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Bovine respiratory disease (BRD) remains the leading infectious disease in beef

cattle production systems. Host gene expression upon facility arrival may indicate

risk of BRD development and severity. However, a time-course approach would

better define how BRD development influences immunological and

inflammatory responses after disease occurrences. Here, we evaluated whole

blood transcriptomes of high-risk beef cattle at three time points to elucidate

BRD-associated host response. Sequenced jugular whole blood mRNA from 36

cattle (2015: n = 9; 2017: n = 27) across three time points (n = 100 samples; days

[D]0, D28, and D63) were processed through ARS-UCD1.2 reference-guided

assembly (HISAT2/Stringtie2). Samples were categorized into BRD-severity

cohorts (Healthy, n = 14; Treated 1, n = 11; Treated 2+, n = 11) via frequency of

antimicrobial clinical treatment. Assessment of gene expression patterns over

time within each BRD cohort was modeled through an autoregressive hidden

Markov model (EBSeq-HMM; posterior probability ≥ 0.5, FDR < 0.01). Mixed-

effects negative binomial models (glmmSeq; FDR < 0.05) and edgeR (FDR < 0.10)

identified differentially expressed genes between and across cohorts overtime. A

total of 2,580, 2,216, and 2,381 genes were dynamically expressed across time in

Healthy, Treated 1, and Treated 2+ cattle, respectively. Genes involved in the

production of specialized resolving mediators (SPMs) decreased at D28 and then

increased by D63 across all three cohorts. Accordingly, SPM production and

alternative complement were differentially expressed between Healthy and

Treated 2+ at D0, but not statistically different between the three groups by

D63. Magnitude, but not directionality, of gene expression related to SPM

production, alternative complement, and innate immune response signified

Healthy and Treated 2+ cattle. Differences in gene expression at D63 across
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the three groups were related to oxygen binding and carrier activity, natural killer

cell-mediated cytotoxicity, cathelicidin production, and neutrophil

degranulation, possibly indicating prolonged airway pathology and

inflammation weeks after clinical treatment for BRD. These findings indicate

genomic mechanisms indicative of BRD development and severity over time.
KEYWORDS

cattle, bovine respiratory disease, inflammation, specialized pro-resolving mediators,
major histocompatibility complex, immunoglobulin, interleukin, transcriptome
1 Introduction

Bovine respiratory disease (BRD) remains the leading disease

complex in North American beef cattle feeding systems (1, 2). In

addition to being the leading cause of clinical intervention and

mortality in feeder systems, clinical and subclinical BRD reduces

feed efficiency, growth performance, and carcass quality, making it

the costliest infectious disease process in post-weaned beef cattle

systems (3–8). As a polymicrobial, multifactorial disease complex,

BRD stems from the interplay of viral and bacterial pathogenic

airway establishment, environmental stressors, and management

factors (7–10). However, despite research and advancements in

management tactics and diagnostics, BRD is commonly identified

via undifferentiated clinical diagnosis and may be underreported

antemortem (11–14). Moreover, concurrent prognostic and

diagnostic testing fail to achieve early detection and targeted

intervention, and the problems faced and/or priorities of

indiv idual feeding systems influence the ut i l i ty and

implementation of BRD mitigation tactics (11, 12, 15–17).

To provide potential novel methods and biomarkers to more

accurately identify cattle that develop and/or succumb to BRD, our

research group and others have focused on evaluating the host

transcriptomes of cattle at the time of facility arrival with respect to

naturally occurring BRD outcomes to identify potential indicators

of concurrent subclinical or eventual development of BRD (18–

21). Likewise, several research groups have evaluated cattle

transcriptomes in case-control studies with regard to naturally

occurring BRD in an effort to understand key molecular events

and signaling pathways involved in respiratory disease development

and clinical presentation (18, 22–24). Collectively, these studies

have identified immune system-driven biological mechanisms, such

as type-I interferon production, complement, and inflammatory

mediation, in relative gene expression levels that appear to indicate

BRD outcomes and potential severity. However, relatively few

studies have assessed the impact that BRD acquisition has on the

host immune response over time, particularly within the context of

disease resolution (18).

Accordingly, we sought to analyze the transcriptomes of high-

risk stocker cattle, enrolled over multiple years, to identify potential

changes in immune function and signaling pathways associated
02
with BRD development. Here, we hypothesized that BRD

development (1) could be identifiable with host gene expression

signaling upon arrival, defined by previously identified genes and

enriched pathways (18–21), and (2) impacts the immune system in

a prolonged and identifiable manner following disease resolution.

The goal of this work is to provide key insights into the

immunological influence and signaling influenced by BRD, which

may impact health and performance outcomes when cattle are

transitioned into feedlot or finisher production systems. Here, our

findings provide a foundation for understanding immunological

signaling influenced by respiratory disease development and

resolution, which may be leveraged in future disease-mitigation

research and approaches.
2 Materials and methods

2.1 Animal use approval and
sample selection

Animal use and procedures were approved by the Mississippi

State University Animal Care and Use Committee (IACUC

Protocol No. 15-003 and No. 17-120) and carried out in

accordance with relevant IACUC and agency guidelines and

regulations. The information reported here is in accordance with

Animal Research: Reporting of In Vivo Experiments (ARRIVE)

guidelines (25).

The primary focus of this study was to determine gene

expression patterns over time that were influenced by naturally

occurring clinical BRD. The cattle used in this experiment were

included in a multi-year (2015, 2017) clinical trial to determine the

effect of vaccine and anthelminthic administration upon arrival on

health and performance outcomes, compared in a 2 × 2 factorial

design; complete study information, including treatment and pen

allocation, feed and mineral source, and sampling schedule, is found

elsewhere (26, 27). A total of 160 cattle from both years (n = 80,

2015; n = 80, 2017), confirmed to be free of bovine viral diarrhea

virus persistent infection via ear notch antigen-capture ELISA, were

housed and maintained in an identical fashion at the Leveck Animal

Research Facility at Mississippi State University for 85 and 82 days
frontiersin.org
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for the 2015 and 2017 groups, respectively. For the 2015 study,

jugular whole blood from cattle was collected into Tempus RNA

blood tubes (Applied Biosystems, Waltham, MA, USA) at days 0,

14, 28, and 70. For the 2017 study, whole blood was collected in an

identical fashion at days 0, 26 (referred to as 28 for simplicity), and

54. All blood samples were stored at − 80°C until analysis.

Individual body weights were collected every 2 weeks in each

study. All cattle were assessed for visual signs of clinical BRD

and/or other disease processes by trained staff, where signs for BRD

were assigned a severity score of 0–4 (0 = normal, 1 = mild, 2 =

moderate, 3 = severe, 4 = moribund), closely resembling the scoring

system previously described (28, 29). Antimicrobial treatment for

BRD was instituted as described by Griffin and colleagues (26).

Cattle deemed unlikely to recover were euthanized by project

veterinarians via intravenous administration of pentobarbital,

followed by a gross necropsy that was performed by trained staff.

Following the conclusion of both studies, cattle were grouped based

on the frequency of clinical treatment for BRD: never diagnosed nor

treated (Healthy), treated one time throughout the course of their

study (Treated 1), and treated twice or more and/or succumbed to

clinical BRD (Treated 2+). Notably, only one individual included in

this study (ID33_2015) succumbed to naturally occurring BRD and

was found acutely dead on day 51 of the 2015 study (19).

