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Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key

component of the T cells that contributes to antigen recognition, immune cell

maturation, and immune cell signaling. While CD8 is widely recognized as a co-

stimulatory molecule for conventional CD8+ ab T cells, recent reports highlight

its multifaceted role in both adaptive and innate immune responses. In this

review, we discuss the utility of CD8 in relation to its immunomodulatory

properties. We outline the unique structure and function of different CD8

domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context

of the distinct properties of CD8aa homodimers and CD8ab heterodimers. We

discuss CD8 features commonly used to construct chimeric antigen receptors

for immunotherapy. We describe themolecular interactions of CD8with classical

MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling.

Engineered and naturally occurring CD8 mutations that alter immune

responses are discussed. The applications of anti-CD8 monoclonal antibodies

(mABs) that target CD8 are summarized. Finally, we examine the unique structure

and function of several CD8/mAB complexes. Collectively, these findings reveal

the promising immunomodulatory properties of CD8 and CD8 binding partners,

not only to uncover basic immune system function, but to advance efforts

towards translational research for targeted immunotherapy.
KEYWORDS

CD8 co-receptor, immunomodulation, T cell signaling, T cell receptor, major
histocompatibility complex, monoclonal antibodies, chimeric antigen receptor
1 Introduction

The immune system is a complex network of molecular interactions and cellular

responses many of which involve and/or depend on the function of cells expressing either

CD4 or CD8 co-receptors on their surfaces (1, 2). CD4 expresses primarily on the surface of

helper T cells whereas CD8 expresses on the surface of cytotoxic and suppressor T cells (3).

CD8+ T cells detect pathogens, cancer, and autoimmunity towards eliminating diseased
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cells through T cell antigen receptor (TCR) recognition of antigens

presented by classical and non-classical major histocompatibility

complex class I (MHC-I) molecules on the surface of all nucleated

cells (4). CD4 and CD8 are termed co-receptors because they bind

the sameMHC ligand as the receptor TCR. However, CD4 and CD8

associate with the membrane-proximal domains of the MHC-II and

I molecules, respectively, as opposed to the TCR, which binds the

membrane-distal domains of the MHC-II and I molecules,

respectively (5, 6). CD8 is a dimeric receptor that contains several

domains: ectodomain, hinge, transmembrane, and cytoplasmic tail

(7). CD8 primarily acts as a co-stimulator, and occasionally as a co-

repressor, of immune responses (7, 8). Its mechanism of action is

thought to occur through several cooperative events, each differing

based on the cell type and the immunoreceptors involved. Firstly,

the association of CD8 with MHC-I stabilizes TCR/antigen/MHC-I

complexes (9–13). High affinity TCR/antigen/MHC-I interactions

(KD < 10 mM) can result in CD8+ T cell activation without the need

for CD8 (7, 14, 15). However, in cases of low to medium affinity

TCR/antigen/MHC-I interactions (KD > 30 mM), CD8 stabilizes the

TCR/antigen/MHC-I complex to enhance recognition stability,

sensitivity, and specificity (7, 14, 15). CD8 also participates in

immune cell mechanotransduction by promoting dynamic catch

bonds that result from the cooperativity between TCR/CD8/

antigen/MHC-I interactions (16). It should be noted that several

groups have identified non-canonical TCR/MHC docking modes

for which some conformations could still accommodate CD8

binding to the MHC (17–20). However, several pieces of evidence

suggest some of these non-canonical binding modes (i.e., reverse

polarity TCR binding) would not allow for robust CD8 interaction

with the MHC (21–23). Secondly, the cytoplasmic tail of CD8 binds

and recruits the lymphocyte-specific protein tyrosine kinase, p56Lck

(Lck), to the TCR/CD3 complex. Here, Lck helps in initiating TCR

signaling by phosphorylating immunoreceptor tyrosine-based

activation motifs (ITAMs) located within the cytoplasmic tails of

CD3g, CD3d, CD3e, and CD3z subunits associated with the TCR

(24–26). The phosphorylated ITAMs serve as docking sites for

another kinase, ZAP-70, which phosphorylates downstream

signaling proteins, Linker for activation of T cells (LAT) and

SLP-76, ultimately resulting in the release of cytokines,

granzymes, and perforin towards the target cell (27, 28). Beyond

its classical role in CD8+ cytotoxic T cell signaling, CD8 has also

demonstrated contributions to T cell development/maturation, T

cell differentiation, immune responses in a wide range of

unconventional immune cell subsets, and cross-talk with B cell

mediated responses (several of these are discussed in section 2.1).

As new studies elucidate the complexities of immune

regulation, there is a need to unravel how the CD8 co-receptor

contributes to immune responses, either as a co-stimulator or co-

repressor. This exploration naturally extends to the realm of

monoclonal antibodies (mABs), potent immunomodulators

known for their specificity and affinity, used in treating cancer,

pathogen infections, autoimmune diseases, and for organ

transplantation (29–31). Several anti-CD8 mABs have been

discovered to exhibit interesting effects on immune cell signaling

and development, highlighting CD8 and the immunological

synapse as a novel strategy for targeted immunomodulation
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(Tables 1, 2, Figure 1D). In this review, we highlight the structure

and function of CD8 through the lens of its use as a target for

immunomodulation. We also outline what is known (and what

remains poorly understood) regarding the mechanistic

understanding of how mABs engage with CD8 to promote or

abrogate T cell signaling.
2 CD8 structure and function

2.1 Distinct functional roles for CD8aa and
CD8ab in CD8+ T cell signaling and T
cell development

CD8+ T cells play diverse roles in biology, ranging from antigen

recognition in adaptive and innate immune responses for

combating pathogen infection, cancer, and autoimmune disease,

to cross-talking with B cell responses (57–59). Landmark studies

revealed that the elimination of T cells expressing CD8a and CD8b
TABLE 1 Summary of CD8 structures available in the Protein Data
Bank (PDB).

