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Membranous nephropathy (MN) is an antibody-mediated autoimmune

glomerular disease in which PLA2R1 is the main autoantibody. It has become

the most common cause of adult nephrotic syndrome, and about one-third of

patients can progress to end-stage kidney disease, but its pathogenesis is still

unclear. Animal models can be used as suitable tools to study the pathogenesis

and treatment of MN. The previous Heymann nephritis rat model and C-BSA

animal model are widely used to study the pathogenesis of MN. However, the

lack of target antigen expression in podocytes of model animals (especially

rodents) restricts the application. In recent years, researchers constructed animal

models of antigen-specific MN, such as THSD7A, PLA2R1, which more truly

simulate the pathogenesis and pathological features of MN and provide more

choices for the follow-up researchers. When selecting these MN models, we

need to consider many aspects, including cost, difficulty of model preparation,

labor force, and whether the final model can answer the research questions. This

review is to comprehensively evaluate the mechanism, advantages and

disadvantages and feasibility of existing animal models, and provide new

reference for the pathogenesis and treatment of MN.
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1 Introduction

In recent years, the prevalence of renal disease, especially chronic renal disease, has

increased year by year. Renal disease has become a serious public health problem, and its

correlation with serious cardiovascular events has been widely recognized (1–3). The

prevalence of chronic kidney disease in the population is 14.3%, and the prevalence in high-

risk population is 36.1% (4). Nowadays, the incidence of membranous nephropathy (MN)

has risen dramatically with a tendency to be younger (5, 6), which has become the most
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common cause of nephrotic syndrome in adults. Its pathological

features are diffuse thickening of the glomerular basement

membrane, granular deposition of IgG and complement C3 along

the glomerular capillaries, and dense deposition of electrons formed

by spikes in visceral epithelial cells of the glomerular basement

membrane, which is mainly manifested as nephrotic syndrome or

occult proteinuria in the clinic (7). Its pathogenesis has not been

fully clarified. Most scholars believe that it is due to the deposition

of immune complex caused by various reasons, which then activates

complement and produces C5b-9 membrane attack complexes

(MAC). (Figure 1) According to the etiology, it can be divided

into primary membranous nephropathy (PMN) and secondary

membranous nephropathy (SMN). The former is unknown, that

is, the latter may be secondary to infection (hepatitis B and hepatitis

C virus) (8, 9), systemic diseases (such as lupus erythematosus) (10),

drug therapy (such as gold and penicillamine, etc.) (11) and

malignant tumors (12).

However, the pathogenesis of MN is not fully understood, and

there is also a lack of recognized treatments. Therefore, it is very

important to understand the pathogenesis of MN, explore

appropriate treatment methods and establish effective animal

models of MN to study this disease. The animal models of MN in

recent years were reviewed in detail below (Table 1).
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2 Rat model

2.1 The Heymann nephritis model

HN model is the most classic and widely used MN animal

model at present. According to the antigen source, it can be divided

into active Heymann nephritis (AHN) and passive Heymann

nephritis (PHN). In 1959, HEYMANN et al. (13) injected

allogenic or heterologous rat renal cortex homogenate and

Freund’s complete adjuvant (which can be used as a non-specific

immune system activator) into the abdominal cavity of rats. After 3-

4 weeks, particle deposition of rat IgG in the glomerular capillary

wall and subepithelial electronic dense deposits was observed, and

after 8-10 weeks, 30-80% of rats showed significant proteinuria,

which is the AHN model. The model has been successfully

constructed in SD, Lewis, Fisher and other strains of rats. In the

PHN model, brush border antigen (FxlA) of rats’ proximal renal

tubular epithelial cells was injected into heterogeneous animals,

such as rabbits. Then serum antibodies produced by immunized

animals were extracted and injected into the tail veins of rats at one

time. After injecting anti-Fx1A antibody for 3-5 days, the

deposition of IgG, C3 and C5b-9 in the subepithelial tissue can be

detected. After 7-10 days, persistent proteinuria appeared in rats.
FIGURE 1

Pathogenesis of primary membranous nephropathy. (A) Normally, M-type phospholipase A2 receptor 1 (PLA2R1), Neural epidermal growth factor-
like 1 protein (NELL-1) and thrombospondin type-1 domain-containing 7A (THSD7A) are expressed on glomerular podocytes. (B) Under pathological
conditions, circulating antibodies combine with antigens on the surface of podocytes to form antigen-antibody complexes, which are deposited on
the subepithelium and basement membrane to activate the complement pathway. (C) The classical complement pathway and lectin pathway are
activated, eventually C5b-9 membrane attack complexes (MAC) is formed, which mediates podocyte damage and leads to a large number of
proteinuria. Created with BioRender.com.
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TABLE 1 Comparison of different MN models.
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TABLE 1 Continued
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TABLE 1 Continued
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The main pathogenic antigens of HN have been identified as