Our primary objective for sample selection was to enroll random

individuals while stratifying for relatively equal numbers of samples

across treatment frequency groups, time points, and years. For this

study, we utilized later time points from cattle whose at-arrival (D0)

samples had been previously sequenced for the identification of

candidate genes and mechanisms associated with BRD outcomes

(19, 20) and randomly included nine additional cattle not previously

transcriptomically evaluated at D0 (ID_20_2015, ID_40_2015,

ID_60_2015, ID_68_2015, ID_71_2015, ID_114_2017,

ID_147_2015, ID_166_2017, and ID_192_2017) to increase

statistical power for differential gene expression detection. An a

priori power analysis was performed with RnaSeqSampleSize (30) to

calculate assumed study power with our combined RNA-Seq data

set, utilizing the following parameters based on outcomes from our

previous work (19, 20): minimum number of biological replicates per

treatment frequency group (Healthy, Treated 1, and Treated 2+) of

11, minimum average read counts among prognostic genes of 200,

maximum estimated gene-wise dispersion of 0.4, the ratio of the

geometric mean of normalization factors of 1.5, total number of

filtered genes to test across of 16,000, the top 200 genes being

prognostic, desired minimum log2 fold-change of prognostic genes

set to 2.0, and an established threshold of significance (FDR) of 0.10;

statistical probability utilizing Exact test procedures resulted in a

power of 0.81. As jugular blood sampling across these two

populations was nonsequential when compared to each other, we

elected to match the D0 and D28 time point samples from each year

and include D70 samples from 2015 (26) and D54 samples from

2017 (27); the D70 and D54 samples were the furthest time points in

which Tempus RNA blood tubes were collected from the 2015 and

2017 populations, respectively. For simplicity, these final sampling

time points are referred to as D63, the average day of the final time

point per sample collection. As peak incidence of BRD is often

assumed to occur within the first 2–4 weeks of arrival in stocker
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cattle systems, D28 and D63 time points were selected to evaluate

host gene expression changes at the point in which BRD likelihood

would begin to decrease and at the relative end of the stocker

production cycle when cattle are typically marketed for feedlot

production system entry. We selected 73 samples from 36

individuals for RNA extraction and sequencing. The raw

sequencing data from these samples and the corresponding raw

sequencing D0 data from our previous experiments (19, 20), for a

total of 100 samples from 36 individuals (n = 14, Healthy; n = 11,

Treated 1; n = 11, Treated 2+) across three time points (D0, D28,

D63), were analyzed. Complete metadata for the cattle enrolled in

this study are found in Supplementary Table S1.
2.2 Sample processing and bioinformatic
workflow of raw reads

To maintain similarity between RNA-Seq projects, the newly

included 73 samples were processed in an equivalent manner to our

previous work (19, 20). Total RNA isolation was performed with

Tempus Spin RNA Isolation Kit (Applied Biosystems), per the

manufacturer’s instructions. Following extraction, samples were

evaluated for concentrations and RNA integrity via Qubit 4

fluorometry with RNA Broad Range quantification assay kits

(ThermoFisher, Waltham, MA, USA) and TapeStation 4200

electrophoresis with RNA ScreenTapes and analysis reagents

(Agilent, Santa Clara, CA, USA), respectively. One sample

(ID68_D63) required RNA concentration via a Savant SpeedVac

DNA 130 Integrated Vacuum Concentrator System (ThermoFisher,

Waltham, MA, USA). All RNA samples were of acceptable quality

(RIN: 6.0–9.7; mean = 9.1, SD = 0.6) and concentrations (ng/mL:
29.1–482.0; mean = 188.4, SD = 66.9) to proceed for sequencing

library preparation. Library preparation and sequencing were

performed by the Texas A&M University Institute for Genome

Sciences and Society (TIGSS; College Station, TX, USA). Library

preparation for mRNA was performed with the Stranded mRNA

Prep Kit (Illumina, San Diego, CA, USA), following the

manufacturer’s instructions. Paired-end sequencing for 150 base-

pair read fragments was performed on an Illumina NovaSeq 6000

analyzer (v1.7+; S4 reagent kit v1.5) in one flow cell lane.

The 73 newly sequenced raw reads were processed bioinformatically

together with the D0 samples from 2015 (19) and 2017 (20), in an effort

to reduce technical bias across projects; the 2015 and 2017 samples were

previously submitted and are found at the National Center for

Biotechnology Information Gene Expression Omnibus (NCBI-GEO),

under the accession numbers GSE136176 and GSE161396, respectively.

Raw sequencing data for the 73 newly processed samples in this study are

available at the NCBI-GEO under the accession number GSE194167.

Raw reads were quality assessed with FastQC v0.11.9 (https://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) and MultiQC

v1.12 (31). Trimmomatic v0.39 (32) was used to perform read

pair trimming, adaptor removal, and minimal quality retainment

with the following parameters: leading/trailing bases were removed

if below a base Phred quality score of 3, removal of reads with 4

base-pair sliding window having a Phred quality score of less than

20, and removal of read fragments with a length below 32 bases.
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Retained reads were mapped and indexed to the bovine reference

genome assembly ARS-UCD1.2 with HISAT2 v2.2.1 (33). Sequence

Alignment/Map (SAM) files were converted to Binary Alignment

Map (BAM) files prior to transcript assembly via Samtools v1.14

(34). Transcript assembly and gene-level expression estimation for

downstream analyses were performed with StringTie v2.2.0 (35, 36),

as described by Pertea and colleagues (37).
2.3 Differential gene expression analysis

Gene-level count matrices were processed and analyzed with R

v4.1.2. To control batch effects, the package ComBat-seq [sva]

v3.42.0 (38) was used to account for the sequencing platform

across all samples. Briefly, the variable “Platform” (Supplementary

Table S1) was used in ComBat-seq as the batch effect for each

sample, indicated as the numeral “1” for all newly sequenced

samples, “2” for GSE136176 samples, and “3” for GSE161396

samples, and “Severity” (Supplementary Table S1) was used as the

biological condition of interest, with all other parameters set to

default. Samples were further processed and filtered to reduce data

sparsity by procedures described by Chen and colleagues (39),

where any gene with a minimum total count above 100 and a

count-per-million (CPM) of 0.5 in at least twelve samples was

retained for further analysis.

Raw, filtered gene-level counts were normalized across samples

with the trimmed mean of M-values (TMM) method (40) and had

tagwise dispersion estimates calculated for input into glmmSeq v0.2.2

(https://github.com/myles-lewis/glmmSeq) for negative binomial

mixed-effect time-course evaluation. Model adaptation allowed for

the assessment of differentially expressed genes (DEGs) across time

points, BRD severity groups (by frequency of antimicrobial therapy),

and the interactions between time points and severity groups, where

p-values were adjusted to control the false discovery rate (FDR) with

the Benjamini–Hochberg method; genes were considered

significantly expressed with an FDR < 0.05. The following negative

binomial mixed-effect model was fitted to account for the three time

points (“Day”) and treatment frequencies (“Severity”) as fixed effects,

and individual (“actual_ID”), population (“Year”), and at-arrival

vaccination (“Vax”) as random intercepts:

Model = gene count ~Day + Severity +Day: Severity + (1|actual_ID)

+ (1|Year) + (1|Vax)

Pairwise comparisons for DEGs between each severity group at

each time point were performed with raw, filtered gene-level counts

with edgeR v3.36.0 (41, 42). Within edgeR, genes were fitted under a

generalized linear model (GLM) framework and analyzed via quasi-

likelihood F-tests (QLF), following common dispersion estimation

and blocking for a year and individual ID. Pairwise gene

comparisons were considered significant with an FDR < 0.10.
2.4 Dynamic gene expression
trend analyses

Gene expression dynamics over time were evaluated for each

disease severity group (“Healthy”, “Treated 1”, “Treated 2”)
Frontiers in Immunology 04
independently. First, library size factors were calculated for raw

filtered counts with the Upper-Quartile normalization method (43).