CD8 isoform PDB
ID

Other
protein(s)

Reference

mouse CD8ab 2ATP – (32)

human CD8a 1CD8 – (33)

rhesus macaque CD8aa 2Q3A – (34)

bovine CD8aa 5EBG – (35)

swine CD8aa 5EDX – (35)

chicken CD8aa 5EB9 – (35)

catshark CD8a 8HXS – (36)

human CD8aa 1AKJ HLA-A*02:01 (37)

human CD8aa 3QZW HLA-A*24:02 (38)

mouse CD8aa 1BQH H-2Kb (39)

mouse CD8ab 3DMM H-2Dd (40)

chicken CD8aa 6LHG BF2*04:01 (41)

chicken CD8aa 6LHF BF2*15:01 (41)

mouse CDaa 1NEZ TL (42)

human CD8aa 7UMG MR1 (43)

human CDaa C33A,
S53N mutant

2HP4 – (44)

mouse CDaa 2ARJ YTS
105.18 antibody

(45)

mouse CD8ab 3B9K YTS
156.7 antibody

(46)

human CD8aa 7UVF ZED8 antibody (47)

human CD8a 8EW6 VHH5v2 antibody (48)

human CD8a
cytoplasmic tail fragment

1Q69 Lck fragment (25)
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chains resulted in a complete loss of immune cell-mediated

cytotoxic responses (60–62). CD8 is expressed on CD8+ T cell

surfaces in three possible isoforms: a CD8aa homodimer, a CD8bb
homodimer, and a CD8ab heterodimer (63–65). Most commonly,

one of the three isoforms is expressed in the absence of the other

two. However, not all T cells express CD8; CD8-/CD4+ T cell and

CD8-/CD4- T cell subsets also exist (66). CD8+ T cell subtypes

expressing CD8aa, CD8ab, or CD8bb are largely distinct (64, 67).

CD8+ T cell subsets rarely express both CD8aa and CD8ab (63,

64). CD8ab is primarily expressed on the surface of conventional

naïve cytotoxic T cells, mature cytotoxic T cells, memory T cells,

natural killer T cells, mucosal associated invariant T cells, and gd T

cells (64, 67, 68). CD8aa is primarily expressed on the surface of

intraepithelial T cells, thymocytes, conventional cytotoxic T cells, gd
T cells, memory T cells, natural killer T cells, mucosal associated

invariant T cells, and dendritic cells (64, 69–72). CD8aa and

CD8ab are structurally similar but functionally distinct (72)

(discussed in sections 2.2 through 2.6). The biological relevance

of CD8bb is largely contested since the CD8b chain is retained

intracellularly in the absence of CD8a in some species but not

others (65). Although the expression of CD8bb has been
Frontiers in Immunology 03
demonstrated in some cell types, its structure/function remain

poorly understood and are yet to be characterized (73).

Several reports from Sherman, Littman, and Mescher revealed

CD8 as a main player in T cell activation where CD8/MHC-I

binding serves as a TCR-activated adhesion-signaling system

through cooperation with several other adhesion interactions

(LFA-1/ICAM, VLA-ECM) (74–76). The adhesion property of

CD8 with MHC-I was confirmed through several studies to be

mediated by the MHC-I a3 domain (77–80). Purified MHC-I

molecules immobilized on plastic were both necessary and

sufficient to stimulate cytotoxic T cells in a TCR and CD8

dependent fashion (81, 82). Soluble anti-CD8 antibodies were

able to inhibit TCR-activated binding and response to non-

antigenic MHC-I (promoted by an anti-TCR antibody), further

supporting a direct MHC-I/CD8 interaction contributes to T cell

responses via an adhesion model (83). CD8ab, and potentially

CD8bb, plays a role as a co-stimulatory molecule of CD8+ T cell

signaling through its interaction with classical and non-classical

MHC-I molecules (84) (discussed in section 2.3). CD8aa also

interacts with classical and non-classical MHC-I molecules to

function as a co-repressor for killer cell immunoglobulin-like

receptors (KIRs) on natural killer (NK) cells (85). Both CD8aa
and CD8ab can associate with Lck via the CD8a cytoplasmic tail to

promote CD3 ITAM phosphorylation, although the efficiency of

this process seems to vary between CD8 isoforms (discussed in

section 2.6). For example, in conventional CD8+ T cell subsets

interacting with classical MHC-I molecules, CD8ab has been

observed to be ~100 times stronger of a co‐stimulator than

CD8aa due to increased localization in lipid rafts for efficient Lck

recruitment (86). Apart from its role as a co-stimulatory molecule of

immune cell signaling, CD8ab is involved in CD8+ T-lineage cell

development, including thymocyte selection, maturation, and

differentiation into memory and other classical and non-classical

subsets (87–89). CD8aa is not a functional homolog of CD8ab
(72). While CD8aa’s function remains somewhat elusive, it has

been associated with negative regulation of intestinal intraepithelial

T cells that carry out cytotoxic functions in gastrointestinal and

reproductive tracts (90). In this context, unlike CD8ab, CD8aa
decreases sensitivity of TCRs towards antigens (8). Additionally,

CD8aa plays critical roles in generation of virus-specific memory

T cells after infection (91, 92). Altogether, these studies reveal

unique functional roles for CD8aa and CD8ab isoforms in

immune cell function and development, highlighting a wide range

of responses to target for immunomodulation.
2.2 Evolutionary conservation of CD8a and
CD8b chains

Amino acid sequence alignments of CD8a and CD8b chains

across species indicate that despite sharing low sequence identity

(~20 to 60% between species), several conserved sites are found in

each of the ectodomain, hinge, transmembrane, and cytoplasmic

tail (35, 40) (Figures 2, 3). There are 24 and 21 fully conserved

residues in CD8a and CD8b chains, respectively. The presence of

these conserved sites suggests important structural and functional
TABLE 2 Summary of anti-CD8 monoclonal antibodies.

Target Antibody Immunomodulatory
effect on CD8ab T
cell activation*

Reference(s)

CD8a YTS 105.18 blocking (45)

CD8b YTS 156.7 blocking (46)

CD8a ZED8 neutral (47)

CD8a VHH5v2 blocking (48)

CD8a SK1 blocking (49)

CD8a DK25 blocking (50, 51)

CD8a 3B5 blocking (51)

CD8a MCD8 neutral or limited blocking (50, 51)

CD8a CT-CD8a block (50–52)

CD8b CT-CD8b enhance (50, 51)

CD8a YTS 169.4 block (53)

CD8b 53.5.8 block (10)

CD8a 2ST8.5H7 block (50)

CD8a 53.6.7 enhance (50)

CD8a OKT8 enhance (50, 51)

CD8a MRC OX-8 block (54)

CD8b KT112 enhance (50, 55)

CD8a 32/M4 neutral (50)

CD8a C8/144B neutral (50)

CD8a KT15 blocking (52, 55)

