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Health, Neuherberg, Germany
CARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and

adaptive immune receptors to proximal signaling pathways and immune

activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that

nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific

manner. MALT1 (also known as PCASP1) serves a dual function within the

assembled CBM complexes. By recruiting TRAF6, MALT1 acts as a molecular

scaffold that initiates IkB kinase (IKK)/NF-kB and c-Jun N-terminal kinase (JNK)/

AP-1 signaling. In parallel, proximity-induced dimerization of the paracaspase

domain activates the MALT1 protease which exerts its function by cleaving a set

of specific substrates. While complete MALT1 ablation leads to immune

deficiency, selective destruction of either scaffolding or protease function

provokes autoimmune inflammation. Thus, balanced MALT1-TRAF6

recruitment and MALT1 substrate cleavage are critical to maintain immune

homeostasis and to promote optimal immune activation. Further, MALT1

protease activity drives the survival of aggressive lymphomas and other non-

hematologic solid cancers. However, little is known about the relevance of the

cleavage of individual substrates for the pathophysiological functions of MALT1.

Unbiased serendipity, screening and computational predictions have identified

and validated ~20 substrates, indicating that MALT1 targets a quite distinct set of

proteins. Known substrates are involved in CBM auto-regulation (MALT1, BCL10

and CARD10), regulation of signaling and adhesion (A20, CYLD, HOIL-1 and

Tensin-3), or transcription (RelB) and mRNA stability/translation (Regnase-1,

Roquin-1/2 and N4BP1), indicating that MALT1 often targets multiple proteins

involved in similar cellular processes. Here, we will summarize what is known

about the fate and functions of individual MALT1 substrates and how their

cleavage contributes to the biological functions of the MALT1 protease. We will

outline what is needed to better connect critical pathophysiological roles of the

MALT1 protease with the cleavage of distinct substrates.
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1 Introduction

Mucosa-associated lymphoid tissue lymphoma translocation

protein 1 (MALT1), also known as Paracaspase 1 (PCASP1), is

ubiquitously expressed. MALT1 is an integral subunit of various

CARD-BCL10-MALT1 (CBM) signaling complexes assembled after

ligation of antigen receptors (AR), C-type lectin receptors (CLR), G-

protein coupled receptors (GPCR), or growth receptors (GR) (1, 2)

(Figure 1). With CARD9, CARD10, CARD11 and CARD14, four

distinct CARD (caspase recruitment domain)-containing

scaffolding proteins can act as seeds to initiate cell- and stimulus-

specific assembly of CBM complexes. Most analyses have focused

on characterizing the lymphoid-restricted CARD11-containing

CBM complex, but similar mechanisms are assumed to govern

the activation of other CBM complexes. In lymphocytes, CARD11

acts as a seed to induce B-cell lymphoma/leukemia 10 (BCL10)

filament formation via CARD interactions in response to AR

engagement (3). In the filaments, the CARD domain of BCL10

also interacts with the N-terminal death domain (DD) of MALT1 in

a way that the Immunoglobulin (Ig) and paracaspase domains, as

well as the TRAF6 binding motifs (T6BM), protrude from the core

filament to form an accessible surface that mediates CBM

downstream effector functions (4, 5) (Figure 2). Within CBM

complexes, both MALT1 scaffolding, and protease functions are

activated, and therefore MALT1 acts as a bifurcation point for

signaling (Figure 1). By recruiting the E3 ligase TRAF6 via two

(MALT1 isoform A) or one (MALT1 isoform B) T6BMs, MALT1

scaffolding initiates canonical IkB kinase (IKK)/NF-kB and JNK (c-

Jun N-terminal kinase) pathways (6–9). Furthermore, linear

ubiquitin chain assembly complex (LUBAC) binds and conjugates

linear ubiquitin chains to MALT1 and other CBM subunits, thereby

promoting NF-kB signaling by facilitating recruitment of NEMO

(NF-kB essential modulator) (10–13). In parallel, the MALT1

protease starts to cleave protein substrates via its paracaspase

domain, conferring an enzymatic activity to the CBM complex

(14, 15).

Mouse models have been generated to elucidate the

physiological functions of MALT1 as well as the specific

contributions of its protease and scaffolding activities. Full genetic

ablation of MALT1 in mice leads to immune deficiency, resulting

primarily from the inability to mount an adaptive immune response

after T and B cell antigen receptor (TCR/BCR) ligation (16, 17).