Following normalization procedures, gene expressional paths over

time were identified for each severity group through time-series

differential analysis via EBSeq-HMM v1.28.0 (44). Briefly, EBSeq-

HMM utilizes an autoregressive hidden Markov model to categorize

expressional dependence over ordered conditions (time points D0,

D28, and D63 in the case of this study) and identifies dynamic paths

where gene expression continuously changes. For this study, we

specifically retained genes possessing continuous changes (i.e., up-

or downregulation) between each time point, with the four pathways

described as “Up-Down” (for upregulation from D0 to D28, then

downregulation from D28 to D63), “Up-Up” (for upregulation from

D0 to D28, and continued upregulation from D28 to D63), “Down-

Down” (downregulation from D0 to D28, and continued

downregu la t ion f rom D28 to D63) , or “Down-Up”

(downregulation from D0 to D28, then upregulation from D28 to

D63). EBSeq-HMM was performed with 100 iterations of the Baum–

Welsh algorithm (“UpdateRd=100”), an expected fold-change of 2.4

(“FCV=2.4”), two-chain mixture proportion updating set to FALSE

(“UpdatePI=FALSE”), and all other parameters set to default. These

parameters were set after 500 testing runs to maximize the log-

likelihood estimates and eventual model fitting, per the developer’s

instruction (https://www.bioconductor.org/packages/release/bioc/

vignettes/EBSeqHMM/inst/doc/EBSeqHMM_vignette.pdf). The

resulting maximized log-likelihood estimates and treatment plots

for all tested parameters are found in Supplementary Table S2.

Dynamically expressed genes were retained, having a posterior

probability ≥ 0.50 and FDR < 0.01.
2.5 Gene-level functional
enrichment analyses

Biological pathway and Gene Ontology (GO) term analyses were

performed in the KOBAS-intelligence v3.0 API framework (accessed

20 May 2023) from DEGs found by (1) glmmSeq Severity and edgeR

QLF testing at each time point and (2) glmmSeq Day: Severity

interactions and the compiled list of DEGs from edgeR QLF testing

(45). Within KOBAS-i, input genes were analyzed via the

overrepresentation analysis method using the hypergeometric

distribution, Fisher’s exact testing, and the Bos taurus genome as the

background species reference. Specifically, functional enrichments

within KOBAS-i utilized the GO knowledgebase, Kyoto

Encyclopedia of Genes and Genomes, and Reactome databases (46–

48). The Benjamini–Hochberg procedure was used to control the FDR,

and any functional enrichment having an FDR < 0.05 was considered

significant. An upset plot was generated to visualize the overlap of

DEGs and functional enrichment terms identified between severity

groups across each time point via Intervene (49, 50).

In an effort to avoid overdetection of terms and pathways

enriched by DEGs by the same functional enrichment toolset (51–

53), we elected to perform analyses with the directionally expressed

g e n e s i d e n t ifi e d b y EB S e q -HMM w i t h g : P r ofi l e r

ve110_eg57_p18_4b54a898 (accessed 2 January 2024) (54). Here,

genes identified in each directional pathway in each BRD severity
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group were imputed as the conserved gene name identified by the Bos

taurus genome reference database. In g:Profiler, genes were input as

an ordered query, ranked in descending order by maximum posterior

probability (Supplementary Table S4), and the parameters included

only annotated genes, the GO molecular function, cellular

component, and biological process, KEGG, Reactome, and

WikiPathways as the data source background, and applying the g:

SCS multiple test correction technique with an adjusted p-value cutoff

of 0.05 (54–57). All other parameters were set to default.
3 Results

3.1 Determination of significant gene
expression patterns

Differential gene expression analysis with both edgeR and glmmSeq

resulted in 3,257 uniquely identified DEGs between treatment groups

over time (Supplementary Table S3). Following the overlapping of

results between the two analysis platforms, a total of 203 and 286 DEGs

were identified when evaluating the differences between each treatment

group at each time point and the interaction of Severity and Time,

respectively (Table 1). The overlaps of DEGs (gene names) identified

within each time point are found in Figure 1. Here, the most unique

DEGs were found between Healthy vs. Treated 2+ cattle at D63 (n =

50), Treated 1 vs. Treated 2+ cattle at D63 (n = 21), and Treated 1 vs.

Treated 2+ cattle at Day 0 (n = 9). The greatest number of overlapping

DEGs were observed between Healthy vs. Treated 2+ and Treated 1 vs.

Treated 2+ at Day 63 (n = 35), Treated 1 vs. Treated 2+ and Healthy vs.

Treated 2+ at Day 0 (n = 9), and Treated 1 vs. Treated 2+ and Healthy

vs. Treated 1 at Day 63 (n = 5); no overlap was observed at Day 28.

A total of 7,177 genes were identified as dynamically expressed

across all three severity groups via EBSeq-HMM analysis (Table 2;

Supplementary Table S4). The Down-Down expressional direction

was consistently the most highly expressed path, resulting in 2,232,

1,939, and 1,862 for Healthy, Treated 1, and Treated 2+ cattle,

respectively. Likewise, the Down-Down expressional direction
Frontiers in Immunology 05
demonstrated the highest level of overlap between the three

severity groups (n = 804; Figure 2). Next, the Down-Up

expressional direction was the second-most abundant path,

resulting in 184, 165, and 379 genes found in the Healthy, Treated

1, and Treated 2+ cattle, respectively. The Down-Up path

demonstrated 13 genes to be uniquely shared between all three

severity groups: ALOX5, ALOX15, ENHO, FRRS1, HPGD, KCTD15,

LOC100295883 (CYP4F3), LOC100297044 (CCL14), LOC100337044

(ADGRE3), LOC112446413 (TRGV3), MAP6D1, SLC7A11, and

SMPD3 (Supplementary Table S4; Figure 2). Analysis of the “Up-

Down” expressional direction resulted in 163, 112, and 132 genes

identified in Healthy, Treated 1, and Treated 2+ cattle, respectively,

with no overlapping between all three severity groups. The Up-Up

expressional direction resulted in the fewest identified genes, with

one, 0, and eight found in the Healthy, Treated 1, and Treated 2+

groups, respectively; no overlap was identified between the Healthy

and Treated 2+ group for Up-Up expression.
3.2 Functional enrichment analyses of
differentially expressed genes

In total, 259 GO terms and 134 enriched pathways were

identified from differential gene expression analyses via glmmSeq

and edgeR (Supplementary Table S5). The total number of enriched

GO terms and pathways from each comparison is found in Table 3.

Generally, the most informative time points were at Day 0 and the

final collection time point (Day 63); notably, no individual was

treated after Day 42 (Supplementary Table S1). Regarding Healthy

cattle when compared to Treated 1 cattle, no significantly enriched

GO terms or pathways were identified for Days 0 and 28. Day 63

resulted in 32 and 26 GO terms and pathways, respectively. These

enrichments primarily involved heme scavenging, erythrocyte

exchange of O2/CO2, neutrophil degranulation, autophagy, fatty

acid metabolism, metal ion binding, negative regulation of activated

T-cell proliferation, and interferon-gamma-mediated signaling,

fatty acid metabolism, and neutrophil degranulation. Trend-wise

modeling of the genes driving the majority of these significant

enrichments is found in Figure 3.

When comparing Healthy and Treated 2+ cattle, significant

enrichments for GO terms and pathways were identified at Days 0

and 63. At Day 0, a total of 32 and 38 GO terms and pathways were

discovered, respectively; these terms and pathways involved arachidonic

acid and linoleic acid metabolism, synthesis of leukotrienes and eoxins,

biosynthesis of pro-resolving mediators, antigen processing and

presentation, MHC class II protein complex, T-cell differentiation,

alternative complement activation, and AMP-activated protein kinase

signaling. At Day 63, DEGs were found between Healthy and Treated 2

+ cattle enriched for one GO term: natural killer cell-mediated

cytotoxicity. Trend-wise modeling of the genes driving multiple of

these significant enrichments is found in Figure 4.