CD8a H59.101 blocking (52)
*blocking/enhancing activity may differ by T cell subset due to different mechanisms for T
cells expressing CD8aa, CD8ab, or CD8bb isoforms on their surface (see Figures 7, 8).
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roles. For example, the ectodomain alignment highlights several

conserved residues required for the stability of CD8 ’s

immunoglobulin (Ig) fold and the intermolecular interface. The

Cys residues in the ectodomain involved in the formation of an

intramolecular disulfide bond, which stabilize CD8a and CD8b Ig-

like folds, is also conserved. Cys residues in the hinge and

transmembrane domains involved in an intermolecular disulfide

bond, which stabilize CD8aa and CD8ab dimers, are also

conserved. Additionally, several CD8 residues involved in the

interaction with MHC-I (ectodomain) and Lck (cytoplasmic tail)

are partially conserved. Finally, several CD8 residues involved in

transmembrane domain localization and interactions with lipid

membrane are conserved. These conserved sites are attractive

targets for immunomodulatory mABs that exhibit cross-species

reactivity (discussed in section 3 and 4) (Figure 1D).
Frontiers in Immunology 04
2.3 CD8 structure – the ectodomain binds
to MHC-I and MHC-I related molecules to
promote stability of MHC/TCR complexes

The CD8 ectodomain is an extracellular domain (amino acids

22-135 for CD8a and 22-138 for CD8b in humans) that takes on at

least two forms: the CD8aa homodimer or CD8ab heterodimer (7,

39). CD8bb may provide a third isoform in some species, although

its structure and function is poorly understood (65, 95). Crystal

structures of the N-terminal globular domain of CD8ab and

CD8aa ectodomains reveal strikingly similar structural

characteristics: an Ig-like fold consisting of eleven b-strands
(termed A, A’, B, C, C’, C’’, D, E, F, G, and G’’) and six major

loops (termed CDR1, CDR2, CDR3, DE, CC’, and A’B) (32)

(Figures 2, 3, 1A, B). The dimer interface surface area differs
FIGURE 1

Structure of CD8 isoforms and placement within the immunological synapse with potential strategies for immunomodulation. (A) Crystal structure of
mouse CD8aa ectodomain (PDB ID 1BQH). (B) Crystal structure of mouse CD8ab ectodomain (PDB ID 2ATP). (C) Overlay of mouse CD8aa with
mouse CD8ab ectodomain. (D) Molecular model of the immunological synapse derived from the cryo-EM structure of the MHC-I/TCR/CD3
complex (PDB ID 7PHR) aligned to mouse CD8aa/H-2Kb (PDB ID 1BQH). The complex was adapted from a model presented by Pandey et al. (56).
MHC-I heavy chain is colored green, b2m light chain colored cyan, peptide antigen colored salmon, CD8a colored magenta, CD8b colored yellow,
TCR chains colored orange, and CD3 chains colored brown. Potential mechanisms for immunomodulation of CD8 structure/interactions by mABs
(described in detail in the text) are highlighted with blue text/dotted arrows.
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between CD8ab and CD8aa (~1914 Å2 versus ~2290 Å2) (32). The

Ca RMSD between CD8ab and CD8aa is ~1.16 Å, highlighting the

overall similarity in the orientation of each CD8 chains in the two

dimers (32) (Figure 1C).

CD8aa and CD8ab ectodomains each interact with classical

and non-classical MHC-I molecules using mostly similar binding

modes (Table 1, Figure 4). While the exact positioning of the CD8

ectodomain varies across the different complexes, overall, the CD8b
chain occupies a position equivalent to CD8a1, proximal to the T

cell membrane, while the CD8a subunit of CD8ab is positioned

similarly to CD8a2, distal to the T cell membrane (Figures 1D, 4).

In crystal structures of mouse CDab/H-2Dd and mouse CD8aa/H-

2Kb complexes, hydrogen bonds, salt bridges, and hydrophobic
Frontiers in Immunology 05
interactions stabilize interactions between CD8b and CD8a CDR1,

CDR2, and CDR3 loops with a conformationally flexible loop on

the MHC-I heavy chain a3 domain (39, 40) (Figure 4). Likewise, in

crystal structures of human CDaa/HLA-A∗02:01 and human

CD8aa/HLA-A∗24:02 complexes, CD8a contacts not only the

MHC-I a3 domain, but also the MHC-I a2 helix and invariant

light chain b2-microglobulin (b2m) (37, 38) (Figure 4). The

structures of CDaa or CD8ab with other HLA alleles (i.e., HLA-

B, HLA-C, HLA-G, etc.) are not available, but are expected to

exhibit similar binding modes. Species-dependent differences in

CD8/MHC binding modes have been reported. For example, crystal

structures of chicken CDaa with BF2*04:01 and BF2*15:01 reveals

two distinct modes: a classical antibody-like binding mode
FIGURE 2

Sequence conservation of CD8a domains across species. Clustal Omega (v1.2.4) alignment (93) of sequences for CD8a from human (UniProt
#P01732), mouse (UniProt #P01731), rat (UniProt #P07725), dog (UniProt #P33706), bovine (UniProt #P31783), chicken (UniProt #A0A8V0YYR0),
rhesus monkey (UniProt #F7DXK3), and rainbow trout (UniProt #Q9IAL5). The secondary structure of each domain above the sequence is derived
from the AlphaFold2 prediction of human CD8a (UniProt AF-P01732-F1). The alignment was processed in ESPript (v3) with domain disambiguation
added manually (94). The dots above the sequence highlight the first residue (residue 1) and then every 10 residues after that using the first
sequence as a reference.
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characteristic of most CD8/MHC-I complexes and a “face-to-face”

binding mode that tilts the orientation of CD8aa homodimer

relative to the MHC-I (41) (Figure 4), although the functional

relevance of the second binding mode is unclear. The utility of anti-

CD8 mABs for targeting CD8 ectodomain/MHC-I interactions is

discussed in detail in section 4.

Classical MHC-I molecules are encoded by one of the most

polymorphic genes described to date, with thousands of alleles that

vary from person to person (96). In contrast, the gene encoding CD8

in humans is invariant and non-polymorphic, typically showing little

variations between individuals, although limited allelic variation of

CD8 is found in some species (97). Like CD8, non-classical MHC-I

molecules generally exhibit minimal genetic diversity and hence have

the potential to be therapeutic targets that are more universal

compared to classical MHC-I (98). Mutations and polymorphisms

in the MHC-I a3 domain have been shown to either enhance or

disrupt CD8/MHC-I binding (80, 99). Mutations at conserved

residues within the MHC-I a3 domain (i.e., residues 222, 223, 227,
Frontiers in Immunology 06
228, 229, 245) abrogate binding to CD8 and reduces T cell activation

despite maintaining TCR binding (11, 37, 78, 100–103). For example,

the well described MHC-I a3 domain D227K/T228A mutant

disrupts association with CD8 by eliminating a hydrogen bond

between D227 (on MHC-I) and Y51 (on CD8a) as well as contacts
between T228A (on MHC-I) and T30/N99 (on CD8a) (11, 37, 40).

