISAID database (https://nextstrain.org/ncov/gisaid/global) (157, 158).
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beyond antibody evasion (28–30). The Omicron BA.1 spike was at

the time, the most mutated spike, accumulating 34 mutations. Of

these, seven are in the NTD, such as the 69–70del which results in S-

gene target failure in the TaqPath RT-PCR and allowed to identify

both variants (31); the 142–144del and Y145D mutations mapping

to the N3 loop of the NTD antigenic supersite (26), and a novel EPE

insertion, not observed previously in any SARS-CoV-2 lineage, in

what has been identified as a recurrent insertion region (32). Ten

out of the 15 RBD mutations cluster in the receptor binding motif

(RBM), forming the ACE-2 binding interface (33), such as the

affinity-enhancing N501Y and E484A, likely highly immune evasive

as the E484K present in previous VOC (20, 21). Moreover, most of

these mutations are found in exposed, antibody-accessible regions

of the spike trimer, and will probably confer antibody resistance.

The mutations N679K and P681H, in the vicinity of the furin

cleavage site, and shared with the BA.2 sublineage, have been shown

to compromise the proteolytic cleavage of the S1/S2 subunits

required for membrane fusion and host cell infection (34).

Including the N679K and P681H, the Omicron BA.2 spike shares

20 mutations with BA.1. It also harbors seven additional mutations

compared to BA.1: three substitutions and the 24–26del within the

NTD, and four mutations in the RBD (but outside the RBM).

These mutations and others mapping outside the spike—and

beyond the scope of this work, have given the Delta and Omicron

VOCs the upper hand in the arms race that has characterized the

COVID-19 pandemic, with novel variants that have been

succeeding one another at increasing frequencies (Figure 1B). As

in other countries, in the period between July 2021 to December

2021, the vast majority of SARS-CoV-2 sequences in Denmark were

identified as Delta. During December, Omicron BA.1 cases

increased exponentially and then declined in mid-January to be

overtaken by the BA.2 sublineage.
Impact of mutations in ACE-2 interaction
and RBD stability

The binding affinity of the spike protein towards the human

ACE-2 receptor is a determinant of SARS-CoV-2 infectivity (35–

37). Therefore, we analyzed the binding kinetics of the RBD variants

to ACE-2 using biolayer interferometry (BLI) (Figure 2). Compared

to the wt, the RBD Delta displayed approx. a 4-fold higher affinity

(KDwt = 23.4 nM, KDDelta = 8.08 nM) (Figures 2A, B), and the

Omicron BA.1 and BA.2 variants a 5-fold higher affinity than the wt

(KDBA.1 = 4.77 nM, KDBA.2 = 4.47 nM) (Figures 2C, D). All three

RBD variants had similar dissociation rates (kdis), ranging from

3.2x10−3 s−1 for BA.2 to 3.64x10−3 s−1 for Delta, representing a 1.76-

to 1.55-fold improvement compared to the wt. Comparing the

kinetic parameters of all VOCs identified to date (20, 21), as well as

the RBD mutation Y453F identified in mink (38), the RBD alpha

remains the VOC with the highest binding affinity (approx. 8-fold

improvement over the wt), followed by BA.2 (5.2-fold) and BA.1

(4.9-fold) (Figure 2E). The Omicron variants however, emerged as

the fastest ACE-2 binders to date (i.e. highest binding rate, ka)

(kaBA.1 = 7.36x105 M−1s−1, kaBA.2 = 7.16x105 M−1s−1). Protein

stability has been identified as another key determinant of
Frontiers in Immunology 04
infectivity (39). We evaluated the RBD stability by nanoDSF by

monitoring the intrinsic fluorescence ratio at 350 and 330 nm

(Figure 2F). The RBD Delta was more stable than the wt (Ti = 53.9

vs 53.1°C, respectively), while the BA.1 and BA.2 had inflection

temperatures that were 5.3 and 2.3°C lower than that of the wt

strain. Thus, the two RBD-mapping mutations in the Delta have a

net positive effect in both ACE-2 affinity and stability, while the

BA.1 and BA.2 mutations have opposite effects in ACE-2

interaction and RBD stability.
Glycan analyses of the spike protein of
SARS-CoV-2 wt, Delta, and omicron

The spike protein, the most polymorphic of the SARS-CoV-2

structural proteins, is heavily glycosylated (40). It has been

proposed that it is via its N-glycan sites that the humoral innate

recognition molecule MBL binds to and neutralizes SARS-CoV-2

(24). Thus, recombinant spike wt, Delta, and BA.1 were analyzed by

MS to determine whether mutations within the spike protein may

alter its glycan shield, impairing MBL recognition (Figure 3). Intact

mass analyses by direct MALDI-MS revealed a molecular weight

(MW) of 167–169.8 kDa for wt, Delta, and BA.1 produced in

ExpiCHO cells (Figure 3A). The 30.5–33.1 kDa difference with the

predicted aa-derived mass represents total glycosylation, which

means that no major differences in the extent of glycosylation

were observed between the three variants. Similarly, LC-MS

analyses of the N-glycan release profile after PNGaseF digestion

show a very similar peak profile for all three proteins (Figure 3B).

O-glycosylation, analyzed on fully reduced and de-glycosylated

proteins using PNGaseF, was below the detection limit. Finally,

we compared the site-specific glycosylation of the spike variants by

LC-MS after trypsin digestion (Figure 3C). Even though not all sites

were covered by the trypsin-based peptide map, we observed no

significant difference with respect to site-specific glycan profiles

between the three variants.
Recognition of SARS-CoV-2 spike variants
by the humoral innate immune
molecule MBL

MBL is a recognition molecule of the complement system,

capable of binding to carbohydrates on pathogens and other

surfaces, and driving the generation of activated fragments of C4,

C3, and C5, and the assembly of the terminal complement complex

(TCC) via the lectin pathway (23). MBL has been shown to bind to

the SARS-CoV-2 spike protein and mediate complement activation

and direct opsonization. Here we evaluated whether the Delta and

Omicron BA.1 and BA.2 variants escape fromMBL recognition and

map the critical N-glycan sites for MBL binding. Detection of rMBL

bound to serial dilutions of spike wt, Delta, BA.1, and BA.2 showed

specific and comparable binding curves (Figure 4A). Similarly,

native MBL from naïve sera was found to interact with all three

variants to the same extent (Figure 4B), except for a significant

difference between spike BA.1 and the spike wt control. Of note,
frontiersin.org
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binding of native MBL to spike after vaccination was greatly

reduced and increased 2.6-fold (range 1.89–3.27, n = 5) after total

IgG depletion (Figure 4C). Binding of rMBL to spike, followed by

naïve MBL-defect serum—to ensure that complement activation

occurs exclusively via MBL—resulted in C4 (Figure 4D), C3

(Figure 4E), and TCC (Figure 4F) deposition. Finally, we sought

to define the region of the spike protein recognized by the lectin

activity of MBL. MBL was found to bind to the full-length spike and

the NTD in a calcium-dependent fashion, but not to the RBD

(Figure 4G). We performed site-directed mutagenesis to

systematically remove selected N-glycan sites and evaluated the

binding to the single, double, and triple N-glycan-deficient mutants

(Figure 4H). Of the 12 positions evaluated as single, double, and

triple mutants, none was critical for MBL recognition. However,

removal of N717 and N801 resulted in much decreased

recombinant protein yields, impaired thermal stability, and

protein degradation (Supplementary Figure 1; Figure 4I).
Frontiers in Immunology 05
Evolution of antibody titers and antibody
avidity in vaccinees and infected individuals

We monitored RBD-specific IgG and IgA titers and avidity in

longitudinal samples from individuals with different infection

histories to study how infection and vaccination shapes the

antibody responses (Table 1). Samples were collected before

BNT162b2 vaccination, three weeks after the first dose (median

22 days), one month after the second dose (median 31 days), and

two months after the third dose/booster (median 83 days). We

found no statistically significant differences between groups with

respect to sex, age, or BMI. When comparing days between

vaccination and the last blood drawn, individuals who got

infected with Omicron received their first, second, and third

doses later than the other groups. Individuals were classified as

infection-naïve, or having had a wt/Delta/Omicron infection

according to the date of their positive RT-PCR test and the
FIGURE 2

Biochemical impact of RBD mutations in Delta, BA.1, and BA.2 variants. (A–D) BLI sensorgrams of RBD wt (A), Delta (B), BA.1 (C), and BA.2 (D). ACE-
2-Fc was immobilized on anti-human Fc capture sensors. ACE-2-immobilized sensors were dipped into serial dilutions of RBD (association 500 s),
followed by only buffer (dissociation 500 s). (E) Kinetic parameters of single mutations and VOCs determined by BLI here and somewhere else (20,
21, 38). Data represent fold-change compared to the wt. Horizontal dotted black, yellow, and red lines signal the top KD, ka, and kdis values.
Horizontal dashed grey line signals the baseline (no change compared to the wt). (F) Thermal denaturation curves of the RBD wt, Delta, BA.1, and
BA.2 variants. Data are represented as individual first derivative curves of the 350:330 nm ratio from three repeats. Vertical dotted lines represent the
inflection temperatures (Ti).
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presence of anti-protein N antibodies (Figure 5A). As expected, IgG

titers increased after successive vaccine and booster doses

(Figure 5B). Two months after the third dose, antibody levels had

plateaued both in those that had experienced a prior infection

before the vaccine, and in infection-naïve individuals. Those with

Delta or Omicron infections showed enhanced IgG responses after

the third dose, probably boosted by the recent infection. IgA

responses were also boosted gradually following successive

vaccine doses (Figure 5C). After the first dose, only 10–15% of

the infection-naïve samples (which at this time point includes naïve,

Delta and Omicron infection groups) had IgA responses above the

threshold of positivity. One month after the second dose, these

numbers rose to 40–56%, but decreased slightly in the infection-

naïve samples two months after the third dose (30%). In contrast,

90% of the hybrid immune group with a prior infection (wt)

developed an IgA response already after one vaccine dose, which

was maintained one month after the second dose (95%) and

decreased slightly two months after the third dose (65%).