The comparison of Treated 1 and Treated 2+ cattle yielded

significant enrichments for GO terms and pathways at Days 0 and

63, similar to the aforementioned analyses. At Day 0, 103 and 21

enriched GO terms and pathways were identified, respectively;

particularly, these resulted primarily from the nine DEGs also
TABLE 1 Total number of differentially expressed genes identified for
each comparative analysis via edgeR and glmmSeq.

Comparison DEGs

Healthy vs. Treated 1 (Day 0; glmmSeq + edgeR) 4

Healthy vs. Treated 2+ (Day 0; glmmSeq + edgeR) 13

Treated 1 vs. Treated 2+ (Day 0; glmmSeq + edgeR) 23

Healthy vs. Treated 1 (Day 28; glmmSeq + edgeR) 1

Healthy vs. Treated 2+ (Day 28; glmmSeq + edgeR) 2

Treated 1 vs. Treated 2+ (Day 28; glmmSeq + edgeR) 0

Healthy vs. Treated 1 (Day 63; glmmSeq + edgeR) 8

Healthy vs. Treated 2+ (Day 63; glmmSeq + edgeR) 89

Treated 1 vs. Treated 2+ (Day 63; glmmSeq + edgeR) 63

Severity : Time interaction (glmmSeq + edgeR) 286
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1412766
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Scott et al. 10.3389/fimmu.2024.1412766
found between Healthy and Treated 2+ cattle at Day 0: ALOX15,

BOLA-DQA2, CFB, LCN8, LOC100337053 (ABCC4), LOC112441633

(uncharacterized noncoding RNA), LOC112445169 (MORF4L1

pseudogene), LOC112445170 (MORF4L1 pseudogene), LOC509854

(ABCC4-like), and PPP2R3A (Figures 1, 4). These enrichments

involved genes related to bacterial infection, complement, and
Frontiers in Immunology 06
coagulation cascades (classical and alternative), growth factor

binding, smooth muscle cell migration and development,

arachidonic acid and linoleic acid metabolism, synthesis of

leukotrienes and eoxins, biosynthesis of pro-resolving mediators,

antigen processing and presentation, MHC class II protein

complex, wound healing, and RNA processing and binding. At

Days 63, 53 and 13 enriched GO terms and pathways were

discovered between Treated 1 and Treated 2+ cattle, respectively;

particularly, several resulted from five DEGs also found between

Healthy and Treated 1 cattle at Day 63: ARG1, HBB, HBG, HBQ1,

and WFIKKN1 (Figure 3). These enrichments primarily involved

erythrocyte exchange of O2/CO2 and heme binding, neutrophil

degranulation and innate immunity, autophagy, collagen

biosynthesis, cytokine and acute phase responses, and muscle

activity and fiber development. Trend-wise modeling of the genes

driving these significant enrichments is found in Figure 5.

Upon evaluation of the DEGs identified through the interaction

of Severity and Time, 38 and 36 enriched GO terms and pathways

were discovered, respectively. These enrichments are primarily

related to RNA processing and metabolism, DNA repair,

biosynthesis of pro-resolving mediators, IL-3, IL-5, and CM-CSF

signaling, IgA production, T-cell receptor signaling and

costimulation, and ubiquitination and tyrosine kinase signal

transduction of immune-mediated pathways. Notably, several of

these immune-related terms and pathways were enriched by genes

previously discovered in the aforementioned analyses, such as

ALOX15, ARG1, BAIAP2L2, HBB, HBQ1, ITIH4, P3H2, and
TABLE 2 Total number of dynamically expressed genes by directionality
in each severity group via EBSeq-HMM.

Severity group Directionality DEGs

Healthy

Up-Down 163

Up-Up 1

Down-Down 2,232

Down-Up 184

Treated 1

Up-Down 112

Up-Up 0

Down-Down 1,939

Down-Up 165

Treated 2+

Up-Down 132

Up-Up 8

Down-Down 1,862

Down-Up 379
FIGURE 1

Matrix intersections of the number of differentially expressed genes (set size) identified between severity groups by edgeR and glmmSeq analyses.
Each column represents the number of genes (intersection size) corresponding to one or more intersecting sets of analysis (row). Healthy cattle are
indicated by “H”, Treated 1 cattle by “T1”, and Treated 2+ cattle by “T2”. Each day of sampling (0, 28, 63) is indicated by “d0”, “d28”, or “d63”.
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WFIKKN1. Trend-wise modeling of the genes driving these

significant immune-related enrichments is found in Figure 6.

Several overlapping enrichments were identified between each

edgeR and glmmSeq comparison. Regarding Healthy vs. Treated 2+

at Day 0 and Treated 1 vs. Treated 2+ at Day 0, 27 shared GO terms

were identified; these terms were primarily related to arachidonic

acid/fatty acid metabolism and biosynthesis, MHC class II protein

complex, apoptotic cell clearance and antigen presentation,

inflammatory regulation and positive regulation of the

extracellular signal-regulated kinase (ERK) cascade, and wound

healing. Regarding Healthy vs. Treated 1 at D63 and Treated 1 vs.

Treated 2+ at D63, 15 shared GO terms were identified; these terms

were primarily related to oxygen transport and binding, heme

binding, hydrogen peroxide catabol ism, muscle fiber

development, negative regulation of DNA binding and signaling

receptor activity, and endopeptidase inhibitor activity. Regarding

Healthy vs. Treated 1 at D63, Treated 1 vs. Treated 2+ at D63, and

the interaction of Severity and Time, four shared GO terms were

identified; these terms were primarily related to haptoglobin and

hemoglobin complex and binding. The number of overlapping GO

terms between all edgeR/glmmSeq comparisons is found in

Figure 7A. With respect to Healthy vs. Treated 2+ at Day 0 and

Treated 1 vs. Treated 2+ at Day 0, 11 shared pathways were

identified; these pathways were primarily related to bacterial

infection, complement and coagulation cascades, and arachidonic
TABLE 3 Total number of enriched Gene Ontology (GO) terms and
Reactome and KEGG pathways identified through differentially expressed
genes discovered in each pairwise comparison via KOBAS-i.

Comparison GO terms Pathways

Healthy vs. Treated 1 (Day 0; glmmSeq
+ edgeR)

0 0

Healthy vs. Treated 2+ (Day 0; glmmSeq
+ edgeR)

32 38

Treated 1 vs. Treated 2+ (Day 0; glmmSeq
+ edgeR)

103 21

Healthy vs. Treated 1 (Day 28; glmmSeq
+ edgeR)

0 0

Healthy vs. Treated 2+ (Day 28; glmmSeq
+ edgeR)

0 0

Treated 1 vs. Treated 2+ (Day 28; glmmSeq
+ edgeR)

0 0

Healthy vs. Treated 1 (Day 63; glmmSeq
+ edgeR)

32 26

Healthy vs. Treated 2+ (Day 63; glmmSeq
+ edgeR)

1 0

Treated 1 vs. Treated 2+ (Day 63; glmmSeq
+ edgeR)

53 13

Severity: Time Interaction (glmmSeq + edgeR) 38 36
FIGURE 2

The top 40 matrix intersections of dynamically expressed genes (set size) identified between severity groups by EBSeq-HMM analyses. Each column
represents the number of genes (intersection size) corresponding to one or more intersecting sets of analysis (row). Healthy cattle are indicated by
“H”, Treated 1 cattle by “T1”, and Treated 2+ cattle by “T2”. Gene expression directionality is indicated by Up-Up, Up-Down, Down-Up, and
Down-Down.
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acid metabolism. Regarding Healthy vs. Treated 1 at Day 63 and

Treated 1 vs. Treated 2+ at Day 63, 10 shared pathways were

identified; these pathways were primarily related to heme

scavenging, erythrocyte exchange of O2/CO2, autophagy, and

binding/uptake of ligands by scavenger receptors. Lastly, Healthy

vs. Treated 2+ at Day 0, Treated 1 vs. Treated 2+ at Day 0, and the

interaction of Severity and Time groups resulted in three shared

pathways: the synthesis of leukotrienes and eoxins, biosynthesis of

specialized pro-resolving mediators, and intestinal immune

network for IgA production. The number of overlapping

pathways between all edgeR/glmmSeq comparisons is found

in Figure 7B.