Surface plasmon resonance (SPR) and micropipette adhesion

frequency assay have been used to quantify differences between

CD8aa and CD8ab ectodomains interactions with classical or

non-classical MHC-I molecules in solution (i.e., three-

dimensional, or 3D, binding) and on T cell membrane (i.e., two-

dimensional, or 2D, binding). The formation of CD8/MHC-I

complexes doesn’t seem to be largely dependent on the identity of

the bound peptide antigen for most cases (104, 105). CD8aa and

CD8ab usually exhibit similar affinities to the same MHC-I

molecule (40, 105), which is interesting considering functional

differences between the two CD8 isoforms. In general, CD8aa
and CD8ab interact with classical and non-classical MHC-I
FIGURE 3

Sequence conservation of CD8b domains across species. Clustal Omega (v1.2.4) alignment (93) of sequences for CD8b from human (UniProt
#P10966), mouse (UniProt #P10300), rat (UniProt #P05541), dog (UniProt #A0A8C0MNN1), bovine (UniProt #A7YW30), chicken (UniProt
#A0A8V0Z0D5), rhesus monkey (UniProt #F7EXY4), and rainbow trout (UniProt #A0A8C7PPI8). The secondary structure of each domain above the
sequence is derived from the AlphaFold2 prediction of human CD8b (UniProt AF-P10966-F1). The alignment was processed in ESPript (v3) with
domain disambiguation added manually (94). The dots above the sequence highlight the first residue (residue 1) and then every 10 residues after that
using the first sequence as a reference.
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molecules with moderate to weak affinities in the range of KD ~10 to

500 µM in 3D (40, 42, 43, 103, 106) and AcKA ~10-6 mm4 in 2D (12,

16). Most mABs have a 3D KD ~ nM and 2D AcKA ~10-1 mm4 for

their specific antigens (107), which should have no problem

blocking CD8/MHC-I interactions. Some alleles, such as HLA-

A*68:01, HLA-B*48:01, and HLA-E bind CD8aa extremely weakly

(KD ≥ 1 mM), which is biologically defined as non-binding (40, 42,

43, 103, 106). The weaker affinities of CD8 for the latter group of

MHC-I molecules result from either i) polymorphisms of residues

within the MHC-I a3 domain directly influences interactions with

CD8a and CD8b, or ii) alternations in the conformation of the a3
domain (103). CD8 also plays a crucial role in modulating CD8+ T

cell activation through non-classical MHC-I molecules, such as

MHC-Ib molecules (TL, H2-Q10, H2-T22, Qa-1b), small molecule

metabolite antigen presenting MR1, and lipid antigen presenting
Frontiers in Immunology 07
CD1 (42, 43, 108–110). CD8 seems to also function as a co-

stimulatory molecule for conventional CD8+ T cells, gd T cells,

natural killer cells, and MAIT cells via interactions with MR1 (43).

However, as shown for classical MHC-I/TCR interactions, high

affinity small molecule antigen/MR1/TCR interactions do not

strictly require CD8 engagement, while immune cell responses to

low affinity MR1/TCR interactions are reduced or abrogated in the

absence of CD8 (43). CD8aa homodimers and CD8ab
heterodimers bind MR1 in a manner similar to classical MHC-I

(43) (Figure 4). Unlike with most MHC-I molecules, TL shows a

stronger affinity to CD8aa compared to CD8ab (KD = 12 mM for

CD8aa versus > 90 mM for CD8ab) (111). This disparity is not a

result of a different binding mode relative to classical MHC-I;

instead, the enhanced CD8aa affinity is attributed to the

formation of additional hydrogen bonds (111). Overall, these
FIGURE 4

Binding modes of CD8aa and CD8ab isoforms with classical and non-classical MHC-I molecules. A summary of crystal structures of CD8
ectodomain/MHC-I complexes. From top left to bottom right: mouse CD8ab/H-2Dd (PDB ID 3DMM), mouse CD8aa/H-2Kb (PDB ID 1BQH), mouse
CDaa/TL (PDB ID 1NEZ), human CD8aa/HLA-A*02:01 (PDB ID 1AKJ), human CD8aa/HLA-A*24:02 (PDB ID 3QZW), human CD8aa/MR1 (PDB ID
7UMG), and chicken CD8aa/BF2*15:01 (PDB ID 6LHF). MHC heavy chains are colored green, b2m light chains colored cyan, antigens colored
salmon, CD8a chains are colored magenta/light pink, and CD8b chains are colored yellow.
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structural and biophysical data shed light on the specific molecular

interactions governing the binding of CD8aa or CD8ab to classical

and non-classical MHC-I molecules, elucidating unique features of

their complex formation, stability, and cellular function.

Dynamics and conformational heterogeneity is also an intrinsic

feature of the MHC-I that regulates its function (112, 113). All-atom

molecular dynamics simulations have hinted at the MHC-I a3
domain’s ability to sample a wide range of conformations, especially

in the absence of bound peptide (114–118). A global analysis of B-

factors, an implicit metric to identify the flexibility of atoms, for X-

ray crystal structures of human MHC complexes reveals the MHC-I

a3 domain as a region with significant dynamic properties (112).

The MHC-I a1 and a2 domains (i.e., antigen binding groove) also

display conformational plasticity, which may be allosterically

coupled to the a3 domain (112). Gao et al. have suggested that

differences in affinities of classical and non-classical class I MHC

molecules for CD8 can be attributed to conformational changes in

the a3 domain (residues 223-229) (103). Solution NMR (119–121)

and hydrogen/deuteration exchange mass spectrometry (122, 123)

measurements of MHC-I molecules have also experimentally

confirmed the a1, a2, and a3 domains are conformationally

labile in both empty and peptide-bound states in an allele

dependent manner. Since peptides modulate stability and

conformational plasticity of the MHC-I (116, 121, 123), MHC-I/

CD8 interactions might display a peptide-dependence. Evidence

against this comes from biophysical measurements of HLAs with

different peptides, which reveals very similar affinities with CD8

(11). However, this hypothesis is supported by findings that empty

HLA-B molecules, which are known to be conformationally diverse

in structure, show stronger CD8 binding affinity than those loaded

with specific peptides, potentially due to an enhanced ability to

sample optimal a3 domain conformations for binding (114, 119,

124). Together, these results suggest that MHC-I/CD8 affinities are

similar for high affinity peptides that stabilize the MHC-I, while

CD8 could have enhanced affinity for empty MHC-I and MHC-I

bound to low affinity peptides that do not stabilize the MHC-I.