megalin (also known as gp330) and receptor-associated protein

(RAP) (14), which are members of the LDL receptor family

existing on the surface of rat podocytes, and have been proved

to be related to endocytosis and cytokinesis of proteins (15). RAP

can then bind to megalin to form a heterodimeric complex that

assists in the folding of megalin in the endoplasmic reticulum and

its transport to the cell surface, and it has been confirmed that

RAP itself does not induce MN (16). Several epitopes on the

heterodimeric complex appear to be involved in the formation of

immune complexes (17). In animal models, active immunization

with megalin alone or passive immunization with direct injection

of relevant antibodies resulted in subepithelial deposition of

immune complexes, but there was no C3 or C5b-9 deposition

and no proteinuria (18). Antibodies against other parts of FxlA

have been shown to inhibit complement regulatory proteins on

podocytes, activating complement via the alternative pathway or

the mannose-binding lectin pathway. Although some scholars

have confirmed that megalin is expressed in human podocytes

(19) and proximal tubular brush border (20), it can cause human

anti–brush border antibody disease, which is characterized by

renal failure, proximal tubule injury, and immune deposits in the

tubular basement membrane containing LRP2 and IgG. However,

it has not been found in glomerular immune complexes of MN

patients, and no relevant antibodies have been found in the serum

of the patient, which greatly limits the application of HN in

human MN.

On the other hand, after the complement is exhausted by cobra

venom factor, PHNmodel mice will not produce proteinuria, which

confirms the key role of complement activation in the HNmodel. In

PHN, complement is activated by classical and alternative pathways

(21, 22), which was previously thought to be different from the

pathogenesis of human MN (classical and lectin). However, recent

research has confirmed the important role of the classical pathway

in human MN (23). This has greatly improved the practical value of

the PHN model.

These two models have their advantages and disadvantages:

the AHN model has stable pathological changes, the glomerular

function damage and proteinuria in the AHN rats are more

serious than the PHN, but modeling time is long and changes

greatly during this period. The PHN model is more suitable for

studying the renal injury caused by proteinuria, because the

kidney is the only damaged target organ in PHN model rats.

The model has the advantages of stable pathological changes,

rapid onset, short disease course and strong practicability. The

pathological mechanism is similar to that of human beings, but it

cannot meet the needs of long-term observation. Therefore, on the

basis of a single intravenous injection of anti-FxlA antibody, low-

dose antisera can be injected intraperitoneally multiple times to

strengthen immunity. The 24-hour urinary protein of the model

mice continued to increase, and the kidney injury was aggravated,

which was convenient for dynamic observation of the kidney

injury, pathogenesis of PHN disease and the treatment of

MN drugs.
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2.2 Anti-dipeptidyl peptidase IV rat model

Dipeptidase IV (DDP IV, gp 108) is a glycoprotein present in

glomerular capillary loops, tubules and intestinal microvilli, and

NATORI et al. (24) proved that it is one of the main antigens of

FxlA. Rabbit anti-DPPIV was injected into rats, and rabbit IgG was

deposited in glomerular capillary loops for 4-8 hours. Rats will

develop proteinuria within 8 hours, reach a peak after 2 days (>200

mg/24 h), and then rapidly decline. Renal pathology shows

glomerular IgG deposits but no C3 deposits, which is obviously

different from human MN. Compared with HN, this model has a

shorter duration of proteinuria and IgG deposition (most disappear

within 5 days) and is not as practical as the HN model.
3 Mouse model

3.1 The cationic bovine serum
albumin model

The charge barrier is an important part of the glomerular

filtration barrier, which plays a vital role in the penetration of

macromolecules in blood through the glomerular filtration barrier

(25). In 1982, BORDER et al. (26) successfully induced MN by

intravenous injection of C-BSA into New Zealand white rabbits and

proved that antigen charge was the key factor for the formation of

subepithelial immune complex. Some scholars have successfully

induced MN in animals such as dogs (27), cats (28) and rats (29–31)