A total of 377 GO terms and 57 pathways were identified from

dynamically expressed genes discovered through EBSeq-HMM

analyses (Table 4; Supplementary Table S6). Regarding Up-Down

gene expression directionality, three GO terms were enriched for

Healthy cattle (sex differentiation, development of primary sexual

characteristics, and extracellular region), two GO terms were

enriched for Treated 1 cattle (regulation of type I interferon

production and type I interferon production), and no GO terms

were enriched for Treated 2+ cattle. The Up-Up gene expression

directionality only demonstrated significant enrichment terms (3)

for Treated 2+ cattle: apelin receptor binding, positive regulation of

G protein-coupled receptor internalization, and gastrulation. The

Down-Down gene expression directionality yielded the greatest

number of total functional enrichments across all three disease
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groups; this is due, in part, to the high number of genes identified in

this directionality when compared to the other three (Table 2).

Moreover, the greatest amount of overlapping enrichments, based

on term identification (“term_id”), were found between the three

disease groups through the Down-Down gene expression

directionality (Figure 8). Regarding these overlapping findings, all

three treatment groups demonstrated enrichment for GO terms and

pathways related to ABC-type transporter activity, ATP hydrolysis

and ATP-dependent activity, peptide antigen binding, MHC class II

protein complex binding, acid anhydride-acting hydrolase activity,

immune and scavenger receptor activity, innate immune response

and regulation, cytokine production, defense response to viruses

and xenobiotics, cell killing, response to type I interferons, and

activation of RAC1 downstream of NMDA receptors.

Down-Down enrichments unique to Healthy cattle included

glycosaminoglycan binding, heparin-binding, sulfur compound

binding, collagen fibril organization, adaptive immunity,

regulation of multicellular organismal processes, extracellular

structure organization, positive regulation of cytokine production,

branched-chain amino acid catabolism, translocation of ZAP-70 to

immunological synapse, PD-1 signal transduction, and the

phosphorylation of CD3/T-cell receptor zeta chains. Specific to

Treated 1 cattle, the Down-Down gene expression directionality

enrichments included extracellular matrix structural constituent 5′-
3′ DNA exonuclease activity, platelet-derived growth factor

binding, ion and small molecule binding, Ca-dependent cysteine-
FIGURE 3

Model plot of key differentially expressed genes identified between Healthy and Treated 1 cattle (ARG1, HBB, HBQ1, and WFIKKN1). Gene expression
levels of selected genes driving multiple significant enrichments are shown for all three severity groups, indicated by the x-axis (black: Healthy,
purple: Treated 1, orange: Treated 2+) and further denoted by day (D0, D28, D63). Normalized relative gene expression levels for selected genes are
indicated by the y-axis. Dots represent the relative gene expression for an individual, spaghetti plot lines indicate the relative trend of gene
expression over time for an individual, violin plots represent the distribution of relative gene expression for a severity group at each time point, and
overlapping blue lines represent the fitted model utilized by glmmSeq.
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type endopeptidase activity, cytoplasmic pattern recognition

receptor signaling, myeloid leukocyte-mediated immunity,

degradation of the extracellular matrix, integrin cell surface

interactions, and collagen biosynthesis and modifying enzymes.

Specific to Treated 2+ cattle, the Down-Down gene expression

directionality enrichments included lipid transporter activity,

positive regulation of leukocyte-mediated cytotoxicity,

lymphocyte-mediated immunity, adaptive immune response

based on somatic recombination of immune receptors built from

immunoglobulin superfamily domains, and calmodulin-dependent

protein kinase (CaMK)-mediated phosphorylation of cAMP-

response element binding protein (CREB).

Evaluation of enrichments from the Down-Up gene expression

directionality resulted in the greatest proportion of overlapping

pathways across all three treatment groups. Specifically, all three

groups shared Down-Up trends related to the biosynthesis of

specialized pro-resolving mediators (resolvins, protectins, and

lipoxins), driven by the genes ALOX5, ALOX15, HPGD, and

GPX4 (Supplementary Table S6). GO terms unique to the three

groups were related to platelet formation and regulation of the
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mitotic cell cycle in Healthy cattle, carbohydrate phosphatase

activity, oxidoreductase activity, Ras protein signal transduction,

and biomineral tissue development in Treated 1 cattle, and

ferroptosis, negative regulation of wound healing, and regulation

of cell morphogenesis in Treated 2+ cattle.
4 Discussion

This study was performed as an extension of our previous work,

which focused on capturing at-arrival (D0) candidate biomarkers

that may predict clinical BRD within the first 28 days after arrival to

a growing operation (19, 20, 58, 59). From those studies, we

established that genomic mechanisms related to specialized pro-

resolving mediator production, type I interferon production and

signaling, antiviral defense, alternative complement activation,

alpha-beta T-cell complexes, Th2-type immune signaling, and

antimicrobial peptide production were associated with later

undifferentiated BRD outcomes, both in terms of visually

identifiable clinical disease and mortality events. Other studies
FIGURE 4

Model plot of key differentially expressed genes identified between healthy and treated 2+ cattle (ALOX15, BOLA-DQA2, C1R, CFB, PPP2R3A, and
LOC100296778). Gene expression levels of selected genes driving multiple significant enrichments are shown for all three severity groups, indicated
by the x-axis (black: healthy, purple: treated 1, orange: treated 2+) and further denoted by day (D0, D28, D63). Normalized relative gene expression
levels for selected genes are indicated by the y-axis. Dots represent the relative gene expression for an individual, spaghetti plot lines indicate the
relative trend of gene expression over time for an individual, violin plots represent the distribution of relative gene expression for a severity group at
each time point, and overlapping blue lines represent the fitted model utilized by glmmSeq.
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FIGURE 6

Model plot of key differentially expressed genes identified through the interaction of time and treatment frequency (CATHL1, CATHL3, MCF2L, CD3E,
CD5, CD28, CD40LG, CRK, and GPX4). Gene expression levels of selected genes driving multiple significant enrichments are shown for all three
severity groups, indicated by the x-axis (black: Healthy, purple: Treated 1, orange: Treated 2+) and further denoted by day (D0, D28, D63).
Normalized relative gene expression levels for selected genes are indicated by the y-axis. Dots represent the relative gene expression for an
individual, spaghetti plot lines indicate the relative trend of gene expression over time for an individual, violin plots represent the distribution of
relative gene expression for a Severity group at each time point, and overlapping blue lines represent the fitted model utilized by glmmSeq.
FIGURE 5

Model plot of key differentially expressed genes identified between treated 1 and treated 2+ cattle (BAIAP2L2, ITIH4, NUMB, and P3H2). Gene
expression levels of selected genes driving multiple significant enrichments are shown for all three severity groups, indicated by the x-axis (black:
Healthy, purple: Treated 1, orange: Treated 2+) and further denoted by day (D0, D28, D63). Normalized relative gene expression levels for selected
genes are indicated by the y-axis. Dots represent the relative gene expression for an individual, spaghetti plot lines indicate the relative trend of gene
expression over time for an individual, violin plots represent the distribution of relative gene expression for a severity group at each time point, and
overlapping blue lines represent the fitted model utilized by glmmSeq.
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focusing on molecular approaches to measuring functional host

response in association with BRD development and severity have

been performed, identifying differentially expressed genes and

functional mechanisms related to glucose and heavy metal

metabolism, type I interferon production and response,

cathelicidins and antimicrobial peptide production, lipoxygenase

and serine-type peptidase activity, T-cell differentiation, and

immune and inflammatory regulation (18, 22–24, 60–65).