Infection with Delta or Omicron after a complete two-dose

vaccination was very effective at boosting IgA responses, with
Frontiers in Immunology 06
100% and 90% IgA positive in the Delta and Omicron hybrid

immune groups respectively, compared to 30% in infection-naïve.

We next evaluated the avidity maturation of RBD-specific IgG

and IgA antibodies in a subset of vaccinees that developed both IgG

and IgA responses (Figures 5D, E). As shown for antibody titers,

avidity was significantly enhanced by both vaccination and

infection, albeit the influence of each differed for IgG (Figure 5D)

and IgA (Figure 5E). Vaccination and infection had comparable

effects in terms of IgG avidity, e.g., two vaccine doses were

equivalent to one dose and a previous infection. Regarding IgA,

infection appeared to be the main driver of the avidity maturation,

with the hybrid immune group presenting qualitatively better IgA

responses already after the first vaccine dose compared to infection-

naïve after one or two vaccine doses. After the third dose, we

observed no statistically significant differences in the avidity of IgG

and IgA between infection-naïve and hybrid immune individuals.

To investigate the relative contribution of IgG and IgA to the

viral neutralization activity of immune sera, we selectively depleted

IgG, IgA, or both by passing sera from five vaccinees with a recent

Omicron infection through protein G or peptide M columns, and
FIGURE 3

MS-based glycan analyses of the glycan shield of the spike wt, Delta, and Omicron BA.1. (A) MW determination by MALDI-MS. The two mayor peaks
represent the intact spike peptide chain and probably the processed S1 subunit. (B) Released N-glycan profile after PNGaseF treatment and
fluorescent labelling. The magnitude of the peaks is represented as relative units. (C) N-glycan site-specific occupancy, as determined by peptide
mapping, for the spike wt, Delta, and Omicron BA.1. Positions that were not resolved are noted as “–”. N-glycans are represented as complex
(oligomannose content ≤ 29%), hybrid (30–79%), and oligomannose (≥ 80%), from Watanabe et al., (40).
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TABLE 1 Demographic data and characteristics of the study cohort at the last collection round.

Total Infection-naive WT infection Delta infection Omicron infection
P-value

(n = 78) (n = 20) (n = 20) (n = 18) (n = 20)

Sex

Female 69 (88.5%) 18 (90.0%) 19 (95.0%) 15 (83.3%) 17 (85.0%)
0.6633 a

Male 9 (11.5%) 2 (10.0%) 1 (5.0%) 3 (16.7%) 3 (15.0%)

Age (years)

Median (IQR) 49.0 (39.3–59.0) 57.0 (44.5–63.3) 51.5 (44.8–57.3) 45.5 (37.5–53.3) 46.0 (39.0–53.8) 0.162 a

<40 22 (28.2%) 3 (15.0%) 4 (20.0%) 7 (38.9%) 8 (40.0%)

0.2524 b>40-55 29 (37.2%) 6 (30.0%) 9 (45.0%) 7 (38.9%) 7 (35.0%)

>55 27 (34.6%) 11 (55.0%) 7 (35.0%) 4 (22.2%) 5 (25.0%)

(Continued)
F
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FIGURE 4

MBL interaction with spike. (A) Detection of rMBL bound to coated, 2-fold dilutions of spike wt, Delta (both in-house), BA.1, BA.2 (both from
AcroBiosystems). BSA was used as negative control, and spike wt from NIBSC as positive control (ctrl). (B). Binding of native MBL from naïve sera
from seven healthy, MBL-sufficient individuals (black dots). Naïve, MBL-defect serum was used as negative control (red dots). Friedman test with
Dunn’s multiple comparisons. ***, p < 0.001. (C) Binding of native MBL from vaccinee plasma before and after total IgG depletion (n = 5). Data is
normalized to mannan binding to correct for MBL loss after running the plasma through protein G agarose columns. (D–F) MBL-dependent
complement deposition on spike. Serial dilutions of rMBL were applied to coated spike, mannan, or BSA, followed by naïve MBL-defect serum as a
source of complement. Complement activation was measured as C4 (D), C3 (E), and TCC (F) deposition. (G) Calcium-dependent interaction
between MBL and full-length spike, spike NTD, and spike RBD. EDTA was used to chelate calcium. No MBL was used as negative control. Mannan
and BSA were used as positive and negative ligand controls, respectively (A–G). (H) MBL binding to spike N-glycan mutants from ExpiCHO
supernatants captured with an anti-spike mAb (in-house) under calcium sufficient (MBL + Ca++) or deficient (MBL + EDTA) conditions. Kruskal-Wallis
test with Dunn’s multiple comparisons. (I) Structural representation of the spike protein (PDB ID: 6VXX (159)) with N-glycans (molecular surface)
shown in grey. Highlighted in yellow are those positions evaluated in (G) by site-directed mutagenesis, and in red, those that impaired protein
production and stability. Data from the Protein Data Bank (RCSB PDB) (https://www.rcsb.org/) (160). Created with Mol* Viewer (161). ns, not significant.
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measured neutralization of the RBD wt, Delta, BA.1, and BA.2

(Figure 5F). A reduction/inhibition of the interaction between RBD

or spike and ACE-2 measured in ELISA was used as a proxy for

nAbs (41). After IgA depletion, neutralization potency was reduced

to 57.2–65% of the non-depleted sera. In contrast, IgG or IgG+IgA

double depleted sera retained only a minor neutralizing activity

(3.3–11.2% and 0.5–6.7%, respectively). There was no significant

difference in the relative contribution of IgG and IgA to the

neutralization of the different variants. In fact, even though all

donors had an Omicron infection, removal of IgA resulted in

comparable drops in neutralization of the wt/Delta and Omicron

variants, suggesting that IgA may target conserved regions of the

RBD shared between the vaccine and the strain that caused

the infection.

Taken together, these results indicate that hybrid immunity

(i.e., immunity generated by infection and vaccination) induce

quantitatively and qualitatively superior antibody responses, and

that serum viral neutralization in fully vaccinated individuals is

mostly driven by IgG.
Frontiers in Immunology 08
Neutralization by sera from naïve and
convalescent vaccinees

After assessing the possibility of escape from humoral innate

immune recognition, we questioned whether the Delta and

Omicron variants present enhanced immune evasion of nAb

responses, and if so, to which extent. For all variant RBDs, the

neutralizing potency of sera increased, as expected, after each

vaccine dose (Figure 6A). However, it appeared to reach a plateau

after two doses, with no major gains with the third dose/booster in

infection-naïve individuals. Likewise, in those individuals with a

prior infection, we did not observe any improvement in

neutralization after the first vaccine dose (i.e. two exposures). The

same pattern was conserved across all three RBD variants, with a

slight neutralization reduction against Delta and a more dramatic

loss against BA.1 and BA.2. After the first dose, 46%, 100%, and 81%

of the infection-naïve samples had no detectable nAbs against Delta,

BA.1, and BA.2, respectively. After the complete two-dose

vaccination, 1.7%, 27.6% and 10.3% of the samples remained
TABLE 1 Continued

Total Infection-naive WT infection Delta infection Omicron infection
P-value

(n = 78) (n = 20) (n = 20) (n = 18) (n = 20)

BMI

Median (IQR) 24.2 (21.9–26.9) 23.4 (22.0–26.1) 25.0 (22.8–28.4) 23.3 (21.9–24.9) 25.8 (22.7–26.9) 0.4186 a

Underweight 2 (2.6%) 0 (0%) 0 (0%) 1 (5.6%) 1 (5.0%)

0.1874 b

Normal 38 (48.7%) 11 (55.0%) 9 (45.0%) 11 (61.1%) 7 (35.0%)

Overweight 19 (24.4%) 4 (20.0%) 5 (25.0%) 2 (11.1%) 8 (40.0%)

Obese 6 (7.7%) 0 (0%) 4 (20.0%) 1 (5.6%) 1 (5.0%)

Missing 13 (16.7%) 5 (25.0%) 2 (10.0%) 3 (16.7%) 3 (15.0%)

Time between first vaccine dose and last blood drawn (days)

Median (IQR) 379 (370–390) 378 (371–384) 378 (370–383) 378 (369–389) 391 (384–398) 0.005519 a

Time between second vaccine dose and last blood drawn (days)

Median (IQR) 349 (342–360) 348 (340–352) 347 (342–350) 348 (339–356) 361 (352–367) 0.003691 a

Time between third vaccine dose and last blood drawn (days)

Median (IQR) 83.0 (75.0–91.0) 83.5 (78.8–91.5) 81.0 (73.8–88.0) 51.0 (41.0–76.0) 92.5 (89.0–97.0) <1e-04 a

Missing 1 (1.3%) 0 (0%) 0 (0%) 1 (5.6%) 0 (0%)

Time between positive PCR and last blood drawn (days)

Median (IQR) 90.5 (19.0–628) N.A. 649 (628–662) 90.5 (82.5–109) 17.0 (15.0–19.0) <1e-04 c

Time between first and second vaccine dose (days)

Median (IQR) 30.0 (29.0–32.0) 31.0 (30.0–32.0) 30.0 (28.0–31.0) 31.0 (30.0–33.0) 30.5 (29.8–32.0) 0.2711 a

Time between second and third vaccine dose (days)

Median (IQR) 267 (259–276) 261 (257–269) 269 (264–272) 297 (267–309) 267 (257–272) 0.0004014 a

Missing 1 (1.3%) 0 (0%) 0 (0%) 1 (5.6%) 0 (0%)
f

IQR Interquartile range.
N.A. Not Applicable.
aKruskal–Wallis test (two-sided) between infection-naive participants, participants infected before Omicron, participants infected with Delta, and participants infected with Omicron.
bChi-squared test (two-sided) between infection-naive participants, participants infected before Omicron, participants infected with Delta, and participants infected with Omicron.
cKruskal–Wallis test (two-sided) between participants infected before Omicron, participants infected with Delta, and participants infected with Omicron.
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negative. The neutralization potency of sera against the RBD and

the full-length spikes correlated strongly for all variants, as well as

the neutralization potency and RBD-specific IgG and IgA titers

(Supplementary Figure 2). Moreover, the potency of nAbs induced

by hybrid immunity remained superior at each dose, even when

correcting for antigen exposures (Figure 6B).