by using this method. In 2004, CHEN et al. (32) successfully

constructed the mouse C-BSA model by injecting C-BSA every

other day intravenously in combination with Freund’s complete

adjuvant into mice for one week and re-immunizing them two

weeks later with C-BSA. Four weeks later, the experimental mice

were sacrificed. Hyperlipidemia, hypoproteinemia and severe

proteinuria occurred in mice after high dose injection of C-BSA,

and the strong particle fluorescence of IgG and C3 was observed by

immunofluorescence. The electron microscope showed the

deposition of electron dense substance on the subepithelial

surface and the disappearance of the podocyte foot process, and

the level of IgG1 in serum was significantly higher than that of

IgG2a. After that, the optimal dosage for inducing related MN

model in different strains of mice — ICR was 7 mg/kg, BALB/c was

13 mg/kg, whereas it was not inducible in C57BL/6 mice. It also

proves that a genetic background with a predisposition for Th2 cells

may determine the successful induction and progression of MN.

Since then, some scholars have repeatedly immunized BLAB/c mice

with C-BSA (C-BSA, 13 mg/kg, tiw) for six weeks, and successfully

established the C-BSA mouse model (33). In 2011, DEBIEC et al.

(25) detected high levels of IgG1 and IgG4 subclasses of anti-bovine

serum albumin antibodies and C-BSA in circulating form in the

sera of some children with MN, and observed the co-localization of

C-BSA and IgG in glomerular in situ immune complexes, which

confirmed the pathogenic potential of C-BSA in human MN and

could be used as an exogenous food antigen for children with MN.
frontiersin.org
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3.2 Anti-a3 NC1 mouse model

The non-collagen 1 domain of human a3 (IV) collagen has

been proven to be the main autoantigen against human anti-

basement membrane glomerulonephritis (34, 35), and its

expression in mouse podocytes has also been confirmed (36). In

2012, ZHANG J-J et al. (37) successfully constructed a related MN

model by synthesizing the a3 chain non-collagenous region (rh-a3
(IV) NC1 domain) of human type IV collagen fibers and

emulsifying them in an equal volume of Freund’s complete

adjuvant and subcutaneously injecting them into DBA/1, FcgR
−/−, and FcgRIII −/− mice, followed 3 weeks later by a booster

immunization with Freund’s incomplete adjuvant mixed with a3
NC1, and the model mice showed massive proteinuria and

nephrotic syndrome, subepithelial IgG and C3 deposition,

glomerular basement membrane thickening, and diffuse

disappearance of podocyte foot processes. Subsequently, it was

found that twice immunizing DBA/1 mice with this method led

to MN models, and four immunizations led to focal necrotic or

crescentic glomerulonephritis based on MN, which was

characterized by crescents formation, extensive tubulointerstitial

injury and a large number of macrophage infiltration (38). In DBA/

1 mice, compared with human a3 NC1, murine a3 NC1 was less

effective in inducing autoimmunity, less crescent formation and

tubulointerstitial injury, and would prolong the course of the

disease for 1-2 weeks (39, 40).

The induction of nephropathy in this model is faster and more

reliable than HN. However, the sensitivity of different mouse strains

to this approach is obviously different, especially in C57BL/6 mice,

which can only induce moderate proteinuria without nephrotic

syndrome, which is also an aspect that needs to be solved urgently.
3.3 Anti-podocyte antibodies induced
MN model

The PHN model in rats shows that antibodies against specific

antigens on podocytes lead to the deposition of the subepithelial

immune complex and the breakthrough of podocyte foot. Given

this, MEYER et al. (41) established a model of MN induced by an

anti-podocyte antibody. The team injected mice pre-immunized

with Freund’s adjuvant 5 days before the experiment and

intravenously injected polyclonal rabbit antibodies against the

murine podocyte cell line. 7 days later, the mice developed

proteinuria, which peaked on day 10. Immunoelectron

microscopy showed that rabbit IgG and C3 were deposited

linearly along the glomerular basement membrane and adjacent

foot processes, but subepithelial deposition was not observed. Due

to the limited number of rabbit anti-podocyte antibodies, the team

selected different mouse podocyte cell lines as antigens (42, 43) and

produced sheep anti-podocyte antibodies using the same method.