Collectively, these findings establish and corroborate several key

immune and metabolic host mechanisms as clinically important

prognostic indicators of BRD outcomes, which warrants focused
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research to determine whether the detection and quantification of

any of these mechanisms can predict and be used to change BRD

outcomes. The findings generated by these studies are highly

relevant to current research, as there are no currently

recommended biomarkers for predicting or prognosing BRD in

commercial cattle production settings (66). Moreover, these studies

demonstrate the complexity of undifferentiated BRD and highlight

a need for combinational approaches and detection methods (66–

69). While our work described here helps corroborate work

performed by our group and others regarding potential at-arrival

(D0) biomarkers for indicating future BRD development, one

understudied element from those studies is evaluating

physiological and immunological changes following disease

resolution. Ultimately, genomic and diagnostic information

related to disease resolution may help improve marketing and

management practices, leading to better health for cattle moving

into future phases of production, such as feedlot operations.

Importantly, Sun and colleagues in 2020 were one of the first

research teams to perform whole blood transcriptome profiling of

commercial beef cattle with and without visually observed BRD

over multiple time points (18). This study is similar in scope and

approach to their work but differs by (1) incorporating previously

published data while simultaneously reassessing the at-arrival

transcriptomes of cattle not previously sequenced but within the

same populations and (2) longitudinally assesses the transcriptomes

of cattle after BRD incidence has occurred. Our goals of this study

were to further identify and/or corroborate gene expression and

enriched mechanisms that indicate BRD development and severity

as indicated by treatment frequency and to better understand the

impact of BRD development on the host immune system as

measured through the blood transcriptome.

While informative, several limitations and opportunities for

future research endeavors are apparent from this study. First, the

specific pathophysiology of the BRD cases illustrated in this study

remains unknown, as none of these cattle underwent antemortem
TABLE 4 Total number of enriched Gene Ontology (GO) terms and
Reactome, KEGG, and WikiPathways pathways identified through
dynamically expressed genes discovered in each EBSeq-HMM analysis via
g:Profiler.

Comparison GO terms Pathways

Healthy Up-Down 3 0

Healthy Up-Up 0 0

Healthy Down-Down 120 17

Healthy Down-Up 11 11

Treated 1 Up-Down 2 0

Treated 1 Up-Up 0 0

Treated 1 Down-Down 109 13

Treated 1 Down-Up 8 7

Treated 2+ Up-Down 0 0

Treated 2+ Up-Up 3 0

Treated 2+
Down-Down

115 4

Treated 2+ Down-Up 6 5
FIGURE 7

Matrix intersections of enriched Gene Ontology (GO) terms (A) and pathways (B) identified from differentially expressed genes following pairwise
edgeR/glmmSeq analyses. Set size represents the number of enrichments identified between pairwise analyses, and columns represent the number
of enrichments (intersection size) corresponding to one or more intersecting sets of analysis (row). Healthy cattle are indicated by “H”, Treated 1
cattle by “T1”, and Treated 2+ cattle by “T2”. Each day of sampling is indicated by “D0”, “D28”, or “D63”.
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microbial isolation, transthoracic ultrasonography, or metagenomic

sequencing of the respiratory tract. As such, the specific nature of

the disease remains unclear. However, this is not unusual in

commercial operations, as the diagnosis of clinical BRD remains

predominantly dependent upon the detection of associated visual

signs (65, 70–72). While emerging technologies and combinational

approaches for early BRD detection are more routinely being tested

and utilized, there is still no biomedical gold standard test for

evaluating lung inflammation or pathology, and most novel risk

factor associations and promising diagnostic strategies have not

been validated prospectively in large-scale populations of cattle (73–

77). Likewise, recent research underlines the polymicrobial and

multifaceted nature of BRD acquisition, illustrating the lack of

causal understanding despite decades of research (69, 78, 79).

Collectively, this indicates that BRD is not a “one-size-fits-all”

disease process; thus, the disease process and causal nature are

most likely different from population to population, and prognostic

and diagnostic efforts require a combinational approach. Second,

our study utilized two independent populations of cattle. This

element of the study serves as both a strength and limitation, as

cross-populational studies will likely introduce variation more

consistent with commercial cattle operations. However, the

second and final sampling time points were different for each

year. While studies have demonstrated that in vivo host gene

expression in cattle is highly influenced by time, physiological

development, and their associated microflora, it is still unclear

how much variation is seen day-by-day (80–84). Lastly, while this

study did not administer antimicrobials to cattle upon arrival (i.e.,

metaphylaxis), our recent work illustrates how antimicrobials

greatly influence host gene expression days and weeks after

administration (85). We observed no differential gene expression

patterns at Day 28 between the treatment cohorts in this study but

were unable to block the antimicrobial treatment effect; the lack of

differential expression may be confounded, in part, by the effects of

the antimicrobials used in clinical treatment.
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4.1 At-arrival gene expression is useful in
determining the risk of BRD

While relatively anticipated, we identified 40 at-arrival DEGs

associated with BRD development within the first 28 days on-feed.

First, we were only able to identify four DEGs between Healthy and

Treated 1 cattle at arrival: GSE1 (Gse1 coiled-coil protein;

comparat ive ly increased in Heal thy) , LOC112446699

(uncharacterized; discontinued the recent update to the Bos

taurus reference genome assembly), LOC112446744 (endogenous

retrovirus group K member 25 Env polyprotein-like; discontinued

the recent update to the Bos taurus reference genome assembly),

and LOC112447761 (protein phosphatase 1B-like pseudogene).

Ultimately, these genes had no discernible functional enrichment

pattern and had not been reported in previous literature focusing on

respiratory disease. Similar to our previous work, discernible

differences in at-arrival gene expression patterns between Healthy

and Treated 1 cattle were somewhat unclear (20, 21). Importantly,

BRD diagnosis in this study was made based on visual perception of

clinical disease, within semi-objective criteria. However, it is well

understood that visual signs associated with BRD are relatively

insensitive and nonspecific, limiting the confidence in claiming that

both subclinical diseases did not exist in Healthy individuals and

that Treated 1 cattle truly possessed lung pathology (11, 72, 85). The

exact pathophysiology associated with Treated 1 cattle remains

unclear; future research in an effort to better understand lung

inflammation and physiological changes in Treated 1 cattle is

highly warranted. Nevertheless, previous research suggests that,

when observed retrospectively, increased treatment frequencies

appear to indicate an increase in confidence for observing a lung

pathology event, despite the potential for inconsistent observer

agreement (7, 8, 86–88).

When evaluating Treated 2+ cattle, 13 and 23 at-arrival DEGs

were identified when compared to Healthy and Treated 1 cattle,

respectively. Regarding these findings, nine DEGs were identified
FIGURE 8

Matrix intersections of enriched Gene Ontology (GO) terms (A) and pathways (B) identified from dynamically expressed genes following EBSeq-HMM
analyses. Set size represents the number of enrichments identified between dynamic expression trends, and columns represent the number of
enrichments (intersection size) corresponding to one or more intersecting sets of analysis (row).
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between the two analyses and were unique to Day 0: ALOX15,

BOLA-DQA2, CFB, LCN8, LOC100337053 (ATP-binding cassette

subfamily C member 4), LOC112441633 (uncharacterized ncRNA),

LOC112445170 (mortality factor 4-like protein 1 pseudogene),

LOC509854 (ATP-binding cassette subfamily C member 4-like),

and PPP2R3A. Moreover, 27 and 11 enriched GO terms and

pathways were shared between the two comparisons, which were

related to arachidonic acid/fatty acid metabolism and biosynthesis,

MHC class II protein complex, apoptotic cell clearance and antigen

presentation, complement activation, inflammatory regulation and

positive regulation of the extracellular signal-regulated kinase

(ERK) cascade, and wound healing. ALOX15, BOLA-class genes,

CFB, LCN-genes, and PPP2R3A have been identified, with

analogous gene expression trends, in previous research related to

BRD development in commercial cattle; therefore, the products of

these genes in particular warrant further evaluation to test their

merit as biomarkers to predict severe BRD, or possibly, to diagnose

active airway inflammation (18, 20–22, 89, 90).