To quantify the immune evasion properties of the variants, and

to evaluate whether infection after vaccination induces variant

specific antibody responses, we calculated the fold change

in neutralization of the RBD Delta and Omicron variants

compared to the wt in individuals with a complete vaccination

plus booster and different infection histories (Figure 6C). The Delta

variant displayed a mean decrease in neutralization of 5.8-fold

compared to the wt (95% confidence interval [CI] = 5–6.6). The

Omicron BA.1 was the most effective at avoiding neutralization,

with a mean 17.4-fold reduction (95% CI = 14.6–20.2), while the

Omicron BA.2 presented a mean 14.2-fold reduction (11.6–16.8),

placing it between Delta and BA.1 in terms of antibody evasion.

Delta infected experienced a lower decrease of delta-specific

neutralization when compared to wt (p = 0.0084) or omicron

infection (p = 0.0403), but not when compared to non-infected,

while omicron infection provided no gains in variant-specific
Frontiers in Immunology 09
neutralization, which is suggestive of immune imprinting. Next,

we assessed the affinity and neutralization capacity of a previously

reported panel of 14 murine mAbs raised after immunization with

spike or RBD from the ancestral strain (41) (Figures 6D, E). The

Delta variant avoided recognition by 3/14 (21%) mAbs and

impaired the binding of other 7/14 (50%) (Figure 6D). Four

mAbs (29%) remained unaffected. On the other hand, the BA.1

and BA.2 Omicron variants avoided recognition/severely hindered

the binding of most of the antibodies (12/14, 86%). Only two mAbs

remained unperturbed by the BA.1 and BA.2 mutations. Similar

results were obtained when evaluating the escape from

neutralization (Figure 6E). From the eight mAbs with IC50

against the RBD wt below 20 μg/ml (the highest amount used in

the assay), six displayed a marked reduction in neutralization

potency and two were unaffected. Of the rest of the mAbs with a

more modest neutralizing activity (IC50 > 20 μg/ml), 5/14 (36%)

retained their activity towards Delta. A more dramatic escape from

neutralization was recorded for the Omicron variants, with only one

and two mAbs retaining activities below 20 μg/ml towards BA.1 and

BA.2, respectively.

Finally, in order to scrutinize the effect of imprinting in

antibody responses, we evaluated antibody titers and nAbs in a
FIGURE 5

IgG and IgA responses after infection and vaccination. (A) Overview of the vaccinee cohort. Donors were grouped in infection-naïve (n = 20), wt
infection (n = 20), Delta infection (n = 18), and Omicron infection (n = 20). Blood samples were collected before vaccination, after the first, second,
and third doses of the BNT162b2 vaccine. (B, C) Evolution of IgG (B) and IgA (C) RBD-specific titers, reported as arbitrary units (AU)/ml, after
infection and vaccination. Horizontal solid lines represent median. Horizontal dotted lines represent the threshold for positivity. (D, E) Avidity
maturation of IgG (D) and IgA (E). Ordinary Two-way ANOVA. Data is represented as mean ± SD. (F) IgG and IgA nAbs contribution to the
neutralization potency of hybrid immune sera (n = 5), plotted as the ratio (in percentage) of IgG, IgA, and IgG+IgA depleted to non-depleted sera.
Two-way ANOVA with the Geisser-Greenhouse correction. Data is represented as mean ± SD.
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murine model of heterologous prime-boost vaccination, where mice

where immunized thrice with the spike wt, or twice and boosted

with either the Delta or Omicron spikes. We observed no significant

differences in anti-spike wt/Delta/BA.1/BA.2 antibody titers

(Figure 6F), nor in nAb responses against the variants (Figure 6G).
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Evaluation of T cell responses to SARS-
CoV-2 wt and VOCs

To estimate the impact of the Delta and Omicron spike

mutations on T cell immunity, we stimulated whole blood using
FIGURE 6

Neutralization of RBD wt, Delta, BA.1, and BA.2 after vaccination and infection. (A) Neutralization potency of sera, reported as IU/ml, from infection-
naïve individuals (n = 20), wt infection (n = 20), Delta (n = 18), and Omicron (n = 20), against RBD wt, Delta, BA.1, and BA.2. Two-way ANOVA with
the Geisser-Greenhouse correction. Horizontal grey lines represent the median. Horizontal dotted lines represent the threshold for positivity.
(B) Comparison between the neutralization potency of sera against RBD wt from infection-naïve individuals (n = 20) and sera from those with a
previous infection (n = 20) from panel (A) Two antigen exposures refer to complete vaccination or infection + first dose. Three exposures refer to
complete vaccination + booster or complete vaccination + infection. Mann-Whitney tests, with a two-stage linear step-up procedure of Benjamini,
Krieger, and Yekutieli. Data are presented as median with interquartile range. (C) Antibody evasion gains of the Delta and Omicron variants plotted as
the ratio of the neutralization of RBD wt to RBD Delta, BA.1, and BA.2 from panel (A) Kruskal-Wallis with Dunn’s multiple corrections. Horizontal grey
lines represent the mean. Dashed lines indicate the highest and lowest mean values. Outliers identified by ROUT with Q = 1% (G [n = 7], H [n = 3]).
(D, E) Affinity (D) and neutralization potency (E) of a panel of murine mAbs (n = 14) towards RBD wt, Delta, BA.1, and BA.2. Horizontal dotted lines
indicate the maximum concentration of mAbs used in the assays. Friedman tests with Dunn’s multiple comparisons. (F, G) Antibody titers (F) and
neutralization potency of sera (G) in a murine model of heterologous prime-boost vaccination. Mice were divided into wt (three doses of spike wt,
n = 4), Delta (two doses of wt followed by a boost with spike Delta, n = 4), and Omicron (two doses of wt followed by a boost with spike Omicron,
n = 4). Kruskal-Wallis with Dunn’s multiple corrections. ns, not significant.
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peptide MPs [described elsewhere (42–44)] covering different

regions of the SARS-CoV-2 proteome from individuals with a

complete vaccination who were either: 1) infection-naïve, 2)

SARS-CoV-2 wt infected before the first vaccine dose, or 3)

Omicron infected after the second vaccine dose (breakthrough

infection). Briefly, we used four different MPs: three MPs of

overlapping peptides covering the entire wt, Delta, and Omicron

BA.1 spike proteins; and an experimentally-defined MP from the

remainder of the proteome (CD4RE) specific for CD4 T cells.

Whole blood stimulation using spike MPs elicited potent T cell

responses, measured as released IFN-g (mlU/ml), in all vaccinees

(Figure 7A). Stimulation using the CD4RE MP comprising peptides

outside the spike, and thus outside the vaccine antigen, allowed us

to discriminate any previous infection with 84.21% sensitivity and

100% specificity, or a more recent Omicron infection with 92.31%

sensitivity and 100% specificity. By comparing the T cell responses

against the spike MPs from the Delta and Omicron spikes to the wt

(Figure 7B), we observed a mild reduction irrespective of infection

history—namely, in infection-naïve, responses against the Delta

and Omicron were 86% (95% CI = 69.1–103) and 85.2% (66.3–104);

in those with a prior infection, 95.8% (76.6–113) and 89.5% (64.8–

114); and in recently infected with Omicron, 82.1% (71.4–92.8) and

84.3% (73.7–94.9). Of note, we observed no significant difference in

T cell reactivity against the Delta and Omicron spike MP in those

with an Omicron infection, nor in T cell reactivity against the

Omicron spike in the different donor groups, suggesting that

immune imprinting from vaccination may had dampened the

induction of Omicron-specific T cells after infection. We

investigated this further in the murine heterologous prime-boost

vaccination model described previously. To capture antigen-specific

memory and effector T cell responses, spleens were collected two

weeks after the booster dose, and stimulated overnight with spike

MPs (Figures 7C, D). As seen with vaccinees, mice receiving a Delta

or Omicron boost did not present enhanced variant-specific T cell

responses, measured as released IFN-g.
We also characterized the secreted cytokine profile of activated

T cells after spike wt, Delta, and Omicron (CD4 and CD8 T cells)

and CD4RE peptide stimulation (CD4 T cells) (Supplementary

Figure 3). The levels of 27 cytokines were measured by Luminex and

compared to the levels of IFN-g determined by ELISA as proxy for T

cell activation. The levels of IFN-g correlated strongly with the levels
of IFN-g (r = 0.8855) measured by Luminex, IL-2 (r = 0.8829), and

IP-10 (r = 0.8544). The levels of these three cytokines after CD4RE

peptide pool stimulation in vaccinated individuals non-infected (n

= 8) or recovered from a recent Omicron infection (n = 11), could

discriminate infection with 100% specificity and sensitivities

ranging from 72.73% to 84.82%. A third of the cytokines (9/27)

were found at concentrations below or close to the lower

quantification limit (i.e. IL-5, VEGF, GM-CSF, IL-7, IL-10, IL-12,

IL-13, IL-15, IL-17), while the rest (15/27) were expressed

constitutively in full blood.