Interestingly, goat antibodies were significantly improved compared

with rabbit antibodies, which showed that podocyte foot process

disappeared and significant subepithelial immune complex

deposition was produced (44). C3 deletion/deficiency mice can

also produce the above phenomenon, and the occurrence time
Frontiers in Immunology 07
and degree of proteinuria are parallel to normal mice, indicating

that complement activation is not a necessary condition for the

formation of proteinuria in this model, and there is a complement-

independent mechanism. However, due to a large amount of ascites,

mice are likely to develop acute renal failure secondary to nephrotic

syndrome, so the mice need to be killed within 14 days after

injection of antibody.
3.4 Anti-aminopeptidase A model

Anti-mouse aminopeptidase A antibody (mAb) is a hydrolase

existing in the mice kidneys and participates in the degradation of

angiotensin. The researchers (45) produced an anti-mouse

aminopeptidase A antibody, also known as ASD-4, by fusing

mouse myeloma cells with rat spleen cells immunized with the

brush border membrane of the mouse kidney. ASD-4 belongs to

subclass IgG1, and diffuse distribution of ASD-4 on S1, S2 segments

of proximal tubular brush border and glomerular epithelial cell

membrane can be observed by indirect immunofluorescence and

immunoelectron microscopy in normal mice. After injecting ASD-4

into normal mice, mice showed dose-dependent proteinuria, and

the antibodies were observed to bind evenly to the glomerular

capillary wall and became granular one day later. Under the electron

microscope, podocyte foot process fusion and electronic dense

deposits were observed, but there was no GBM thickening and

complement system activation (46), and proteinuria persisted for at

least 16 days. Subsequent studies (47) showed that albuminuria in

the anti-APA model was related to the structural changes of CD2-

related protein (CD2AP) and nephrin, which played an important

role in maintaining the structure of the slit diaphragm and

podocyte function.

Similar to the models of anti-DDPIV and anti-podocyte

antibodies, this model induced glomerular IgG deposition and

proteinuria by passive antibody administration, but complement

activation was rare, and the above antigens were not present in

human PMN, so they were significantly different from

human PMN.
3.5 Thrombospondin type-1 domain-
containing 7A-associated MN model

In 2014, TOMAS et al. (48) identified thrombospondin type-1

domain-containing 7A (THSD7A) as a novel target antigen for

human MN. THSD7A is a type 1 transmembrane protein located

outside the podocyte membrane. Studies have demonstrated that

this antigen is expressed in mouse podocytes (49), and this 250 kDa

glycoprotein has been found to contain multiple regions containing

epitopes (50). In China, it is associated with approximately 16% of

PLA2R1-negative PMN patients (51). In 2016, TOMAS et al. (52)

reported a patient with end-stage kidney disease with THSD7A-

associated MN who rapidly relapsed after receiving a kidney

transplant and later observed positive THSD7A staining in the

transplanted kidney and anti-THSD7A antibodies were detected in

the patient’s serum both before and after transplantation, which
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indicated that the same type of MN recurred. Therefore, by

extracting anti-THSD7A antibodies from the patient’s serum and

injecting it intravenously into mice, it was observed that human

antibodies combined with mouse podocyte THSD7A antigen

formed in situ immune complexes and deposited linearly along

the glomerular capillary wall, and mice showed significant

proteinuria around 3 days after injection, which continued to

increase after 14 days, and significant proteinuria persisted until

70 days, which indicated that a mouse model closer to human MN

was successfully constructed. The following year (53), the team co-

immunized rabbits with a combination of murine THSD7A

(mTHSD7A) and human THSD7A (hTHSD7A) by cDNA, and

produced rabbit anti-THSD7A antibodies. Subsequently, mice

receiving rabbit anti-THSD7A antibody purified from rabbit

serum injected intraperitoneally into BALB/c mice developed

severe nephrotic syndrome, including severe proteinuria, edema,

and hyperlipidemia. Immunofluorescence showed that after 14 days

of antibody injection, the granular antigen-antibody complexes

deposited under the subepithelium in the glomerular filtration

barrier of mice, which showed typical characteristics of MN in

humans. Interestingly, activation similar to human IgG4 subclasses

and complement was not detected in this model, but antibodies

activated the lectin pathway in mice, which led to oxidative stress,

destruction of nephrin, and rearrangement of the podocyte actin

cytoskeleton (52–54).