Finally, mutations/polymorphisms in the MHC-I a3 domain likely

alter its conformation landscape to influence, either positivity or

negatively, interaction with CD8 to influence immunological

outcomes (42, 80, 103, 116, 117, 120, 125, 126).
2.4 CD8 structure – the hinge contributes
to the co-regulator function and relay
of signaling

The CD8 hinge region (amino acids 136-182 for CD8a and 139-

170 for CD8b in humans) connects the N-terminal globular domain

with the membrane-embedded transmembrane domain. The CD8

hinge (also called the “stalk”) is thought to play key roles in

communication between the transmembrane and ectodomains,

ultimately influencing CD8/MHC-I binding and relaying of signals

to CD3 ITAMS via Lck (53, 54, 127). Both CD8a and CD8b hinge

sequences are rich in proline, threonine, and serine amino acids, but

differ in primary sequence, physical length, and glycosylation patterns

(53, 128) (Figures 2, 3). Several CD8/MHC-I crystal structures
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contained CD8 hinge regions in the expression construct, but

electron density for those atoms are missing, suggesting the hinge

is unstructured and/or conformationally dynamic (40). In agreement

with this, solution NMR experiments suggest that the CD8a hinge

lacks a well-ordered structure, is intrinsically flexible, and can

undergo cis-trans proline isomerization to sample different

functionally relevant states (127). The CD8b hinge contains fewer

prolines residues, which likely restricts its conformational landscape

relative to CD8a hinge. The CD8 hinge undergoes O-linked

glycosylation with sialic acid, which likely influences its structure

and function (128–131). For example, immature CD8+ thymocytes

exhibit different levels of CD8 hinge O-linked glycosylation relative to

mature CD8+ T cells, altering the affinity of CD8 for MHC-I for

different CD8+ immune cell subsets (129, 132). Modulating CD8

hinge glycosylation could influence association or orientation of

CD8aa or CD8ab ectodomains with classical and non-classical

MHC-I molecules by controlling the hinge’s contributions to “cis”

or “trans” binding modes (133). One possible strategy for

immunomodulation here is altering the glycosylation pattern of the

CD8 hinge using sialidase enzymes, a strategy that has been shown to

modulate immune cell activation (134).
2.5 CD8 structure – the transmembrane
domain traffics CD8 to the cell surface and
promotes CD8 dimerization

The CD8 transmembrane domain (amino acids 183-203 for

CD8a and 171-191 for CD8b in humans) plays key roles in

intracellular trafficking to the cell surface and assembly of CD8

homo- and heterodimers (135, 136). The CD8a and CD8b
transmembrane domains each contain a membrane-proximal Cys

residue that forms an intermolecular disulfide bond to stabilize

CD8aa homodimers and CD8ab heterodimers (135). While no

atomic structures are currently available for the CD8a and CD8b
transmembrane domains, they are predicted by as type I single-pass

integral membrane sequences with a-helical secondary

structures (5).
2.6 CD8 structure – the cytoplasmic tail
mediates localization into signaling lipid
rafts and recruits Lck to promote
TCR signaling

The CD8 cytoplasmic tail (amino acids 204-235 for CD8a and

192-210 for CD8b in humans) plays several essential roles in CD8’s

function as a co-regulator: i) it helps localize CD8 to lipids rafts

containing membrane and ii) it recruits Lck and/or LAT to the

immunological synapse to promote TCR signaling. As a result of

these important features, the CD8 cytoplasmic tail also contributes

to thymic selection and immune cell maturation (16, 137–140).

Both CD8a and CD8b are palmitoylated (covalent addition of

palmitic acid at Cys residues) in the cytoplasmic tail, which

promotes the incorporation of CD8 into lipid rafts which are

enriched in the immunological synapse (141–144). CD8b
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contains more palmitoylation sites than CD8a, potentially

contributing to differences in the localization of CD8aa
homodimers and CD8ab heterodimers in lipid rafts to alter

signaling efficiency (95, 143) (Figure 5A).

The cytoplasmic tail of CD8a, but not CD8b, contains a

membrane-proximal CxC motif required for Lck binding (24,

145, 146). Thus, in principle, CD8aa and CD8ab can each

associate with two and one Lck molecules, respectively. While

CD8b doesn’t contain a Lck binding site, CD8b seems to be

required for association and activity of Lck with CD8a,
potentially due to the role of its palmitoylation site and

recruitment to the cell membrane (147, 148). A partial structure

of the CD8a/Lck complex was determined by solution NMR (25)

(Figure 5B). The structure suggests that the CD8a/Lck complex is

stabilized by two mechanisms. First, a zinc ion is coordinated by the

CxC motif of the CD8a cytoplasmic tail and Cys residues on Lck

that adopt a zinc-hairpin structure (25, 149). Second, CD8a
establishes hydrophobic interactions with Lck, notably through

residues V193, P199, and V200, which further stabilize the

complex by engaging with the Lck hairpin (25). The dissociation

of Lck from the CD8a cytoplasmic tail is a complex regulatory event

orchestrated by inhibitory receptors, such as LAG3 (150). Despite

the absence of a CxC motif, the CD8b chain seems to be critical for

CD8ab co-receptor function (147, 148, 151, 152).
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Whether CD8aa associates in an appreciable way with Lck is a

contentious point in the field. It is clear that the co-receptor

function of CD8aa and CD8ab is quite different, which could be

related to differences in interactions with MHC, Lck, or LAT (8, 72).

However, a question remains on whether these differences are tied

to changes in affinities of CD8aa and CD8ab for Lck, or due to

other contributing factors (i.e., ability of CD8b to recruit proteins

into kinase-rich lipid rafts for enhanced signaling (95, 143)). Several

studies in hybridomas and thymocytes imply that Lck association

with CD8a chain is reduced in cell lines expressing CD8aa
compared with CD8ab, resulting in abrogated T cell activation

(147, 148, 151, 152). However, bimolecular fluorescence

complementation assays suggest Lck has the ability to associate

with both CD8aa and CD8ab, which are each efficiently recruited

to the immunological synapse through interactions with the MHC-I

(86). The authors suggest CD8ab’s ability to act as a more robust

co-receptor than CD8aa is tied to the CD8b chain’s action in

recruiting Lck in the appropriate lift raft environment rather than

stark differences in intrinsic Lck affinity, MHC-I binding, or

recruitment to the immunological synapse (86). Further study in

cell lines associated with CD8aa expression and function could

provide additional insights (90). The cytoplasmic tail of CD8a also

binds to LAT (153). While structure insights into CD8/LAT

interactions are lacking, the complex seems to be mediated by an

overlapping epitope with Lck since Lck and LAT binding to CD8 is

mutually exclusive (153).