Response frequency (RF) scores from the Immune Epitope

Database’s (IEDB) Immunome Browser Tool, (www.iebd.org)

(45), can be used to identify immunodominant regions within a

given antigen. To evaluate the putative impact of the Delta and

Omicron BA.1 spike mutations on T cell recognition and activation,
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we overlapped the mutated residues on the position-specific RF

scores for CD4 and CD8 epitopes in the spike antigen (Figure 7E).

CD8 presents a slightly more widespread recognition pattern than

CD4, which has distinct immunodominant regions (such as 166–

180, 235–249, 313–320, 346–355, and 813–826, RF ≥ 0.3). The Delta

L452R mutation occurs in a relatively immunodominant MHCI

and MHCII epitope region (448–456 and 451–465, respectively),

which may impair recognition by both CD8 and CD4 T cells. The

Omicron BA.1 spike, on the other hand, harbors several mutations

in the vicinity of MHCI (S375F) and MHCII (G339D, G446S,

N764K) immunodominant regions, but none directly overlapping.

Finally, we evaluated the durability of T cell responses after

Omicron infection in a group of fully vaccinated individuals.

Samples were collected one to two weeks after recovery, and then

again one, two, four, and eight months afterwards. Whole blood was

stimulated with spike (Figure 7F) or CD4RE (Figure 7G) peptide

pools. T cell responses appeared to wane rapidly within the first

three months, with a half-life of around 40–80 days in most

convalescent vaccinees (8/9). A single donor, with high T cell

activity 40 days after the first positive RT-PCR test, displayed

proportionately prolonged responses. While cell activation after

both spike and CD4RE peptide stimulation decreased with time,

responses against the latter decayed more rapidly (mean half-life

spike = 81.87 days [95% CI 18.54–145.2], mean half-life CD4RE =

20.12 days [95% CI 5.46–34.78], p = 0.0078), and reached a lower

baseline by month four than spike responses (8.2% vs 39.5% of the

magnitude of the acute response for CD4RE and spike

stimulation, respectively).
Discussion

Several times throughout the COVID-19 pandemic, new viral

variants have emerged with a remarkable ability to escape antibody

responses (infection-induced, vaccine-induced, and/or antibody-

based prophylactics), resulting in periodic waves of breakthrough

infections (46). This has led to the question of whether the immune

protection generated by the original vaccines targeting the

ancestral/wt strain is a suitable match for the rapid evolution of

the virus, or whether variant-specific vaccines should be used

instead. However, the efficacy of variant-specific vaccines is

conditioned by how cross-reactive the immune response

generated by such vaccines would be when facing yet another

variant, and by the extent of humoral and cellular immune

imprinting. Studies of vaccinated and unvaccinated individuals

infected with Omicron BA.1 reveal that Omicron-induced

antibodies are poorly cross-reactive against other VOC (16), with

this loss of reactivity ameliorated by prior vaccination (47). So far,

data from Pfizer–BioNTech and Moderna bivalent vaccines, which

target the ancestral and BA.1 strains, have been regarded as

“underwhelming”, with neutralizing titers against the BA.1 merely

1.5–1.75 fold higher than those generated by the monovalent

vaccine (48). When evaluated against the more recent Omicron

variants, such as BA.2, BA.4, BA.5, and BA.2.75, bivalent vaccines

resulted in no significant improvement in nAb titers (49, 50). Taken

together, these findings suggest that deployment of Omicron-based
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vaccines, or other highly divergent SARS-CoV-2 strains, in

immune-naïve individuals may induce poorly cross-reactive

antibody responses, while Omicron boosters in vaccinees may be

of limited use due to the imprinted responses from the ancestral

strain-based vaccines. In this respect, our variant-specific

neutralization results revealed that individuals with an Omicron

breakthrough infection were not better at neutralizing BA.1/BA.2.

Similarly, a recent Omicron infection did not appear to boost cell

responses against the Omicron spike, and donors who have had an

Omicron breakthrough infection presented a comparable reduction

in T cell activation (15.7%) as infection-naïve (14.8%) after whole

blood stimulation with a BA.1 spike-specific peptide pool. This
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decrease in the magnitude of T cell responses is in line with other

reports (42, 51–53). Finally, we modelled a Delta and Omicron

exposure after vaccination in mice and evaluated their antibody and

cellular responses. Mice that encountered the Delta or Omicron

spike antigen after two doses of the ancestral spike had comparable

antibody titers and nAb responses against the corresponding

variant, as well as T cell responses after splenocyte stimulation

using Delta or Omicron peptide pools. We propose that the reason

behind the failure to develop Delta and Omicron-specific responses

and the limited efficacy of bivalent boosters, is one and the same:

immune imprinting from the ancestral strain. Imprinting is being

acknowledged by a growing body of literature (48–50, 54–59).
FIGURE 7

Cellular immunity to SARS-CoV-2 wt, Delta, and Omicron. (A) IFN-g release after whole blood stimulation from infection-naïve (n = 11), individuals
with a wt infection (n = 6) or a recent Omicron infection (n = 14), with peptide MPs covering the wt, Delta, and Omicron spike proteins, and CD4 T
cell peptides restricted to the remainder of the proteome (CD4RE). Multiple Kruskal-Wallis tests with Dunn’s multiple comparisons corrections.
Dotted line represents the threshold for positivity. (B) Ratio (%) of T cell responses after whole blood stimulation with spike peptide pools from panel
A in infection-naïve, individuals with a wt infection, or an Omicron infection. Friedman tests with Dunn’s multiple comparisons. (C) IFN-g release
from splenocyte cultures from mice immunized thrice with spike wt (Wt) (n = 4), twice with spike wt followed by spike Delta (Delta) (n = 4), or twice
with spike wt followed by spike Omicron BA.1 (Omicron) (n = 4). Two-way ANOVA with the Geisser-Greenhouse correction. (D) Variant-specific T
cell responses from panel C plotted as the ratio of IFN-g release after spike Delta MP stimulation to spike wt (left) or as the spike Omicron MP
stimulation to spike wt (right). Kruskal-Wallis with Dunn’s multiple comparisons. Only statistically significant differences are plotted (A–D). (E) Median
response frequency (RF) scores for CD4 and CD8 epitopes from the SARS-CoV-2 spike protein. Data from the Immunome Browser (www.iedb.org)
(45). Delta and Omicron mutated residues are marked in purple and orange, respectively. (F, G)Waning of T cell responses against spike wt (F) or CD4RE
(G) peptide pools monitored for eight months after an Omicron infection (n = 9). Solid lines represent 3-knot smoothing splines. Horizontal dotted lines
indicate the 50% response.
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Acute antibody responses after an Omicron breakthrough infection

are biased towards the ancestral strain and manifest high levels of

somatic hypermutation, indicating activation of pre-existing

vaccine-induced memory B-cells, and a limited induction of de

novo Omicron-specific B-cell responses (55–60). Antibody

responses remain dominated by public clones also at later time

points, as evidenced by a report on the evolution of the antibody

response up to six months after an Omicron BA.1 breakthrough

infection (58).

Here we have also studied the effect of Delta and Omicron BA.1

and BA.2 mutations in the kinetics of the RBD/ACE-2 interaction.

BLI analyses revealed KDs of 8.08 nM for Delta, 4.77 nM for BA.1,

and 4.47 nM for BA.2, all superior to the ancestral strain. Our

binding affinity results, wherein BA.1 and BA.2 RBD mutations

result in an increased ACE-2 affinity compared to the original

strain, as well as the slightly lower affinity of BA.1 compared to BA.2

(61), are in agreement with other recent works (62–64). However,

other authors have reported a slight loss of binding affinity for

Omicron compared to Delta (65, 66). By also comparing with our

previous binding kinetics data from the alpha, beta, and gamma

RBDs, we noted that ACE-2 affinity peaked with the alpha variant at

a point in the pandemic where the immune status of the population

was for the most part naïve. Subsequent VOCs have accumulated

further mutations in the RBD, such as the K417N/T in the beta and

gamma variants, trading ACE-2 affinity for antibody escape (21,

67). The fact that the spike protein accumulates 43% and 61% of the

Delta and Omicron-defining mutations when it accounts for only

13% of the SARS-CoV-2 proteome, and that some of these

mutations have emerged independently in different VOCs and in

patients with chronic infections (68–71), is suggestive of adaptive

(convergent) evolution (69). In the case of Omicron, most of the

spike-mapping mutations have been shown by deep mutational

scanning to impair antibody neutralization (72, 73). In a population

where pre-existing immunity is widespread, antibody escape may be

of greater importance to viral transmissibility than receptor affinity.

This trade-off has become quite prevalent in the highly mutated

BA.1, where most mutations have either a neutral (G339D, S371L,

S373P, S375F, N440K, T478K, E484A) or a deleterious effect

(K417N, G446S, Q493R, G496S, and Y505H) on ACE-2 binding

affinity, but are compensated by epistatic interactions with a few

affinity-enhancing mutations (S477N < Q498R < N501Y) (i.e.

deleterious mutations tend to become neutral in the presence of

other mutations) (63). Moreover, we report a marked decrease in

the thermal stability of the Omicron BA.1 RBD compared to their

wt and Delta counterparts, and increased degradation of

recombinant BA.1 spike (as evidenced in our MALDI-MS plot),

and BA.1 RBD (data not shown). The introduction of basic residues

in the BA.1 RBD makes it more susceptible to degradation by

proteolytic enzymes, such as trypsin and chymotrypsin (74).