Catalytic inactivation of MALT1 in paracaspase dead (PD) mice

does not affect scaffolding function and initiation of NF-kB and

JNK signaling, but activation of innate and adaptive immune

responses is impaired (18–20). However, Malt1 PD mice develop

spontaneous autoimmunity and multiorgan inflammation caused

by the developmental loss and functional impairment of

suppressive regulatory T (Treg) cells (18–22). In contrast,

selective destruction of MALT1 scaffolding in Malt1 TRAF6-

binding mutant (TBM) mice severely compromised CBM

downstream signaling but induced severe autoinflammation

resulting from unbalanced MALT1 protease activation in

conventional effector T cells (8). Thus, the tight balance between

catalytic and non-catalytic functions of MALT1 in diverse immune
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cell subsets is critical to maintain immune homeostasis and allow

optimal immune activation. Further, MALT1 protease activation

drives survival of lymphoma cells addicted to chronic BCR

signaling, activating CARD11 mutations, or expression of the

oncogenic API2-MALT1 (BIRC3::MALT1) fusion protein (23,

24). MALT1 protease function is also implicated in the growth of

several non-hematologic solid cancers. Potent and selective MALT1

inhibitors have been developed, which are currently undergoing

pre-clinical and clinical evaluation for the treatment of MALT1-

dependent non-Hodgkin’s lymphoma, but also for depleting

suppressive Treg cells in the tumor microenvironment to enhance

anti-tumor immunity (24–26). In addition, defective or aberrant

MALT1 protease activation has been implicated in human immune

errors of immunity caused by germline mutations in CBM

components, which have been associated with various immune

pathologies such as immunodeficiency, atopy and B cell

lymphocytosis (27, 28).

MALT1 belongs to the family of cysteine proteases and the

PCASP domain shows a high structural homology to caspases, but

in contrast to their aspartate-specific protease activity, MALT1

recognizes a distinct set of substrates cleaved after arginine

residues (29). While most initial discoveries of MALT1 substrates

relied on serendipity, a bioinformatic workflow confirmed and

extended our knowledge to approximately 20-30 MALT1

substrates (30). MALT1 substrates control diverse cellular

processes involved in signaling (CYLD, A20, HOIL-1),

transcription (RelB), mRNA metabolism (Regnase-1, Roquin-1/2,

N4BP1), CBM auto-regulation (CARD10, BCL10, MALT1) and

adhesion (Tensin-3), suggesting interdependent and independent

functions of the MALT1 protease and scaffold (Figure 1). However,

despite compelling evidence for an involvement of MALT1 protease

activation in maintaining immune homeostasis and driving

tumorigenesis, our understanding of the contributions of

individual substrate cleavage is still in its infancy. In this review,

we will categorize MALT1 substrates according to their main

cellular functions and comment on how cleavage of distinct

substrates may contribute to the pathophysiological functions

of MALT1.
2 CBM complex autoregulation by
MALT1 cleavage

MALT1 reveals a high degree of feedback regulation, which is

mediated by autocleavage as well as cleavage of the CBM core

components BCL10 and CARD10 (15, 31–33).

Margot Thome and colleagues were amongst the first to

describe MALT1 proteolytic activity by identifying BCL10 as a

substrate that is cleaved upon stimulation of antigen and innate

immune receptors in lymphocytes and myeloid cells (15).

Subsequently, constitutive BCL10 cleavage was also demonstrated

in aggressive B cell lymphomas including the activated B cell-type

diffuse large B cell lymphoma (ABC DLBCL) and mantle cell

lymphoma (MCL), which display constitutive MALT1 protease

activity (34–36). In fact, BCL10 is bound in a 1:1 stoichiometry to
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active MALT1 in the assembled BCL10 filaments (5) and thus,