Ultimately, TCR signaling may involve direct competition of

Lck and LAT for the cytoplasmic tails of CD8 and CD4 co-

receptors, which differ in their affinity for and occupancy of Lck

(2, 153). Some reports suggest that only a small percentage of CD4

and CD8 coreceptors engage with Lck (6.8% CD4 vs 0.6% CD8ab),
such that TCRs are required to scan multiple coreceptor molecules

to identify a Lck-coupled state for signaling (140). Other studies

have measured a much higher Lck occupancy where CD4 is also

reported to be higher than CD8ab (~100% CD4 vs 60% CD8ab)
(154). The stark differences between measurements has been

attributed to sample preparation, processing, or experimental

conditions (154), although consistency is observed in increase of

Lck occupancy by CD4 relative to CD8ab. CD4/Lck and CD8/Lck

occupancy may also vary depending on specific cell type or

signaling conditions (154, 155). It has been suggested that the

increased occupancy of Lck by CD4 relative to CD8ab
compensates for low affinity of CD4/MHC-II assemblies (154).
2.7 CD8 features used for CAR T
cell engineering

Unlike conventional CD8+ T cells, chimeric antigen receptor

(CAR) T cells contain CARs engineered to recognize target cell

surface antigens, usually independently of MHC-I based antigen

presentation (156). However, CARs are still designed with

structural components to contain many properties important for

conventional T cell signaling: a target recognition domain (typically

an antibody, nanobody, or other ligand), a hinge region as a spacer,

a transmembrane domain, a co-stimulatory domain (typically
FIGURE 5

CD8a and CD8b cytoplasmic tails: palmitoylation and binding mode
to Lck. (A) A sequence alignment of human CD8a and human CD8b
cytoplasmic tails is shown with palmitoylated residues indicated with
an asterisk. (B) NMR structure of the interaction between a fragment
of the cytoplasmic tail from CD8a with a fragment from Lck (PDB ID
1Q69). The interaction is coordination by a Zn2+ ion and Cys
residues on CD8a and Lck. Other residues participating in the
interaction are also shown as sticks. CD8a is colored magenta, Lck
is colored salmon, and Zn2+ is colored gray.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1412513
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Srinivasan et al. 10.3389/fimmu.2024.1412513
derived from CD28), and a cytoplasmic tail that serves as a signaling

motif (typically derived from CD3) (156). CARs are often

engineered to include CD8a’s hinge region, which regulates CAR

T cell receptor flexibility, antigen recognition, and signaling (127,

157–159). Further engineering of CAR length and sequence

composition can enhance the properties of the hinge even further.

For example, removal of glycine residues in the CD8a hinge reduces

the flexibility of second generation CARs, preventing overactivation

of CAR T cells by altering steric hindrance and spatial accessibility

CAR recognition domain for target antigens (158). Flanking the

CD8 hinge, the CD8a transmembrane is also often incorporated

into engineered CARs where it dictates receptor surface expression

level and signaling activity (157, 160). Interestingly, CAR T cells

engineered with CD8a hinge and transmembrane domains are less

susceptible to activation-induced cell death compared to those

derived from other receptors, such as CD28 (161). It would be

interesting to evaluate functional properties of CD8 hinge and

transmembrane domains (i.e. , cis-proline isomerization,

palmitoylation, homodimerization) with respect to CAR T

cell function.
3 Immunomodulatory CD8 mutations

Mutations in CD8, obtained through genetic mutation,

naturally occurring polymorphisms, or experimental engineering,

can lead to downregulation or upregulation in T cell signaling (44,

162–164). For example, familial missense mutations in CD8a cause

CD8 deficiency due to protein misfolding (135, 138). The lack of

CD8a expression in patients results in high percentages of CD8– T

cells and dysregulated immune responses (49, 162). In contrast,

engineered CD8 mutations have been used to improve antigen

sensitivity for low-affinity MHC-I/TCR complexes (163). Examples

of engineered enhancing variants include S53N, S53G, and C33A/

S53N for CD8a (located on the C strand and CDR2 loop) and S53L

and L58R for CD8b (located on the CDR2 loop) (44, 162–164). The

X-ray structure of the engineered human CDaa C33A/S53N

mutant suggests that the enhanced affinity is due to a new

electrostatic interaction between N53 of CD8a1 and D223 on the

MHC-I a3 domain (44). Engineered CD8 molecules could be used

enhance the sensitivity of antigen recognition for low-affinity

TCRs (163).
4 CD8 interactions with
monoclonal antibodies

Anti-CD8 mABs have seen widespread use in immunology

research, immunotherapy, and modern medicine. They are

common reagents used for flow cytometry to evaluate/isolate T cell

subsets, in T cell stimulation assays, to elucidate TCR/CAR signaling

mechanisms, and to characterize disease-specific antigen responses

(50, 57, 165). Beyond their use in basic immunology research, anti-

CD8 mABs show great promise as immunomodulatory therapeutics

in medicine. For example, in situ and in vivo studies have suggested

anti-CD8 mABs have the potential to block detrimental activity of
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autoreactive CD8+ T cells in autoimmune diseases, such as

glomerulonephritis (166), type 1 diabetes (167, 168), and

rheumatoid arthritis (169). Anti-CD8 antibody therapy also could

play a role in mitigating transplant rejection related to HLA

mismatch between patients (31, 170). In a completely separate

application, treatment of CD8+ T cells with agonistic anti-CD8

mABs has been shown to enhance tumor targeting and killing by

cytotoxic T cells (171). However, in some cases, mAB binding to CD8

is “neutral” and does not influence T cell activity (50). While these

findings are very promising, there are caveats associated with the use

of anti-CD8 mABS since it has been suggested that they alters the

phenotype and behavior of CD8+ T cells, which have positive or

negative effects to therapy outcome (172). The full utility of anti-CD8

mABs in therapy remains to be characterized, and requires further

studies evaluating a panel of different mABs with different

disease types.