Compared with previous MN models, this model has made

remarkable progress—a mouse model with the same target antigen

as human MN is constructed for the first time, and its pathological

mechanism is closer to that of human PMN, which is of great

significance for studying more real human PMN. Unfortunately, at

present, this model has not been successfully replicated in

commonly used experimental animals such as C57BL/6 mice,

DBA/J1 mice and SD rats. In this regard, the researchers believe

that rabbit anti-THSD7A antibody can activate Th2 subgroup in

BALB/c mice and then produce significant MN-related

manifestations, while it mainly activates Th1 subgroup in C57BL/

6 mice (55, 56). In short, this greatly limits the practicability of this

model and fails to be applied on a large scale.
3.6 M-type phospholipase A2 receptor 1
-related MN model

In 2009, BECK et al. (57) found that M-type phospholipase A2

receptor 1(PLA2R1) is the main target of human membranous

nephropathy (MN), and this finding has greatly promoted basic and

clinical research. Primary membranous nephropathy is nowadays

considered a limiting autoimmune disease of the kidney, with

antibodies against PLA2R1 (aPLA2R1ab) found in 70-80% of

patients of various ethnic groups. However, many related issues,

such as the development of its autoimmune response, the role of

IgG subclasses and epitopes, and the pathway of podocyte injury,

need to be explained. The development of PLA2R1-related

membranous nephropathy is most likely influenced by genetic

susceptibility, loss of tolerance, and changes in antigen
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metal poisoning, smoking and infection also play an important role

(58). However, PLA2R1 is not expressed in glomeruli of wild-type

rats and mice (59, 60), so conventional methods such as antibody

injection could not produce the MN model. Interestingly,

MOELLER et al. (61) reported a transgenic mouse strain that

only expressed Cre recombinase in podocytes, which is regulated

by a 2.5 kb fragment of the human NPHS2 promoter. This fragment

was shown to drive b-galactosidase (b-gal) expression only in

podocytes of transgenic mice. Histological analysis of the kidneys

showed that the expression of b-gal was confined to podocytes. In

view of this, MEYER et al. (62) adopted the transgenic knock-in

method in 2020 to inject the gene of Rosa26/CAG/Stop/mPLA2R1

into the target vector (63) (mice) embryonic stem cells into

blastocysts. Breeding with NPHS2-Cre (or PodoCre) mice allowed

podocyte-specific expression of mouse PLA2R1 (mPLA2R1),

followed by breeding of mice that were homozygous for both the

mPLA2R1 allele and the PodoCre allele, and this transgenic mouse

expressed mPLA2R1 in podocytes. Expression of mPLA2R1 did not

lead to the morphological disorder of the foot process. High-

resolution confocal microscope and electron microscope showed

that all mice had normal foot process, glomerular basement

membrane and endothelial cells. In addition, the optical

microscope examination showed that the overall morphology of

glomeruli and tubulointerstitial remained unchanged. The

researchers then synthesized rabbit anti-mPLA2R1 and injected it

into the abdominal cavity of transgenic mice. These mice rapidly

developed proteinuria, with an albumin/creatinine ratio of 100 g/g.

The serum cholesterol levels increased significantly, while serum

urea nitrogen levels remained normal. There was a dose-dependent

relationship between proteinuria and injected, and proteinuria

could last for about 21 days, during which the albumin/creatinine

ratio decreased slowly. Histological examination showed granular

deposition of IgG, widened foot process, and partial co-localization

of complement C3 and IgG. To this point, the team successfully

constructed a mouse model of mPLA2R1-associated MN.

Subsequently, the team tried to inject patient-derived anti-

PLA2R1 IgG into some mPLA2R1 positive mice, but the results

were negative. No antigen-antibody binding was observed and MN

could not be induced.

Similar to the THSD7A model, this model induced a disease

model with similar manifestations to human PMN by passive

antibody administration, accompanied by deposition of IgG and

complement C3 in the glomerular subepithelium and a large

number of proteinuria, which introduced the experimental model

into the era of common target antigens of MN in humans and mice.