Considering that stabilizing mutations, such as the prevalent

D614G, promote infectivity (75), spike stability and its

consequences on SARS-CoV-2 infectivity and virulence, may yet

be another opportunity cost resulting from improvements in

antibody resistance. Of note, we report improved ka—but not

kdis—for the Omicron variants compared to all previous VOCs,

and we hypothesize that fast binding rates may be more important
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for effective cell infection than longer receptor occupancy times.

Recent reports have shown that while Omicron replicates less

efficiently in the lungs than Delta and the wt strain (13, 14), it

presents an enhanced replication in bronchi and nasal epithelium

(76, 77). Thus, the higher density of Omicron viral particles in the

upper respiratory tract, from where they can be readily shed,

together with its marked gains in immune evasion, are likely the

key factors that have led to the swift dominance of Omicron over all

other VOCs.

Monitoring of glycosylation of emerging viral variants may be

relevant for the identification of evolutionary patterns of viral

immune evasion. Host glycosylation of viral proteins is important

for protein folding, stability, viral tropism, and antigenicity (78).

Changes in glycosylation are informative of alterations in protein

structure (due to steric hindrances of glycan-processing enzymes),

which may in turn compromise conformational antibody epitopes.

Similarly, the addition or removal of glycan sites may lead to

epitope masking (79, 80). Here, we asked whether the Delta and

Omicron BA.1 and BA.2 spikes carried changes in their glycan

shields that may impact innate humoral recognition by the pattern

recognition molecule MBL of the complement system. We found

little variability in the glycan shields of the wt, Delta, and Omicron

BA.1 spikes. While some groups have reported an association

between alleles resulting in lower MBL levels and a more severe

clinical course of COVID-19 infection (81–84), disagreements

remain in the literature and the relevance of MBL in COVID-19

progression remains disputed (24, 85–89). Here we showed that

that Delta and Omicron spikes were recognized by MBL to the same

extent as the ancestral spike, and that binding to spike resulted in

lectin pathway activation. At the same time, binding of serum MBL

to spike was severely compromised after vaccination, likely because

high-affinity antibodies, in concentrations several orders of

magnitude higher than MBL, are displacing it from the virus

antigen. This antibody displacement may also explain the disparity

in the literature regarding MBL levels and COVID-19 severity. MBL

recognized full-length spike ectodomain andNTD,butnot theRBD, in

agreementwith the limitedN-glycosylationof the latter.Removal ofN-

glycans sites at positions 61 in theNTD, aswell as 603, 709, and1074 in

the S1/S2 domain by site-directedmutagenesis resulted inminor, non-

statistically significant reductions inMBL binding in our experimental

setup. Overall, none of the 12 examined glycan positions were critical

for MBL recognition. We propose this is due to the flexibility of the

MBL molecule that allows it to reach and bind any glycosylated

position with hexoses with equatorial hydroxyl groups in the end

position. Of interest, we observed a marked decrease in protein yield

when expressing recombinant spike protein containing the N717Q

and N801Q mutations, as well as altered denaturation profiles, and

extra bands by SDS-PAGE suggestive of protein processing or

degradation. N-linked glycans are known regulators of protein

folding and quality control in the endoplasmic reticulum (90).

Glycans in the 717 and 801 position, in close proximity in the S2

domain, appear to be important for protein folding and as such, we do

not expect any future SARS-CoV-2 variants to fix these mutations.

We also monitored the evolution of IgG, IgA, and nAb titers in

a cohort of vaccinees who were either infection-naïve, or had

experienced a SARS-CoV-2 wt, Delta, or Omicron infection. In
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agreement with others, we showed that while antibody titers

increase after vaccination or after breakthrough infections, titers

plateau by three antigen exposures (i.e. three vaccine doses or two

doses and infection) (54, 91). We also observed that the decline in

titers was more pronounced for IgA than IgG. Moreover, we

demonstrated that antibody avidity also plateaued by three

antigen exposures. While many studies have looked at the waning

of antibody levels over time, literature about the affinity maturation

of SARS-CoV-2 antibodies after infection and vaccination remain

sparse (92). Here we showed that hybrid immunity enhanced not

only antibody titers, but also affinity maturation, specially of the

IgA isotype. While most hybrid immune individuals developed

measurable IgA responses, only 30–40% of the infection-naïve did

so. It is now well established that most COVID-19-recovered

individuals develop IgM, IgG, and IgA antibodies within the first

two weeks after symptom onset (93–102), and that SARS-CoV-2

vaccination induces IgM and IgA responses, albeit not in all

individuals and of a more transient nature than IgG responses

(103–112). Nevertheless, the contribution of systemic serum IgA in

the protection against SARS-CoV-2 infection remains unclear. IgA

dominates the neutralizing response in the first two weeks after

symptom onset (113, 114), apparently thanks to the enhanced

flexibility of its hinge (114, 115). However, it should be kept in

mind that IgG antibodies have not undergone sufficient affinity

maturation in such early period after infection, as demonstrated in

our longitudinal affinity measurements. Furthermore, depletion of

IgA or IgG in hybrid immune individuals indicated that most of the

neutralizing potency of sera comes from IgG. Our results are in line

with a recent publication showing that IgA responses have modest

neutralizing activities (116), and as IgA levels wane more rapidly

than IgG levels, the protective role of serum IgA against SARS-CoV-

2 infection would likely be short-lived (116, 117).

In a recent letter describing the results of two open-label,

nonrandomized clinical studies, the authors reported that a fourth

monovalent booster dose has a minimal protective effect against

infection with Omicron, ranging from 30% gains for the Pfizer-

BioNTech vaccine to 11% for Moderna (118). Thus, one may think

that booster usefulness is, at least in their current form, limited to

transiently recover waning antibody levels, and not significantly

enhance their neutralization potency or recognition breadth (119).

This emphasizes the need of novel vaccines, capable of preventing

infection against novel variants. Moreover, concerns have been

raised regarding frequent boosters and their role in the generation

of novel SARS-CoV-2 variants via breakthrough from vaccine-

elicited immunity (120). We and others have proposed that

exposure of the airways to the pathogen, whether through natural

infection or nasal vaccination, may be required to generate mucosal

immunity capable of preventing infection (i.e. sterilizing immunity)

(105, 121–125). However, the disappointing results of two of the

first Phase I clinical trials of intranasal vaccination—which failed to

elicit robust mucosal or systemic immune responses— serve as a

reminder of the challenges ahead towards making reliable nasal

vaccines (126, 127).

Next, we evaluated the evasion of nAbs by the Delta and

Omicron variants after one, two, and three vaccine doses in

individuals with different infection histories. Overall, our findings
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are in good agreement with the current literature, where the Delta

variant is anywhere from 2.5- to 9-fold less sensitive to vaccine-

elicited nAbs (3, 8, 128, 129). It has been proposed that Delta

mutations in the NTD greatly contribute to the variant’s resistance

to immune sera (27). Similarly, it has now been extensively shown

that BA.1 exhibits a potent immune evasion capacity when

challenged with mAbs and sera from convalescent and vaccinated

individuals (62, 66, 73, 129–137). This could possibly be the result

of nAb reactivities clustering in the RBD, which is highly mutated in

the BA.1 variant (7). Many others have also looked at the

neutralization of the BA.2 sublineage, which for the most part

appears to be neutralized more efficiently than BA.1 (130, 138–140),

or at least to a comparable extent (141–143). Direct comparisons of

the neutralization potency of sera, after correcting for the number of

exposures to the antigen (either as vaccine or infection),

demonstrated that those with hybrid immunity mount stronger

antibody responses than infection-naïve individuals. Thus, our data

underscores the concept that hybrid immunity confers a more

robust protection against infection, proposed to be the result of a

broader and more sustained immune response due to the

recognition of antigens not included in the spike-based vaccines,

as well as the induction of mucosal immunity (144, 145). However,

infection does come with risks (several orders of magnitude higher

than vaccine-related risks) and we would like to discourage anyone

from seeking this enhanced protection willingly.

Finally, we analyzed the impact of Delta and Omicron BA.1 on

cellular immunity by measuring released cytokines after whole blood

stimulation with pools of peptides spanning the entire length of the

spike protein. IFN-g is one of the main cytokines released during

infection by cytotoxic (CD8) and Th1 helper (CD4) T cells, and

induces an antiviral state by promoting differentiation and

proliferation of T and B cells, and activation of phagocytes (146). By

using peptides covering the spike or the remainder of the proteome

excluding the spike, we could differentiate between vaccinated

individuals with a previous infection and those reportedly never

infected (specificity 100%, sensitivity 84.21%/92.31% for wt infection

or Omicron infection, respectively). Unfortunately, we could not

include non-vaccinees due to the high vaccination rates in Denmark.

For such comparisons, we refer to the original publication describing

these reagents (42).Wealso showa statistically significant reduction in

released IFN-g after stimulation with peptide pools from the spike

Delta and Omicron, suggesting that some of the T cell epitopes are

affected by the mutations in the new strains. However, and in contrast

with the antibodyresponses,Tcell responses remain largelyunaffected.

Our findings are in line with recent reports highlighting the relatively

preservedT cell responses against theOmicron variant (51, 52, 64, 147,

148). The broad CD4+ and CD8+ T cell reactivity across the whole

length of the spike protein, as well as the tolerance for substitutions in

peptides presented by MHC molecules–due to the intrinsic flexibility

of the latter (149)—may explain why T cell responses are not severely

impaired by the heavily mutated Delta and Omicron spikes. Yet, as

novelOmicron variants are identified across the globe, T cell responses

should continue to be monitored for any signs of immune escape.