Ultimately, the CD8/mAB binding sites and modes relative to

the cell membranes dictate the mechanisms governing their

immunomodulatory properties (Figure 1D). Given their wide

range of binding modes and functional outcomes, it is essential to

characterize how anti-CD8 mABs structurally engage with CD8aa
and/or CD8ab isoforms. Characterizing atomic structures of CD8/

mAB complexes not only uncovers mechanistic insights into mAB

function, but also provides a molecular blueprint to improve

affinity, activity, and specificity. Several structures of CD8/mAB

complexes have been reported in the literature (Table 1), however

structural insights into many important CD8/mAB interactions

remain lacking (Table 2). Antibodies targeted to the CD8a chain

have the potential to interact with both CD8aa and CD8ab
isoforms, depending on the recognized epitope, while antibodies

against the CD8b chain are specific for CD8ab or CD8bb (if

present). Thus, defining binding epitopes and structures of CD8/

mAB complexes and quantifying CD8/mAB binding affinities

reveals important information on the CD8+ T cell subtypes with

potential for immunomodulation. Finally, structural elucidation

informs whether anti-CD8 mABs are expected to be restricted to

certain species (i.e., the mAB recognizes a non-conserved CD8

epitope) or exhibit cross-reactivity against many species (i.e., the

mAB recognizes a conserved CD8 epitope). The information known

about how mABs bind to CD8 to carry out their function is

discussed below.
4.1 YTS 105.18 antibody blocks CD8+ T cell
signaling by two distinct mechanisms

YTS 105.18, a rat IgG2a anti-CD8a monoclonal antibody, like

most anti-CD8 mABs identified to date is widely used for the

blocking of CD8+ T cell activation (173). YTS 105.18 can induce

tolerance to xenograft transplantation and reduce insulin-

dependent diabetes mellitus by downregulating CD8+ T cell

activity (174, 175). YTS 105.18 has also been used to show that

CD8+ T cell blockade plays a role in promoting the development of

CD4+ regulatory T cells (176). Insights into the blocking

mechanism of YTS 105.18 came from an X-ray structure of the

mouse CD8aa/YTS 105.18 complex (45, 46) (Figures 6, 7A, B). YTS
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105.18 recognizes an epitope spanning the A, A′ and B strands of

CD8a, suggesting it can recognize both CD8aa homodimers and

CD8ab heterodimers with distinct mechanisms. In a model where

YTS 105.18 binds to CD8ab, the blocking activity of YTS 105.18 is
likely not mediated by sterically hindering CD8ab/MHC

interactions (Figure 7A), and could be due to disruptions of the

topology of the interfacial membranes between the T cell and the

MHC-expressing cell (e.g., immunological synapse) (45, 46)

(Figure 1D). In contrast, for T cells expressing CD8aa on the

surface, YTS 105.18 would have the potential to sterically hinder

CD8aa/MHC-I interactions (Figure 7B).
4.2 YTS 156.7 antibody blocks CD8+ T cell
signaling by inhibiting CD8/MHC-I binding

YTS 156.7 is a rat IgG2b anti-CD8b monoclonal antibody

which, like YTS 105.18, blocks CD8+ T cell activation. YTS 156.7

has been used to deplete CD8+ T cells in vivo to enable

immunomodulatory applications similar to YTS 105.18 . Insights

into the mechanism of YTS 156.7 were revealed by an X-ray

structure of the mouse CD8ab/YTS 156.7 complex (46)
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(Figures 6, 7C). YTS 156.7 recognizes an epitope spanning the

CDR1, C-C′ and D–E loops of CD8b (46), which is distinct from the

CD8a epitope recognized by YTS 105.18. The blocking activity of

YTS 156.7 for T cells expressing CD8ab is most likely mediated by

steric hinderance of CD8ab/MHC-I interactions (46) (Figure 7C).

Since YTS 156.7 is specific for the CD8b chain, it would likely not

influence CD8+ T cells expressing CD8aa.
4.3 ZED8 and VHH5v2 antibodies used in
immunoPET imaging of CD8

Immuno-positron emission tomography (immunoPET) is a

technique used for molecular imaging of proteins by combining

PET imaging with radioisotope-labeled mABs targeted to a protein

of interest (177). ImmunoPET protocols utilizing anti-CD8a
mABs, such as 89Zr-labeled ZED8 and 18F-labeled VHH5v2, have

enabled imaging of CD8+ T cells in solid tumors and xenografts

over time (47, 48). ImmunoPET anti-CD8 mABs may also have

immunomodulating properties depending on their binding

mechanisms. ZED8 antibody recognizes an epitope on CD8a
spanning the A’B loop, the a-helix flanking the F strand, and the
FIGURE 6

Binding modes of mABs to CD8aa and CD8ab. A summary of crystal structures of CD8 ectodomain/mAB complexes. From top left to bottom right:
mouse CDaa/YTS 105.18 (PDB ID 2ARJ), mouse CD8ab/YTS 156.7 (PDB ID 3B9K), human CD8aa/ZED8 (PDB ID 7UVF), and human CD8a/VHH5v2
(PDB ID 8EW6). mABs are colored blue/light blue, CD8a chains are colored magenta/light pink, and CD8b chains are colored yellow. The orientation
of the magenta CD8a is maintained throughout for comparison.
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ectodomain/hinge transition, and does not appear to alter CD8+ T

cell activation (47, 178). In line with this, the X-ray structure of

human CD8aa with ZED8 antibody suggests it does not sterically

hinder either CD8ab/MHC-I or CD8aa/MHC-I interactions (47)

(Figures 7D, E). The VHH5v2 antibody recognizes an epitope on

CD8a spanning the CDR1 and DE loops with affinity of ~500 pM.

The immunomodulatory properties of VHH5v2 have not been

examined. However, the X-ray structure of human CD8a with

VHH5v2 suggests it likely does not sterically hinder CD8ab/MHC-

I interactions but could disrupt CD8aa/MHC-I complex formation

(48) (Figures 7F, G).
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4.4 Immunomodulation of CD8 by other
monoclonal antibodies