ALOX15 was comparatively decreased in expression at arrival in

Treated 2+ cattle when compared to both Healthy and Treated 1

cattle. It encodes for an arachidonic acid lipoxygenase involved in

the oxygenation of polyunsaturated fatty acids (PUFAs) and is

critical to the generation of PUFA metabolites, namely lipoxins,

protectins, resolvins, and maresins, which maintain cellular

homeostasis, induce macrophage subtype switching (M1 to M2),

enhance the maturation of dendritic cells, and promote cellular

clearance of apoptotic debris and self-antigens (91–95). Moreover,

there is emerging research that suggests ALOX15 therapeutic

activation and bioregulation are compelling targets for treating

sepsis, airway pathology, and systemic inflammation in patients

(96–105). While relatively understudied in cattle, previous research

has demonstrated the expression and production of ALOX15

metabolites in polymorphonuclear cells, addressed the balance of

leukotriene and lipoxin levels in relation to inflammatory signaling,

and demonstrated, in vivo, the continuous increased expression

over time in young cattle, suggesting its necessary role in

immunological development (82, 83, 106–108).

BOLA-DQA2 was comparatively increased in expression at

arrival in Treated 2+ cattle when compared to both Healthy and

Treated 1 cattle and encodes for a class II major histocompatibility

complex protein that is primarily involved in peptide loading for

antigen presentation to CD4+ T cells (109, 110). Previous work has

demonstrated that both the copy number, gene polymorphisms,

and general heterozygosity of bovine leukocyte antigens (BoLA) are

involved in bovine respiratory syncytial virus and bovine leukemia

virus clearance, clinical mastitis, and vaccine response (111–118). It

may be hypothesized that Treated 2+ cattle arrived with an

underlying respiratory infection, hallmarked by the increase in

BoLA production on D0, but the causal nature of the increased

gene expression seen here remains unknown.

CFB, which was increased in expression at arrival in Treated 2+

cattle when compared to both Healthy and Treated 1 cattle, encodes

for the single-chain glycoprotein Factor B, the initial molecule in the

alternative pathway of complement (119, 120). Upon hydrolysis of

C3 and cleavage by factor D, factor B forms a complex that acts

upon the surface of xenobiotics and pathogens, opsonizing
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substances for phagocytosis, further amplifying complement

production, and/or leading to the formation of a membrane

attack complex, leading to cellular lysis of a target (119–123).

Related to respiratory disease, factor B can be synthesized and

secreted by alveolar type II pneumocytes, polymorphonuclear cells,

and alveolar M1 macrophages and further induced by local or

systemic IL-1, IL-6, TNF-a, and/or IFN-g activity (124–127).

Moreover, recent research suggests the overexpression of CFB

may serve as a prognostic indicator of severe viral lung disease,

such as that of SARS-CoV-2 infection or cardiovascular disease

(128–132). Similar to BoLA production, increased CFB expression

in Treated 2+ cattle on D0 may be due to disease at the time of

arrival and a non-specific innate immune response to

pathogenic infection.

LCN8 was comparatively increased in expression at arrival in

Treated 2+ cattle when compared to both Healthy and Treated 1

cattle, and it encodes for a beta-sheet-rich member of the lipocalin

protein family involved in a diverse array of extracellular transport

functions (133, 134). Specifically, LCN8 has been primarily

demonstrated as an important transporter protein for

reproductive organ function in murine models (135–137).

However, recent research suggests LCN8 may be involved in

allergen-induced immunity and autoimmunity (138–141).

Furthermore, while low amino acid sequence similarity exists

between lipocalin subtypes, they have been shown to form inter-

lipocalin protein complexes in mammalian species and may be

evolutionarily constructed through gene duplication events; thus,

we cannot rule out ancillary immune functionality in association

with other lipocalin proteins (142–145).

PPP2R3A comparatively decreased in expression at arrival in

Treated 2+ cattle when compared to both Healthy and Treated 1

cattle. This gene encodes for a regulatory subunit of phosphoprotein

phosphatase 2 and is involved in the negative regulation of cellular

development, metabolism, and signal transduction (146, 147). In

several models, PPP2R3A has been demonstrated as a key regulator

in cardiac and pulmonary function and cellular regeneration, and

its impairment has been linked to degenerative inflammatory and

oncogenic diseases of the pulmonary system (148–152).
4.2 BRD severity as measured by treatment
frequency influences the bovine
transcriptome after apparent
disease resolution

When evaluating the host transcriptome after the apparent

resolution of clinical BRD (D63), Treated 1 cattle exhibited

increased gene expression for oxygen binding and carrier activity,

the hemoglobin complex, iron ion binding, transforming growth

factor beta (TGF-b) binding and skeletal muscle development,

G-protein beta-subunit binding, and neutrophil degranulation

activity when compared to Healthy and Treated 2+ cattle. The

genes driving the functional enrichments for heme binding and

oxygenation (HBB, HBQ1, and HBG) encode for various

hemoglobin subunits. Interestingly, low or extreme levels of

hemoglobin have been touted as a key predictor of worsening
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chronic obstructive pulmonary disease (COPD) in humans (153,

154). Likewise, recent research has described how hemoglobin

subunits interact with or are expressed by epithelial and

immunologically active cells and exhibit antimicrobial

functionality (155–157). Furthermore, the genes driving

neutrophilic activity and TGF-b binding/skeletal muscle

development (WFIKKN1 and ARG1) have been shown to be

activated and involved in COPD, pulmonary hypertension, and

chronic airway inflammation (158–162). This may signify that

underlying airway inflammation and/or infection was actually

ongoing in the Treated 1 cattle, even in the absence of outward

clinical signs of BRD. If true, this would support the insensitivity of

recognizing BRD by visual signs alone and the need to monitor

cattle over time using more advanced diagnostic modalities to gain a

better understanding of BRD development and resolution. Future

research investigating the upper and lower airways of cattle over

time, through such modalities as transthoracic ultrasonography,

intra-airway fluid cytology, and/or lung biopsy, may better our

understanding of BRD pathophysiology.

The comparison of Treated 2+ cattle to Healthy cattle at D63

resulted in only one enriched GO term (natural killer cell-mediated

cytotoxicity), despite the identification of 89 DEGs, including

immune-related genes such as CATHL2, CCL25, CD177,

LOC112444466 (SCART1), MCF2L, PRG3, and WC1-8. Notable,

several of these genes have been indicated in previous research

utilizing the host transcriptome to indicate or predict BRD, which

may indicate prolonged gene expression throughout the feeding

period, or perhaps ongoing subclinical disease (18, 20–22, 89, 90).

While this single enriched GO term is both valid and informative, the

lack of overlapping results from these immune-specific genes

potentially conveys the need for further research invested in

annotating functional enrichments with Bos taurus-specific gene

expression datasets. Specifically, cattle are not widely accepted as a

model organism in human-focused biomedical research, and

functional enrichment terms of agricultural species are often

inferred from experiments with model organisms (51–53, 163–

167). The two genes driving the enrichment of natural killer cell-

mediated cytotoxicity (LOC509956 [cathepsin G] and LOC100296778

[killer cell lectin-like receptor subfamily I member 1]), both increased

in Treated 2+ cattle when compared to Healthy cattle, are indicated in

inflammatory airway diseases such as allergen-induced asthma,

COPD, and lung adenocarcinoma, and may serve as prognostic

indicators (168–173). Currently, it is unclear if the activation of

these genes is due to a prolonged infective state within the airways or

if natural killer cell activity serves a protective role postinfection in

these severely disease cattle (174). Furthermore, LCN8, previously

discussed in the analysis of at-arrival transcriptomes, is again

upregulated at D63 in Treated 2+ cattle when compared to Healthy

cattle. The relationship between this lipocalin, immune system

activity, and respiratory disease in cattle is currently unknown, but

evidence suggests lipocalins possess immunomodulatory activity and

may interact with natural killer cells and innate lymphoid cells in

inflammatory responses (175–178).