It has been confirmed that human PMN antigens such as

Semaphorin 3B (Sema3B) and HtrA Serine Peptidase 1 (HTRA1)

are expressed in mouse podocytes (59, 64). Whether we can use

similar methods to combine immune adjuvants to enhance the

susceptibility of mice and then induce MN in other antigen

categories remains to be further studied. Unfortunately, the

mechanism of passive antibody administration inducing MN

cannot explain the mechanism of autoantibody production in

human PMN.
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3.7 The hPLA2R1 associated model

In order to address the question of different sources of antigen,

MEYER et al. (65) successfully cultured mice expressing the human

PLA2R1 antigen (hPLA2R1). After 3 days of birth, strong expression

of hPLA2R1 was observed in the membrane and cytoplasm of

mouse glomerular podocytes. The electron microscope confirmed

that a complete glomerular filtration barrier was visible 7 days after

birth, and no obvious glomerular or tubulointerstitial changes were

observed by light microscope, and the glomerular structure was

intact. Transgenic mice showed no significant proteinuria after 1

week of birth. Spontaneous anti-hPLA2R1 antibodies were detected

in the peripheral blood of positive mice after 2 weeks. Until 4 weeks

old, IgG (mIgG) deposition and complement activation were

observed in the glomeruli of positive mice, and typical

proteinuria, hyperlipidemia, and hypoproteinemia appeared,

which became more and more serious with the increase of time.

After 6 weeks, mIgG was deposited in granular form on the

glomerular basement. The electron microscope showed that

podocyte foot process effacement, subepithelial electron dense

deposits and glomerular basement membrane thickening.

In this model, mice spontaneously produced anti-hPLA2R1

antibodies, which recognized cysteine-rich domains and C-type

lectin domains 1, 7 and 8, which were epitopes recognized by

human anti-PLA2R1 antibodies (66–68). More importantly, model

mice can spontaneously produce diseases similar to those of human

PMN, without relying on exogenous antibodies and more truly

simulate the state of epitope mutation or exposure in human PMN,

which is of great significance for studying the initial pathogenesis of

PMN and is an ideal model to clarify the pathogenesis and antibody

pathogenicity of human PMN. It remains to be investigated whether

a non-PLA2R1 antigen-related MN model can be reproduced using

similar methods. However, within 3-4 weeks after the appearance of

anti-PLA2R1 antibody, severe nephrotic syndrome and an

accelerated course of end-stage kidney disease appeared in the

model mice, which cannot meet the needs of long-term observation.
3.8 The chPLA2R1 associated model

In view of the fact that the expression of hPLA2R1 will cause a

large amount of proteinuria in transgenic mice in a short time,

researchers have to kill the mice at 6 weeks old. However,

transgenic mice expressing mPLA2R1 are well tolerated.

Therefore, researchers attempt to construct a chimeric mouse

model which can produce proteinuria and other manifestations of

MN to meet the needs of long-term observation. Therefore, they

hypothesized that a chimeric PLA2R1(chPLA2R1) which is rich in

three highly immunogenic N-terminal human domains (CysR、

Fnll and CTLD1) (66, 69, 70) and the seven more C-terminal

murine domains CTLD2-8 would be tolerated by mice. Rosa26/

CAG/Stop/chPLA2R1 gene was knocked into the R1 embryonic

stem cells of the target vector by a method similar to the previous

model (62), and then transgenic mice with specific expression of

chPLA2R1 were produced (71). The phenotype of transgenic mice
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six months after birth, there was no difference in body weight,

urinary albumin-to-creatinine ratios, serum albumin and blood

urea nitrogen levels between chPLA2R1-positive and -negative

mice. The expression of chPLA2R1 was not found in other organs

except the kidney. Histological examination showed that

chPLA2R1 was strongly expressed in the cytoplasm of mouse

podocytes and partially co-localized with nephrin near the

podocyte foot process. No glomerular, renal tubular and

interstitial damage was found in PAS staining, and the

glomerular filtration barrier was intact under the electron

microscope. No circulating antibody against hPLA2R1,

chPLA2R1 or the murine part of chPLA2R1 mCTLD2-8 in the

serum of chPLA2R1-positive mice and no glomerular murine IgG

(mIgG) deposits. Next, the research team actively immunized

these mice with the extracellular part of hPLA2R1 to verify

whether transgenic mice can produce MN. ChPLA2R1 positive

male mice aged 12-14 weeks were injected with a mixture (60ul) of

1 ug of recombinant extracellular hPLA2R1 diluted in a 0.9% NaCl

and the mild adjuvant TiterMax Gold with a ratio of 1:1. 21 days

later, the mice were boosted with 1 ug recombinant extracellular

hPLA2R1 diluted in 0.9% NaCl and TiterMax Gold at a 4:1 ratio.

The mice were weighed every week, and the levels of urine protein

and serum albumin were detected. The levels of urea nitrogen,

triglyceride and cholesterol were continuously monitored daily.