BCL10 cleavage serves as a reliable marker for monitoring MALT1

protease activation in preclinical studies using MALT1 inhibitors

(37). MALT1 catalyzes the cleavage of BCL10 at arginine 228,

removing only the last five C-terminal amino acids (aa) 229-233

(15) (Figure 2). Importantly, this truncation does not affect the

ability of BCL10 to bind to MALT1 or to mediate NF-kB activation,

and thus BCL10 cleavage is not involved in an autoregulatory

feedback circuit that restricts the function of CBM complexes to
Frontiers in Immunology 03
activate cell signaling. However, MALT1 protease inhibition was

shown to impair the antigen-induced adhesion of T cells (15). Since

expression of the uncleavable BCL10 R228G mutant weakens

fibronectin binding of Jurkat T cells, BCL10 cleavage was

suggested to control T cell adhesion in an NF-kB-independent
manner mainly through regulating a4b1 integrins. Surface

expression of integrin b1 is not controlled by MALT1 or BCL10,

indicating that BCL10 cleavage may modulate cytoskeletal changes

involved in integrin-ligand binding, but neither the molecular

details nor the physiological impact have yet been uncovered. Of

note, recent work revealed that MALT1 cleavage of Tensin-3

controls adhesion of B cells, suggesting a broader role of MALT1

in these processes (38) (see chapter 2).

Two studies demonstrated that MALT1 is prone to auto-

cleavage at two distinct sites, thereby directly creating auto-

regulatory feedback circuits (31, 32). Baens et al. identified auto-

proteolysis of MALT1 at arginine 149, creating an N-terminal DD

fragment (p19) and a C-terminal fragment (p76) containing Ig1-3

domains, PCASP domain and two T6BMs (31) (Figure 2). Since the

DD associates with the CARD of BCL10 in the context of BCL10

filaments, the p76 fragment may be released from the core filaments

(5). While MALT1 auto-cleavage is clearly detected in studies

involving overexpression, reduction of full length MALT1 is not

detectable in antigen-stimulated lymphocytes and the cleaved p19

fragment represents only a very small fraction of MALT1 (31). In

line, uncleavable MALT1 R149A still mediates TCR-induced NF-

kB signaling, but it interferes with optimal induction of NF-kB
target genes and production of IL-2 in Jurkat T cells. The underlying

mechanism has not yet been defined, but the data suggests that N-

terminal auto-cleavage initiates a feedforward pathway involving

TRAF6 association to augment transcriptional responses in T cells.

The pathophysiological consequences of MALT1 autocleavage

have been investigated in Malt1 self-cleavage resistant (SR) knock-

in mice (39). Like inMalt1 PD mice, TCR-induced NF-kB signaling

in Malt1 SR mice was normal. Lack of N-terminal MALT1 auto-

cleavage did not significantly affect development of conventional

effector T cells, but numbers and functions of suppressive

regulatory T (Treg) cells was reduced, leading to an improved

anti-tumor immune immunity in a syngeneic model. Overall, effects
FIGURE 1

MALT1 bifurcates CBM signaling. Activation of antigen receptors
(AR), C-type lectin receptors (CLR), G-protein coupled receptors
(GPCR), or growth receptors (GR) induces CARD-BCL10-MALT1
(CBM) complex formation through four distinct CARD scaffolding
proteins (CARD9, CARD10, CARD11, CARD14). MALT1 acts as a
bifurcation point in the assembled CBM complex. As a non-catalytic
scaffold, MALT1 recruits TRAF6 to trigger IkB kinase (IKK)/NF-kB and
Jun N-terminal kinase (JNK)/AP-1 signaling, which induces
transcriptional reprogramming of cells, including negative auto-
regulatory feedbacks. In addition, MALT1 protease is activated,
which cleaves several substrates implicated in regulation of
signaling, transcription, post-transcriptional mRNA metabolism, CBM
auto-regulation and adhesion.
FIGURE 2

Domain structure, cleavage sites and functions of MALT1 substrates involved in CBM autoregulation. CARD, Caspase recruitment domain; ST-rich,
Serine/threonine-rich region; DD, Death domain; Ig, Immunoglobulin; PCASP, Paracaspase; CC, Coiled coil; PDZ, PSD95-Dlg-ZO-1 homology; SH3,
Src homology-3; GUK, Guanylate kinase.
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on Treg cells on Malt1 SR mice were reminiscent but milder when

compared to Malt1 PD mice, suggesting that the MALT1 protease

effects on Treg cell functions are partially executed through MALT1

auto-cleavage. More mechanistic work will be required to

understand the extent and the impact of MALT1 auto-cleavage in

Treg cells and conditionalMalt1 SR mice will be necessary to prove

that anti-tumor responses are caused by Treg cell-intrinsic effects.