Several anti-CD8 mABs block CD8+ T cell activation through

epitopes targeted on CD8a (i.e., SK1, DK25, YTS 105.18, H59.101,

OX-8, CT-CD8a, KT15, YTS 169.4) or CD8b (i.e., YTS 156.7,

53.5.8, 2ST8.5H7) (10, 51, 173, 179) (Table 2). Some mABs block

CD8+ T cell activation and maturation by mechanisms independent

of the MHC-I/CD8 interaction. Interestingly, mAB binding with

CD8 does not always abrogate CD8+ T cell signaling. For example,

anti-CD8a mABs (53.6.7, OKT8) and anti-CD8b mAb (KT112,
FIGURE 7

Potential for different mABs to block or enhance CD8aa and CD8ab interactions with classical and non-classical MHC-I molecules. (A) Overlay of
mouse CDaa/YTS 105.18 (PDB ID 2ARJ) with mouse CD8ab/H-2Dd (PDB ID 3DMM). In this binding mode, no steric hindrance of CD8/MHC is seen.
(B) Overlay of mouse CDaa/YTS 105.18 (PDB ID 2ARJ) with mouse CD8aa/H-2Kb (PDB ID 1BQH). In this binding mode, steric hindrance of CD8/
MHC is seen. (C) Overlay of mouse CD8ab/YTS 156.7 (PDB ID 3B9K) with mouse CD8ab/H-2Dd (PDB ID 3DMM). In this binding mode, steric
hindrance of CD8/MHC is seen. (D) Overlay of human CD8aa/ZED8 (PDB ID 7UVF) with mouse CD8ab/H-2Dd (PDB ID 3DMM). In this binding
mode, no steric hindrance of CD8/MHC is seen. (E) Overlay of human CD8aa/ZED8 (PDB ID 7UVF) with mouse CD8aa/H-2Kb (PDB ID 1BQH). In
this binding mode, no steric hindrance of CD8/MHC is seen. (F) Overlay of human CD8a/VHH5v2 (PDB ID 8EW6) with mouse CD8ab/H-2Dd (PDB
ID 3DMM). In this binding mode, no steric hindrance of CD8/MHC is seen. (G) Overlay of human CD8a/VHH5v2 (PDB ID 8EW6) with mouse CD8aa/
H-2Kb (PDB ID 1BQH). In this binding mode, steric hindrance of CD8/MHC is seen. In all panels, the orientation of the magenta CD8a1 is maintained
throughout for comparison. MHC-I heavy chains are colored green, b2m light chains colored cyan, antigens colored salmon, CD8a chains colored
magenta/light pink, CD8b chains colored yellow, and mABs colored blue/light blue.
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CT-CD8b) enhance CD8+ T cell signaling (10, 50, 52, 180)

(Table 2). As for YTS 105.18 and YTS 156.7, most blocking anti-

CD8 mABs appear to work by one of two mechanisms: i) sterically

hindering CD8/MHC-I interactions, or ii) altering the topology of

the immunological synapse relative to the T cell or antigen

presenting cell membranes (10, 51, 173, 179). While structures of

many of these CD8/mAB complexes are lacking, the general

location of the epitopes recognized by some of these mABs has

been mapped by site-directed mutagenesis to the CD8 ectodomain

(52). Other mABs, such as the anti-CD8a MRC OX-8 antibody,

have shown an ability to recognize the CD8 hinge region to carry

out their function (54). Binding of blocking mABs KT15 and CT-

CD8a was decreased by mutating CD8a residue K52 located on the

CDR2 loop at the interface with the MHC-I, suggesting they

sterically hinder CD8ab/MHC-I interactions (Figure 8). Binding

of blocking mAB H59.101 to CD8a was decreased by mutating

CD8a residues R8, K12, and K13 located on the A strand,

suggesting it does not sterically hinder CD8ab/MHC-I

interactions (Figure 8).
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Less is known about the mechanisms driving anti-CD8 mAB

enhancement of CD8+ T cell responses. However, they seem to

enhance CD8ab/MHC-I or CD8aa/MHC-I binding, through

either stabilizing CD8/MHC-I complexes or influence signal

transduction from the ectodomain to the cytoplasmic tail. For

example, the inhibition of Lck reduces the enhancing effect of

53.6.7 antibody, suggesting that it functions by modulating signal

transduction of CD8ab ectodomain to the cytoplasmic tail (13, 52).

The binding of enhancing mAB 53.6.7 to CD8a was decreased by

mutating CD8a residues R8, K21, D23, and T81 located on the A, B,

and D strands (52) (Figure 8). Another CD8+ T cell enhancing

antibody, the anti-CD8a mAB OKT8, can induce cytokine

release from several CD8+ T cells in the absence of specific MHC-

I/TCR engagement, possibly through rearrangements in the

immunological synapse topology (50). No structural information

is available for the CD8ab/OKT8 complex. Future studies should

elucidate the atomic structure of CD8ab and CD8aa with the

monoclonal antibodies to provide mechanistic insights towards

their application in immunomodulatory therapeutics.
FIGURE 8

Site-directed mutagenesis identified CD8a epitopes recognized by anti-CD8 mAbs. CDa mutations that influence mAB binding are shown as light
blue spheres. From top left to bottom right: mouse CDa mutations at residues R8, K21, D23, and T81 (ectodomain numbering) reduce binding to
53.6.7 antibody, mouse CDa mutations at residues R8, K12, and K13 (ectodomain numbering) reduce binding to H59.101 antibody, and mouse CDa
mutations at residues K62 (ectodomain numbering) reduce binding to KT15 and CT-CD8a antibodies. As a reference, mutations are plotted onto
CDa from mouse CD8ab/H-2Dd (PDB ID 3DMM). MHC-I heavy chains are colored green, b2m light chains are colored cyan, peptide antigens are
colored salmon, CD8a chains are colored magenta, CD8b chains are colored yellow, and the mABs names are colored blue. Data were derived from
Devine et al. (52).
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5 Discussion

Several future directions are needed to move the utility of CD8

for immunomodulation into new horizons. First, relative to

CD8ab , the exact biological functions of CD8aa , and

potentially CD8bb, remain to be fully understood, especially in

the context of non-conventional immune cell subsets. For

example, in what cases does CD8 function as a co-stimulatory

receptor versus a co-repressor? How do the differences in the

structure of CD8a and CD8b regulate their function? Second,

structural insights into important features of CD8 remain to be

determined (i.e, hinge domain, transmembrane domain,

cytoplasmic tails). Third, the binding affinities and structures of

CD8aa and CD8ab with a wider range of classical MHC-I alleles

across different species, and non-classical MHC-I alleles (i.e.,

CD1, T22, M10.5, MILL, HFE, FcRn), is required (181). This

new structural and biophysical information will inform the

potential for immunomodulation of for the broader class of

MHC-like molecules by anti-CD8 mABs. Fourth, further details

concerning the features of CD8 hinge and transmembrane

domains that contribute to efficacy of CAR T cell signaling

should be examined. Fifth, many anti-CD8 antibodies still

require biophysical and structural characterization with CD8aa
or CD8ab to determine their binding epitopes and mechanisms of

action (Tables 1, 2). Finally, it is also likely that computational

antibody design can be applied for the rational design of stable,

tunable anti-CD8 mABs that target desired functional sites of

CD8a or CD8b (182, 183) (Figure 1D). In all of the above

cases, care must be taken since mABs can exhibit off-target

effects or immunotoxicity, resulting in mAbs-induced adverse

effects related to immunosuppression and hypersensitivity

(184). Ultimately, we expect that in the coming years the

CD8 co-receptor will emerge as one of the prime targets

for immunomodulation.
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