The results showed that the ratio of urinary albumin to creatinine

in the experimental group increased compared with the baseline

level after 3 weeks of immunization with hPLA2R1. At the 5th

week, anti-hPLA2R1 antibodies could be detected in the serum of

transgenic mice, and their constructs with hPLA2R1, including

hCysR-FnII, hCTLD1-2 and hCTLD7-8, could be detected.

Albuminuria substantially increased around 6 weeks after

immunization with hPLA2R1. Some animals developed severe

proteinuria and required a sacrifice of the animals 12 weeks ago.

Morphological examination showed the typical manifestations of

MN, including the disappearance of podocyte foot process, the

deposition of electron dense substance in the subepithelial layer,

the thickening of GBM and the formation of spike process. After

12 weeks, the granular deposition of mIgG under GBM, which was

strongly co-localized with chPLA2R1, was observed. At the same

time, the researchers found that mIgG1 is the richest subtype of

mIgG in the glomerular immune complex of transgenic mice.

Previous studies have shown that mIgG1 could not bind C1q and

activate the complement system through the classical pathway,

which is similar to human IgG4 (hIgG4) (23, 72), showing that

this model has common ground with human PMN in the aspect of

complement activation.

In a word, the antigen specificity, immune-mediated character,

and dominance of non-C1q-binding mIgG1 in combination with

the typical clinical model and morphology in regard to mIgG and

complement deposition can be considered as the major advantages

of this new experimental model of PLA2R1-related MN. The model

mice have a long course of disease, which can meet the needs of

long-term observation, making it the most suitable animal model of

membranous nephropathy at present.
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4 Non-rodent model of MN

Compared with rodent models, non-rodents are relatively

seldom used because of the high cost of feeding, long modeling

and breeding cycles. Several non-rodent models of MN have been

developed, including:
4.1 The cationic bovine serum
albumin model

C-BSAmodels in rabbits, dogs and cats (as discussed before) are

not commonly used now.
4.2 Neutral endopeptidase models

NEP and DDPIV are both antigens present in brush borders

and podocytes and participate in the formation of subepithelial

deposits in animal models. Studies have shown that these two

antigens are expressed in human podocytes (73, 74). In 2002,

DEBIEC et al. (75) reported a case reported a case in which the

anti-NEP antibodies were transferred from the pregnant woman to

the fetus, resulting in severe MN in the baby. Then, the researchers

injected IgG from the infant’s parents intravenously into rabbits

and induced a disease similar to MN, which was characterized by

obvious proteinuria and IgG deposition along the capillary wall.
4.3 Angiotensin-converting enzyme
antibody-induced MN model in minipigs

In the investigation of the humoral consequence of pig-primate

xenotransplantation, researchers observed that in minipigs injected

with heterologous antibody of angiotensin converting enzyme,

heterologous IgG was linearly or granularly bound to the

basement membrane, glomerular subepithelial immune complex

deposition, and renal tubular lesions, and the model pigs showed

mildly increased proteinuria (76).
4.4 PLA2R1-related minipig models

Recently, REINHARD et al. (77) found that PLA2R1 antigen

expressed in podocytes of minipig can bind to anti-hPLA2R1 from

patients. So the researchers first performed unilateral nephrectomy

on experimental minipigs to increase antigen exposure, then

injected plasma containing hPLA2R1 antibodies from MN

patients into the experimental group, while plasma from healthy

people was injected into the control group, and then hPLA2R1

antibodies were only detected in the glomerulus of the experimental

group. Within 7 days after injection, the urinary side of the

glomerular basement membrane of minipig A showed fragmented

and distinct granular positivity for human IgG (hIgG) and porcine

C3. Electron microscopy showed subepithelial electron dense

deposits associated with podocyte foot process effacement in a
Frontiers in Immunology 10
pattern reflecting stage I MN in patient biopsies. The

experimental animals showed low-level proteinuria. This further

confirmed the pathogenicity of the human PLA2R1 antibody in

MN. Unfortunately, after injecting the patient’s plasma, the

minipigs failed to produce the corresponding clinical symptoms

and histological manifestations in a short time, which may be

related to the lack of antibodies and the influence of other

components in the plasma on MN in experimental animals

cannot be ruled out. At the same time, due to the lack of

antibodies, the experiment only studied single animals and the

sample size was obviously insufficient. (Figure 2; Table 2).
5 Summary

The ideal MN model is helpful for understanding the

pathogenesis, treatment and prognosis of human MN. At present,

the animal models of MN have gone through three stages:

deposition of exogenous antigens - passive administration of

antibodies - and spontaneous production of MN, of which passive

administration of antibodies includes two different aspects:

targeting animal-derived antigens and human-animal common

target antigens. The above models can mimic human

membranous nephropathy to some extent, but whether they can

completely replicate the characteristics of human membranous

nephropathy remains to be further studied.