When investigating the interaction of BRD severity as indicated

by treatment frequency and time (Day: Severity in glmmSeq), we
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identified 286 DEGs, corresponding to 38 and 36 enriched GO terms

and pathways, respectively. Here, the primary immunological

findings pertain to the biosynthesis of pro-resolving mediators, the

IL-3, IL-5, and GM-CSF signaling, IgA production, T-cell receptor

signaling and costimulation, and ubiquitination and tyrosine kinase

signal transduction of immune-mediated pathways. Further

investigation of pairwise gene expression was performed with the

genes driving these enrichments to better understand differences over

time. First, genes driving the production of specialized pro-resolving

mediators, namely ALOX15, were downregulated in Treated 2+ cattle

at arrival when compared to both Healthy and Treated 1 cattle, but

seemingly stabilized to an expressional level that possessed no

difference to the Healthy and Treated 1 groups by Day 63. Orr and

colleagues in 2015 demonstrated that gene expression related to

specialized pro-resolving mediator production and leukotriene

synthesis in patients hospitalized for traumatic injuries was

significantly different whether patients demonstrated

uncomplicated (< 5 days postpresentation) or complicated

recoveries (≥ 14 days postpresentation, no recovery by 28 days

postpresentation, or death) (179). Corresponding with our study,

those investigators demonstrated that these genes were often

upregulated within 12 h of traumatic injury presentation in

patients that went on to have complicated recoveries, and the ratios

of genes involved in lipoxin, resolving, and leukotriene production

were the same between the two groups by 28 days posthospitalization

(179). While both our work and the research conducted by Orr and

colleagues failed to evaluate and capture the interactions of these lipid

mediators themselves, these findings may indicate a collective return

to homeostasis upon survival of traumatic disease that warrants more

focused research (83, 179, 180).

Regarding cathelicidin production, we identified a decrease in

CATHL1 expression at arrival in Treated 2+ cattle when compared to

Treated 1 cattle; however, the expression of host antimicrobial

peptides CATHL1 and CATHL3 was increased in Treated 2+ cattle

at D63 when compared to Healthy cattle. Cathelicidins are a class of

host-derived peptides involved in broad-spectrum antimicrobial

activity and host defense during infectious disease (181, 182).

Specifically, Bac1 and Bac7, the peptides encoded by CATHL1 and

CATHL3, respectively, are primarily involved in extracellular bacterial

killing and may be cytotoxic at high concentrations (181–184). While

research has focused on the antimicrobial killing component of these

peptides when cattle are faced with pathogenic challenges, the

increased expression of these genes after peak incidence of BRD

presentation within a population may be indicative of ongoing

infectious lung pathology in more severe cases. Lastly, CD40LG,

CD28, CD5, and CRK, all of which were non-differentially

expressed between the three severity groups at arrival but

downregulated in Treated 2+ cattle at D63 when compared to

Healthy and Treated 1 cattle, encode for critical adaptor proteins

and receptors that promote T-cell stimulation and activation (185–

189). Coupled with cathelicidin and natural killer cell-mediated

cytotoxicity gene expression findings on D63, this suggests that

cattle having survived a severe course of BRD (Treated 2+) display

a more innate immune-driven response following BRD resolution,

perhaps indicating dysregulated immunity over time.
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4.3 Commercial beef cattle share dynamic
patterns of gene expression regardless of
BRD development

Through the evaluation of dynamic gene expression trends via

Bayesian inferential methodology (EBSeq-HMM), we identified

numerous genes and associated enrichments with respect to the

four selected directionalities (Up-Down, Up-Up, Down-Down,

Down-Up) within each of the three severity groups,

independently. Regarding Up-Down directionality, genes found in

Healthy cattle did not correspond to apparent immunological

function (sex differentiation, development of primary sexual

characteristics) and may represent the normal physiology of

young, developing male cattle. Up-Down genes identified in

Treated 1 cattle corresponded to type I interferon production and

regulation. Importantly, we did not identify differential expression

of type I interferon-related genes at arrival or any posttreatment

time point between the three BRD severity groups. This

demonstrates the variability of undifferentiated BRD, as

numerous other studies have demonstrated the impact of viral

agents and the predictive nature of host antiviral signaling on

outcomes associated with BRD (18, 22, 24, 58, 61, 64, 190, 191).

Alternatively, differences between the three severity groups

regarding transient viral infectivity may have been missed due to

the relatively small number of sampling time points. While it is

expected that a virulent viral challenge elicits a type I interferon-

related response, it is unclear how long this type of immune

response persists postexposure. Lastly, regarding Treated 2+

cattle, we failed to identify any genes corresponding with Up-

Down directionality in this study. Concerning the Up-Up

directionality, the Treated 2+ group was the only group to

possess significant genes and enrichments; these enrichments

corresponded with apelin receptor binding, the regulation of G

protein-coupled receptor internalization, and gastrulation. It is

unclear if these enrichments are incidental due to model species

annotations, but these genes may be involved in influencing

pulmonary inflammatory processes (192–195). In potential future

studies, additionally, sampling time points may better indicate these

gene expression patterns or those that may have been missed by

this study.

The Down-Down directionality netted the greatest number of

genes and enrichments across the four expressional directions.

While several unique enrichments were identified from GO and

pathway terms in each of the three severity groups, the overarching

theme and genes driving these enrichments were highly similar and

indicative of immunological function and signaling. For example,

genes from Healthy cattle concerning the immune system involved

heparin binding, collagen fibril organization, the adaptive immune

response and positive regulation of cytokine production, PD-1

signal transduction, and the phosphorylation of CD3/T-cell

receptor zeta chains; Treated 1 cattle enrichments included

platelet-derived growth factor binding, cytoplasmic pattern

recognition receptor signaling, myeloid leukocyte mediated

immunity, and integrin cell surface interactions; Treated 2+ cattle

enrichments included positive regulation of leukocyte mediated

cytotoxicity, lymphocyte-mediated immunity, and adaptive
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immune response based on somatic recombination of immune

receptors built from immunoglobulin superfamily domains.

Several of the genes driving these “unique” immune-related

enrichments (ARG1, BOLA-DQA2, CD5L, CD36, CD177, CFB,

C1R, HBB, HBQ1, IL1R1, IL16, LOC100296778 (KLRI1), MEIS3,

MIA,MYO18A, NUMB, and PRG3) were also identified as DEGs at

D0 and D63 by edgeR QLF testing. Moreover, all three treatment

groups demonstrated shared immunological enrichments related to

ABC-type transporter activity, peptide antigen binding, MHC class

II protein complex binding, immune and scavenger receptor

activity, innate immune response and regulation, cytokine

production, defense response to viruses and xenobiotics, cell

killing, response to type I interferons, and activation of RAC1

downstream of NMDA receptors. This seemingly indicates a

collective gradual decrease in immunological activity across the

three severity groups following physiological pressure originating

from commercial sale, transportation to the research unit, and novel

penmate comingling.

Lastly, we evaluated the enrichments stemming from Down-Up

gene expression directionality across the three severity groups.

Here, we identified the greatest number of overlapping

enrichments with respect to the total number identified. Genes

involved in the synthesis of specialized pro-resolving mediators,

specifically ALOX5, ALOX15, HPGD, and GPX4, were seen to

decrease and then increase over time, regardless of BRD severity.

Collectively, the results from evaluating dynamic gene expression

trends appear to indicate that the magnitude of gene expression, not

the directionality, is most indicative of BRD development

and severity.
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