These conclusions must be considered in light of the limitations of

the current study. The MS analyses of the glycan shields of the spike

proteins are limited when it comes to the depth of the analyses and
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sample processing. Trypsin digestion, instead of using multiple

distinct proteases, left ~30% of the sites unmapped, and automated

glycan occupancy would benefit from a time-intensive manual

curation. Still, it is reassuring to confirm that our findings are in

agreement with other reports (25, 150). MS and biochemical data were

derived from soluble recombinantly produced spike and RBD

proteins, and not spikes presented on viral particles. Similarly,

measurements of nAbs were done using antibody-mediated ACE-2/

RBD inhibition ELISAs instead of using life viruses in plaque

reduction neutralization tests. However, we have shown in the past

that results from these tests are highly correlated (r = 0.9231, p <

0.0001) (41). Longitudinal blood samples were taken, on average, three

weeks after the first dose, one month after the second dose, and two

months after the third dose, and thus, the antibodies after the third

dose may have waned slightly over that extra month from vaccine to

sampling. Females are overrepresented in our cohort (88.5%), which

reflects the sex imbalance of healthcare personnel in Denmark (our

donor group), but we observed no statistically significant difference

between vaccination/infection groups. Moreover, comparisons on the

neutralizing potency of sera were only possible among those with a wt

infection, because samples from Delta and Omicron convalescent

individuals were taken after three vaccine doses plus a recent infection,

and thus the contribution from each cannot be untangled. We focused

on IgA titers in serum and their contribution to neutralization.

However, IgA is mainly found in the mucosa and the circulating

IgA levels might not reflect the actual levels in the respiratory tract.

Finally, immune imprinting of cellular responses was evaluated using

peptide mixes, where the contribution from de novo responses may be

masked by the loss reactivity towards epitopes that are lost with the

variant mutations. Finer analyses at the epitope level would be

necessary to disentangle these counteracting responses.

In conclusion, here we demonstrated that the SARS-CoV-2

Delta and Omicron VOCs present marked gain in ACE-2 affinity

and immune evasion, in particular the Omicron BA.1 sub-lineage.

However, these immune evasive gains are predominantly limited to

antibody responses, as recognition by the innate pattern recognition

molecule MBL and T cell responses remain largely unaffected. MBL

recognition appeared to be outcompeted by antibodies from

vaccinee sera, in line of the conventional view of innate immunity

as first line responders vying for time until the body can mount an

adaptive immune response. Moreover, we provide insight into the

impact of infection in antibody maturation, and how immune

imprinting from vaccines formulated with the ancestral strain

may limit the breath and compromise the efficacy of antibody

and cellular responses against SARS-CoV-2 variants.
Materials and methods

Recombinant proteins

The nucleotide sequence of the spike ectodomain (amino acid

[aa] 1–1208) of the SARS-CoV-2 Delta (Pango lineage B.1.617.2)

and BA.1 Omicron strains (B.1.1.529), containing two proline

substitutions at residues 986–987 and a GSAS substitution at

residues 682–685 (numbering according to the wt spike), were
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synthesized by GeneArt (Thermo Fisher Scientific, Waltham, MA,

USA) in the pcDNA3.4 expression vector. The Omicron spike

sequence was followed by an 8xHis tag and the Delta spike by a

T4 fibritin oligomerization domain and an 8xHis tag. Similarly, the

sequences for the Delta, Omicron BA.1, and Omicron BA.2 RBDs

(aa 319–591, numbering according to the wt) were synthesized by

GeneArt with an N-terminal human serum albumin signal peptide

and a C-terminal tandem 8xHis-Avi tag. The SARS-CoV-2 N-

terminal region (aa 27–305) was synthesized with a CD33 secretion

signal peptide (MPLLLLLPLLWAGALA) followed by an N-

terminal 6xHis tag. These proteins, as well as the SARS-CoV-2

RBD and spike wt, protein N; and human ACE-2, ACE-2-Fc, and

MBL were produced and purified as described previously (38, 41,

102, 151). The spike glycan variants were generated by site-directed

mutagenesis by GeneArt (Thermo Fisher Scientific). Selected glycan

variants were batch-purified by immobilized metal affinity

chromatography (IMAC). Briefly, ExpiCHO supernatants (50 ml)

were centrifuged at 1000 x g for 5 min at 4°C and filtered through

0.45 μm PVDF syringe filters (SLHV033RS Millipore/Merck,

Rahway, NJ, USA). Clarified supernatants were diluted 1:2 with

equilibration buffer (20 mM sodium phosphate, 150 mM sodium

chloride), and incubated with 0.6 ml of HisPur Ni-NTA agarose

beads (Thermo Fisher Scientific) for 2 h with end-over-end rotation

at room temperature (RT). Bound proteins were eluted using

equilibration buffer + 250 mM imidazole, buffer exchanged in

PBS, and concentrated using Amicon filters with a 50 kDa cut-off

(Merck). The following recombinant proteins were purchased from

ACROBiosystems (Newark, NJ, USA): SARS-CoV-2 RBD BA.1

(SPD-C522e), RBD BA.2 (SPD-C522g), spike wt (SPN-C52H9),

spike Delta (SPN-C52He), spike BA.1 (SPN-C52Hz), spike BA.2

(SPN-C5223), biotinylated RBD BA.1 (SPD-C82E4), and

biotinylated RBD BA.2 (SPD-C82Eq). Additionally, a control

SARS-CoV-2 trimeric Spike (101007) was provided by the NIBSC

Repository, UK, with thanks to Dr Barney Graham, NIAID. This

protein is identical to our spike wt with the addition of a C-terminal

HRV 3C cleavage site (LEVLFQGPG) and two copies of the Strep-

tag-II separated by a Gly-Ser linker (SAWSHPQFEKGGGSGG

GGSGGSAWSHPQFEK).
ACE-2 binding kinetics determination by
biolayer interferometry

Kinetic measurements of the RBD wt, Delta, BA.1, and BA.2

interaction with ACE-2 were performed by BLI in an Octect

RED383 system (ForteBio, Fremont, CA, USA) as described

previously (20), only updating the BLI running buffer (1xPBS

[AM9624 Invitrogen, Thermo Fisher Scientific], 0.1% bovine

serum albumin (BSA) IgG free [A0336 Sigma-Aldrich, St. Louis,

MO, USA], 0.03% Tween 20, pH 7.4) and the RBD variants being

evaluated. Briefly, an ACE-2-Fc fusion protein (38) (13 μg/ml) was

immobilized onto anti-human Fc capture sensors (Pall Life

Sciences, California, USA) (500 s), followed by a baseline step (60

s), an association step (500 s) by dipping the sensors in 12-point,

1.5-fold serial dilutions of RBD wt, Delta, BA.1, and BA.2 (starting

concentration 150 nM), and a final dissociation step (500 s).
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Sensorgrams were reference subtracted (ACE-2-Fc sensors in buffer

only during the association and dissociation phases) and globally

fitted to a 1:1 binding model.
Thermal stability

Nano differential scanning fluorimetry (NanoDSF) was used to

determine the impact of RBD-mapping mutations from the Delta,

BA.1, and BA.2 strains, as well as the glycan mutations, on the

stability of the RBD and the spike protein, respectively. Samples

diluted in PBS (200 μg/ml) were analyzed in triplicates on a Tycho

NT.6 (NanoTemper Technologies GmbH, Munich, Germany) on a

predefined 30°C/min thermal ramp. The maxima in the first

derivative of the ratio of the intrinsic fluorescence at 350 and 330

nm averaged from three replicates were used to calculate the

inflection temperature (Ti), i.e. the temperature at which a

discrete unfolding event takes place.
Glycan analyses by mass spectrometry

Glycan profiles were assessed by fluorescence labelling of

released N-glycans. A total of 50 μg of protein were treated with

rapid PNGaseF (New England Biolabs, Ipswich, MA, USA) in order

to release N-glycans. LC-MS analysis was performed on a Synapt

G2Si Q-tof instrument (Waters Corp., Milford, MA, USA) using

standard intact protein analysis settings and it was verified that all

N-glycans had been removed. Subsequently fluorescence labelling

of the released glycans was performed using GlycoWorks rapiFlour

reagents and workflow (Waters Corp.). The labelled glycans were

analysed by LC-MS and fluorescence detection using a Synapt G2Si

Q-tof instrument with Acquity Premier UPLC inlet system and a

Acquity UPLC Glycan BEH Amide, 100Å, 1.7 μm, 2.1 x 50 mm

column for separation of labelled glycans (all from Waters Corp.).

Ammonium Formate pH 4 and 100% MeCN were used as mobile

phases A and B, respectively. A gradient of 25–46% buffer A over

35 min and a flow of 0.4 ml/min was employed.

Direct MS analysis of intact proteins was performed using a

Ultraflex MALDI-TOF instrument (Bruker, Billerica, MA, USA).

Samples were mixed 1:2 with sinapinic acid matrix and 1 μl applied

to the target surface and allowed to dry.
MBL spike interaction

Binding of native MBL from sera
MaxiSorp™ 96-well microtiter plates (439454 Thermo Fisher

Scientific) were coated with 2 μg/ml of the spike variants, mannan

(M7504 Sigma-Aldrich) as a positive control, and BSA

(107350860001 Roche Diagnostics) as negative control, overnight

(ON) at 4°C in PBS. MBL-containing serum samples diluted 1:3 in

Barbital-T (4 mM sodium barbital, 145 mM NaCl, 2.6 mM CaCl2,

2.1 mM MgCl2, 0.05% Tween-20, pH 7.4) were added to the plates

for 2 h. Bound MBL was detected with 2 μg/ml of biotinylated Hyb-

131-1 (BioPorto Diagnostics, Hellerup, Denmark) for 1.5 h,
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followed by a 1:2000 dilution of streptavidin-HRP conjugate

(RPN1231V Cytiva, Marlborough, MA, USA) for 1 h.