To sum up, the recently constructed animal models of PLA2R1

and THSD7A are undoubtedly the best choice for studying the

clinical manifestations or pathological mechanisms of membranous

nephropathy, especially the recently constructed hPLA2R1

associated model. However, the above animal models are difficult

to construct and obtain, and are only studied on a small scale at

present, so they cannot be popularized for the time being.

Therefore, it is still a good choice for researchers to adopt

previous animal models. Among them, the HN rat model

(especially the PHN rat model) has stable lesions and rapid onset,

and its lesions are similar to human membranous nephropathy,

which has been widely studied, so it has high recognition in the

world. At the same time, in view of its similar complement

activation pathway to human PMN, PHN model has obvious

advantages in studying complement pathogenesis and

complement-related drugs in patients with PMN (78, 79).

Unfortunately, the HN model was successfully established only in

rats, while the C-BSA animal model has been successfully

established in rats, mice, rabbits and other species, and the

preparation of the model is simpler than the HN model. For the

preparation of large-scale animal model, considering the cost and

feasibility, this model may have more advantages, and several recent

studies have confirmed its important role in the drug treatment of

membranous nephropathy, it has become an important extension

and supplement of HN model (80, 81). In addition, there are still

some problems with the preparation of animal models: the success

rate of various modeling methods is not ideal, the modeling

methods in different animals and even different strains of mice

are poor in repeatability, the comparability between different animal

models is poor, and the establishment process is complicated.
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FIGURE 2

Establishment of four kinds of animal models of PLA2R1. (A) The mPLA2R1-related model; (B) The hPLA2R1 associated model; (C) The chPLA2R1
associated model; (D) The PLA2R1-related minipig models; PLA2R1, phospholipase A2 receptor 1; m, mouse; h, human; ch, chimeric.
TABLE 2 Similarities and differences of PLA2R1 related MN models.

The mPLA2R1-
related model

The hPLA2R1
associated model

The chPLA2R1
associated model

The PLA2R1-related
minipig models

Animal
PodoCre mice
expressing mPLA2R1

PodoCre mice
expressing hPLA2R1

PodoCre mice
expressing chPLA2R1

minipig

Antibody source Exogenous antibody Endogenous antibody Endogenous antibody Exogenous antibody

Antibody Rabbit anti-mPLA2R1 antibodies Mice anti-hPLA2R1 antibodies Mice anti-hPLA2R1 antibodies Human anti-PLA2R1 antibodies

Histological
manifestation

Granular deposition of IgG,
widened foot process, and partial
co-localization of complement
C3 and IgG

Granular deposition of mIgG in
the subepithelial layer,
disappearance of podocyte foot
process, thickening of glomerular
basement membrane.

Disappearance of podocyte foot
process, deposition of electron
dense substance in the
subepithelial layer, thickening of
GBM and formation of
spike process.

Fragmented and distinct granular
positivity for human IgG (hIgG)
and porcine C3, subepithelial
electron dense deposits, podocyte
foot process effacement

IgG subclasses Unknown mIgG1>mIgG2>mIgG3 mIgG1>mIgG2>mIgG3 hIgG4

Proteinuria
Rapidly produce obvious
proteinuria; last for about 7days.

Notable proteinuria was
spontaneously produced after 4
weeks of birth.

Appeared after 3 weeks after
immunization, substantially
increased around 6 weeks, a
chance of severe proteinuria 12
weeks ago

Low-level proteinuria within
7 days

Complement C3, C5b-9
C3, C1q, C4d, CFB, CFH, C5b-
9 et al.

C1q, C4d, CFB, C3, C5 et al. C1q, CFB, C3, C5-C9 et al.
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Therefore, the existing animal models of membranous nephropathy

is not entirely satisfactory. In order to further clarify the

pathogenesis of membranous nephropathy and establish more

effective treatment strategies, the animal models of membranous

nephropathy need further improvement and exploration.
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