Homozygous MBL-defect serum was used as negative control

(152). Plates were developed with TMB ONE (KemEnTec

Diagnostics, Taastrup, Denmark). The reaction was stopped with

0.3 M H2SO4, and the optical density (OD) was recorded at 450 –

630 nm. Plates were washed thrice between steps with Barbital-T.

Incubations took place at RT on an orbital shaker.

Binding of recombinant MBL
Microtiter plates were coated with 2-fold dilutions, starting at

2.5 μg/ml of the spike variants, mannan as positive control, and BSA

as negative control, ON at 4°C in PBS. A total of 0.5 μg/ml of rMBL

in Barbital-T was added to the plates and allowed to bind for 2 h.

Calcium dependency was evaluated on coated spike, mannan, and

BSA (2 μg/ml), with rMBL diluted to 0.5 μg/ml in Barbital-T ± 10

mM EDTA and allowed to bind for 2 h. Detection and development

were performed as described above. Incubations took place at RT on

an orbital shaker.

MBL-mediated complement deposition
Microtiter plates were coated with 2 μg/ml of spike wt, mannan,

and BSA ON at 4°C in PBS. A 3-fold dilution, starting at 5 μg/ml of

rMBL in Barbital-T was added to the plates and incubated for 2 h.

Next, MBL-defect serum (2% in Barbital-T) was incubated for

30 min (for C4 detection), 45 min (C3), and 60 min (TCC) at 37°

C. Anti-C4 Hyb-162-02 (Bioporto), biotinylated anti-C3 BH6 (153),

and anti-TCC aE11 (154) (all 2 μg/ml) were used as detection

antibodies for 1.5 h, followed by polyclonal rabbit anti-mouse-HRP

conjugate (P0260 Dako, Agilent, Santa Clara, CA, US) or

streptavidin-HRP conjugate (both 1:2000 dilution) for 1 h. Plates

were developed as described above. Plates were washed thrice

between steps with Barbital-T. Unless otherwise stated,

incubations took place at RT on an orbital shaker.

Binding of rMBL to spike glycan mutants
The spike glycan variants were produced in ExpiCHO cells

(Thermo Fisher Scientific) using 24 deep well blocks (AXYGP-

DW10ML24CS Corning Life Science, Tewksbury, MA, USA), and

quantified by S-ELISA using in-house anti-spike antibodies (clone 53

and biotinylated clone 53 (41), both at 2 μg/ml). To evaluate the

binding of rMBL to spike,microtiter plateswere coatedwith 2 μg/ml of

anti-spike clone 53 ON at 4°C in PBS. Supernatants (0.5 μg/ml) were

incubated inTBS-T (10mMTris, 150mMNaCl, 0.05%Tween-20, pH

7.4) supplementedwith either 2.5mMCaCl2 (calciumsufficient buffer)

or 5mMEDTA (calciumdeficient) for 1.5 h.Next, rMBL (0.5 μg/ml in

either calcium-sufficient or calcium-deficient buffer) was added to the

plates and allowed to bind for 2 h. Detection, development, and overall

handling were performed as described above.
Blood samples

Humoral and cellular responses were evaluated longitudinally in

serum and full-blood samples from healthy donors with or without a

reverse transcription-polymerase chain reaction (RT‐PCR)-
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confirmed SARS-CoV-2 infection that received the BNT162b2

(Pfizer-BioNTech) vaccine. The participant cohort has been

described in detail elsewhere (105, 155, 156), and a subset of them

were randomly selected for this study (described in Table 1). For

antibody analyses, samples were collected before the first vaccination,

three weeks after the first dose (median 22 days, range 18–32), one

month after the second dose (median 31 days, range 10–53), and two

months after the third dose (median 83 days, range 22–207)

(i.e. baseline, 3 weeks, 2 months, and 12 months after the first

dose) (n = 80 for each group). Infection history was determined by

RT-PCR and by the presence of anti-protein N antibodies determined

by using the Elecsys® Anti-SARS-CoV-2 assay (Roche Diagnostics,

Basel, Switzerland) as described in our previous work (155). Donors

were grouped as naïve (no reported positive RT-PCR test, and

negative for antibodies against protein N), wt infection (positive

RT-PCR test and protein N positive before the first sample

collection), Delta infection (positive RT-PCR test only in the period

between the end of August 2021 until the beginning of December

2021, and protein N negative until the last sample collection), and

Omicron infection (positive RT-PCR test only in the period between

end December and last sample collection, and protein N negative

until the last sample collection). Venous blood samples were obtained

after written and oral consent. Collection fulfilled the principles

described in the Declaration of Helsinki and was approved by the

Regional Scientific Ethics Committee of the Capital Region of

Denmark (H-20079890).
Affinity determination of a panel of murine
mAbs towards the RBD variants

The effect of RBD mutations in the binding affinity of a panel of

murine mAbs (in-house) (41) was evaluated by ELISA. Briefly,

microtiters plates were coated with 2-fold dilutions of RBD wt,

Delta, BA.1, and BA.2 (starting concentration 2 μg/ml) in PBS ON

at 4°C. Murine mAbs antibodies (2 μg/ml) were added to the coated

plates for 1.5 h, followed by detection with rabbit anti-mouse-HRP

conjugate (P0260 Agilent) in a 1:2000 dilution. Plates were

developed as described above. Unless otherwise stated, all

incubations and washing steps took place at RT with PBS-T

(0.05% Tween-20).
Avidity maturation analyses

The evolution of IgG and IgA avidity was evaluated after the

first, second, and third BNT162b2 vaccine dose in serum samples

from randomly selected infection-naïve individuals, individuals

infected before the first vaccine dose, putatively infected with

Delta, and putatively infected with Omicron (n = 5 for all

groups). IgG and IgA avidity was determined using the direct

ELISA setup described elsewhere with the following modifications

(102). Serum samples diluted in sample buffer were incubated in

parallel in two RBD-coated (1 μg/ml) microtiter 96-well plates for

1 h. Next, plates were washed and incubated with either PBS-T or
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PBS-T + 5.5 mM urea (Amresco/VWR, Radnor, PA, USA) for

20 min. Detection of bound IgG and IgA was performed as

described in the original protocol. Avidity was calculated as:

Avidity (%) =
OD urea treated sample
OD untreated sample

x 100
Antibody-mediated ACE-2/RBD inhibition

The potency of sera to neutralize the virus was assessed using a

previously reported ACE-2/RBD inhibition assay with the following

changes (41). Biotinylated RBD or spike wt, Delta, BA.1, and BA.2

were incubated with High Sensitivity streptavidin-HRP (21130;

Thermo Fisher Scientific) (1:16000 dilution) and 6-point, 3-fold

serial dilutions of vaccinee sera (starting dilution 10%).

Alternatively, a 6-point, 4-fold dilution of murine monoclonal

antibodies (mAbs) starting at 20 μg/ml was used instead of sera.

The mAbs were raised by immunization of outbred NMRI mice

with the spike ectodomain or RBD of the ancestral SARS-CoV-2

strain, and have been described elsewhere (41).

The RBD and spike variants concentration was determined

from ACE-2 binding curves, choosing the point at the upper end of

the linear region (ensuring the widest dynamic range when

evaluating inhibition). Neutralizing potency of sera, reported as

international units (IU)/ml, was calculated using the Working

Reagent for anti-SARS-CoV-2 immunoglobulin 21/234 (NIBSC,

Hertfordshire, UK) as standard. The threshold of positivity was

determined based on the receiver operating characteristic (ROC)

curves of each RBD variant from non-infected, non-vaccinated

individuals (n = 50) and non-infected individuals after three

BNT162b2 vaccine doses (n = 50). Sensitivity and specificity were

100% and 100% for wt (threshold 2382 IU/ml); 100% and 100% for

Delta (threshold 1253 IU/ml); 100% and 98% for BA.1 (threshold

325.7 IU/ml); and 100% and 98% for BA.2 (threshold 279.3 IU/ml).
IgG and IgA depletions

To discriminate between the contribution of IgG and IgA to the

viral neutralization capacity of immune sera/plasma, we collected

heparin plasma from five adult blood donors with a recent Omicron

infection (median time from infection = 8 days, range 7–33) and

depleted them for total IgG and/or total IgA.

Before depletion, the plasma was filtered through a 0.22 mm
PVDF syringe filter (SLGV033RS Millipore/Merck). For depletion

of IgG, the plasma was passed through a HiTrap Protein G HP 5 ml

column (Cytiva) using Protein G binding buffer as washing buffer

(20 mMNaH2PO4, pH 7). IgA was depleted with Peptide M agarose

(InvivoGen, San Diego, CA, USA) using a Na3PO4 washing buffer

(10 mM Na3PO4/150 mM NaCl, pH 7.2). For double depletion of

IgG and IgA, the IgG depleted plasma was passed through the

Peptide M column as described above.

Plasma samples depleted for IgG, IgA, and IgG+IgA were

evaluated for the presence of nAbs in our antibody-mediated
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ACE-2/RBD inhibition assay as described above. Non-depleted

samples were used as control.
T cell stimulation in whole blood and
cytokine release measurements

Blood samples from infection-naïve (n = 11), individuals with a

previous infection (n = 6), and with an Omicron infection (n = 14)

were collected by venipuncture in heparin tubes. Full-blood samples

(0.5 ml) were stimulated with four different peptide mega pools

(MP) (1 μg/ml in DMSO), described elsewhere (42, 43), for 21 h at

37°C. We used a SARS-CoV-2 spike wt MP containing 253 15-mer

peptides, with a 10 aa overlap, to ensure complete coverage of the

spike protein, as well as the spike Delta and Omicron BA.1 MP

counterparts. Moreover, to discriminate between infection-naïve

and those with a previous SARS-CoV-2 infection, we used a pool of

experimentally defined MP specific for CD4 T cell responses

comprising 284 15–20-mer peptides mapping to areas of the

proteome outside the spike (CD4RE) (44). An equal volume of

sterile DMSO was used as negative control. CFEX Ultra SuperStim

pool (PM-CEFX-1 JPT, Berlin, Germany) (1 μg/ml) was used as

positive control. After stimulation, samples were centrifuged at

2000 x g for 15 min, and plasma was collected and stored at −80°C

for further analyses. IFN-g release was measured using the Quant-

T-cell ELISA kit (EQ 6841-9601 Euroimmun, Lübeck, Germany) in

a cross-sectional cohort (n = 31), and a smaller longitudinal cohort

of vaccinees with a recent Omicron infection (n = 9) followed for

eight months after infection. The threshold of positivity was

determined based on the ROC curves from vaccinated, non-

infected individuals (n = 10), and vaccinated with a previous

infection (any infection, likely wt, Alpha, and Omicron) (n = 19),

or vaccinated with a recent Omicron infection (n = 13). Note that

the latter group is included in the “any infection” group.

Addit ional ly , a human cytokine 27-plex assay (<ns/

>M500KCAF0Y, Biorad, Hercules, CA, USA) was used to study

the profile of released cytokines in a randomly selected cohort of

vaccinees infection-naïve (n = 8) and convalescent (n = 14, 4 of

them before and after Omicron infection) after stimulation with

peptides MP of spike wt, CD4RE, and DMSO. The cytokine panel

was analyzed with the Luminex 200 platform (R&D Systems,

Minneapolis, MN, USA). Values below the detection limit were

normalized to the lower limit of quantification interpolated from

the standard for each cytokine.
Murine model of heterologous prime-
boost vaccination

To study the effect of immune imprinting in antibody and T cell

responses, we measured antibody titers, nAbs, and T cell responses

in a murine model for heterologous prime-boost vaccination.

Animals’ care was in accordance with institutional guidelines, and

the experimental procedures have been approved by the Danish

Animal Experiments Inspectorate. Outbred female NMRI mice

were divided into three groups: Wt (homologous vaccination,
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three doses of spike wt), Delta (heterologous, two doses of spike

wt followed by a boost with spike Delta, n = 4), and Omicron

(heterologous, two doses of spike wt followed by a boost with spike

Omicron) (n = 4 for all groups). Mice were immunized thrice

subcutaneously with 15 μg of spike adsorbed to GERBU P adjuvant

(Gerbu, Heilderberg, Germany) as per manufacturer ’s

recommendation, with each immunization spaced 15 days apart.

Blood samples were collected from the tail vein 14 days after each

immunization, centrifuged at 2000 x g for 10 min at RT, diluted 1:10

in PBS, and stored at –20°C for later analyses. Mice were euthanized

15 days after the third immunization and had their spleens

harvested. Spleens were homogenized, and splenocyte solutions

were washed twice with complete RPMI media (RPMI 1640

[21870076], 1 X Penicillin-Streptomycin [15140122], 2 mM L-

glutamine [A2916801], 1 mM sodium piruvate [11360070], 10%

fetal bovine serum [26140079], all from Gibco/Thermo Fisher

Scientific) by centrifugation at 350 x g for 10 min at 4°C using

the shortest acceleration time/braking time. The supernatants were

discarded, and the cells were resuspended by gentle pipetting in ice-

cold ACK and incubated for 5 min at RT with occasional shaking.

Lysis reactions were stopped with of complete RPMI medium, and

washed twice as described previously. Splenocytes were counted on

a Celldrop BF automated cell counter (DeNovix Inc., Wilmington,

DE, USA) using trypan blue stain. Cell suspensions were diluted to

8 x 106 viable cells/ml in complete RPMI media, and transferred to

24-well plates (500 μl/well, 4 x 106 cells/well).

Splenocytes were stimulated with 1 mg/ml of peptide MP

covering the spike wt, Delta, and Omicron for 72 h at 37°C in a

humidified atmosphere with 5% CO2. An equal volume of DMSO

was used as negative control. Supernatants were collected after

centrifugation at 2000 x g for 10 min at 4°C and stored at –80°C for

later analyses. IFN-g release was measured in supernatants (1:25

dilution) using the IFN-g Mouse Uncoated ELISA Kit (88-7314-

22 Invitrogen).
Statistics

Statistical analyses were performed using GraphPad Prism

version 9.5 (GraphPad Software Inc, San Diego, California, USA).

Comparisons of the binding of MBL to spike variants were done by

Friedman tests with Dunn’s multiple comparisons. Statistical

differences between antibody avidity of infection-naïve and hybrid

immune individuals were evaluated by multiple Mann-Whitney

tests with the two-stage linear step-up procedure Benjamini,

Krieger, and Yekutieli. Differences in the neutralizing potency

between RBD variants and depleted antibody isotypes, as well as

between groups (infection) and vaccine doses were evaluated with

two-way ANOVA with the Geisser-Greenhouse correction. The

effect of prior infection on nAbs was analyzed by multiple Mann-

Whitney tests with a two-stage linear step-up procedure of

Benjamini, Krieger, and Yekutieli. Differences in the fold-change

in neutralization of the RBD variants were evaluated using Kruskal-

Wallis with Dunn’s multiple comparisons test. Outliers were

identified using ROUT with Q = 1%. The affinity of murine

mAbs (expressed as KD) towards the RBD variants was
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determined using the equation specific binding with Hill slope,

while their neutralization potency (expressed as IC50) was

calculated using the equation inhibitor concentration vs

normalized response with variable response. Differences in

affinity and neutralization potency were compared with the RBD

wt by multiple Friedman tests with Dunn’s multiple comparisons

correction. T cell responses were evaluated by multiple Kruskal-

Wallis, Friedman tests with Dunn’s multiple comparisons

corrections, and two-way ANOVA with the Geisser-Greenhouse

correction. Half-life of T cell responses after spike and CD4RE

stimulation were calculated using the one phase decay equation

with least squares fit and constraining the plateau to 0. Differences

in half-life were evaluated by Wilcoxon matched-pairs signed rank

test. Correlation between antibodies or secreted cytokines were

assessed by two-tailed Spearman rank’s correlation coefficient,

with p values below 0.05 considered significant.
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Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular
structures. Nucleic Acids Res. (2021) 49:W431–7. doi: 10.1093/nar/gkab314
frontiersin.org

https://doi.org/10.1016/j.chom.2022.04.014
https://doi.org/10.1038/s41591-022-01792-5
https://doi.org/10.1038/s41591-022-01792-5
https://doi.org/10.1126/sciimmunol.abq4450
https://doi.org/10.1126/sciimmunol.abq4450
https://doi.org/10.3390/v14061334
https://doi.org/10.1038/s41586-022-04594-4
https://doi.org/10.1056/NEJMc2201849
https://doi.org/10.1016/S1473-3099(22)00746-0
https://doi.org/10.1016/S0140-6736(22)02465-5
https://doi.org/10.4110/in.2018.18.e33
https://doi.org/10.1128/mbio.03617-21
https://doi.org/10.1038/s41586-022-04465-y
https://doi.org/10.1146/annurev.iy.13.040195.003103
https://doi.org/10.1021/acs.biochem.1c00279
https://doi.org/10.1074/jbc.M400520200
https://doi.org/10.1074/jbc.M400520200
https://doi.org/10.1016/S0161-5890(03)00104-4
https://doi.org/10.1111/j.1365-3083.1988.tb02353.x
https://doi.org/10.1111/j.1365-3083.1985.tb01870.x
https://doi.org/10.1111/joim.v290.6
https://doi.org/10.1038/s41467-023-41342-2
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.1093/ve/vex042
https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/gkab314
https://doi.org/10.3389/fimmu.2024.1412873
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses
	Introduction
	Results
	Emergence of VOCs and defining mutations
	Impact of mutations in ACE-2 interaction and RBD stability
	Glycan analyses of the spike protein of SARS-CoV-2 wt, Delta, and omicron
	Recognition of SARS-CoV-2 spike variants by the humoral innate immune molecule MBL
	Evolution of antibody titers and antibody avidity in vaccinees and infected individuals
	Neutralization by sera from na&iuml;ve and convalescent vaccinees
	Evaluation of T cell responses to SARS-CoV-2 wt and VOCs

	Discussion
	Materials and methods
	Recombinant proteins
	ACE-2 binding kinetics determination by biolayer interferometry
	Thermal stability
	Glycan analyses by mass spectrometry
	MBL spike interaction
	Binding of native MBL from sera
	Binding of recombinant MBL
	MBL-mediated complement deposition
	Binding of rMBL to spike glycan mutants

	Blood samples
	Affinity determination of a panel of murine mAbs towards the RBD variants
	Avidity maturation analyses
	Antibody-mediated ACE-2/RBD inhibition
	IgG and IgA depletions
	T cell stimulation in whole blood and cytokine release measurements
	Murine model of heterologous prime-boost vaccination
	Statistics

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