Ginster and colleagues identified a second auto-processing site

at arginine 781 of MALT1, which upon cleavage creates the MALT1

fragment 1-781 that retains all functional domains, but lacks the

second C-terminal T6BM2 (aa 804-808) (32). Inducible and chronic

C-terminal auto-cleavage of endogenous MALT1 is detected in T

cells and lymphoma cells, respectively. Of note, two MALT1 splice

isoforms exist and only the longer MALT1A contains the T6BM1

(aa 314-318) and T6BM2, while MALT1B excludes Exon7 encoding

for T6BM1 and thus only includes T6BM2 (aa 793-797 in

MALT1B) (6) (Figure 2). Since TRAF6 binding to MALT1 is

essential to mediate NF-kB activation downstream of the CBM

complex, cleavage at arginine 781 does not abolish signaling

through MALT1A, while it abrogates NF-kB activation by

MALT1B (6, 8, 32). Interestingly, self-cleavage in the MALT1 C-

terminus and thus reduced TRAF6 binding to MALT1 hampered

cleavage at arginine 149, indicating a mutual regulation that governs

MALT1 auto-processing (32). Further, TRAF6 association balances

MALT1 scaffolding (NF-kB signaling) and protease (substrate

cleavage) functions, which is critical for the maintenance of

immune homeostasis in mice (8, 40). However, functional

analyses of C-terminal auto-cleavage relied on artificial

overexpression systems to activate MALT1 protease functions

(32). It remains to be determined if inducible C-terminal MALT1

cleavage is functionally relevant in vivo and if it potentially only

affects certain cell-types such as Treg cells. Of note, a human

homozygous missense MALT1 mutation c.2418G>C (MALT1A

E806D/MALT1B E795D) has been identified, which acts as a

hypomorph by selectively destroying the second T6BM and

association of TRAF6 to MALT1B but not MALT1A (41). The

MALT1 mutation c.2418G>C causes a complex immune syndrome

with combined symptoms of immunodeficiency and autoimmunity,

suggesting that the tight control ofMALT1 alternative splicing, and

also C-terminal MALT1 auto-cleavage, may tune the balance

between immune homeostasis and activation (6, 32, 41).

Besides the shared CBM subunits BCL10 andMALT1, CARD10

(CARMA3) was found to be cleaved by MALT1 (33). CARD10 is

widely expressed in non-hematopoietic cells, which contrasts with

its homologs CARD11 and CARD14 that display cell-type specific

expression in lymphocytes and keratinocytes, respectively.

CARD10-containing CBM complexes are activated downstream

of distinct GPCRs and receptor tyrosine kinases (RTKs) and

control inflammatory responses as well as survival and metastasis

of solid cancers (42). CARD10 cleavage by MALT1 occurs in the

linker region at arginine 587, thereby disconnecting the N-terminal

CARD and CC (coiled-coil) domain from the plasma membrane

binding C-terminal MAGUK (membrane-associated guanylate

kinase) region (33) (Figure 2). Protein kinase C (PKC) activation

induces CARD10 cleavage in the lung tumor cell line A549. Since

expression of cleavage resistant CARD10 R587A increased IL-6
Frontiers in Immunology 04
production and enhanced tumor growth in a mouse xenograft

model, CARD10 cleavage by MALT1 may constitute a negative

feedback mechanism to limit signaling. However, the N-terminal

CARD10 fragment may constitute a signaling competent CBM

complex similar to CARD9, in which only a CARD and CC

domain is sufficient for its function as an adaptor for innate

immune stimulation in myeloid cells (43). Thus, CARD10 is the

first MALT1 substrate cleaved explicitly outside the hematopoietic

lineage, but further studies must resolve the physiological triggers

and downstream functions.
3 Impact of MALT1 substrate cleavage
on cell signaling and adhesion

MALT1 cleaves several proteins directly connected to NF-kB
signaling and transcriptional gene regulation. These include A20/

TNFAIP3 (TNFa-induced protein 3), CYLD (cylindromatosis) and

HOIL-1 (Haem−oxidized IRP2 ubiquitin ligase 1, also termed

RBCK1), which are well-known regulators of NF-kB upstream

pathways that control ubiquitination events involved in IKK/NF-

kB activation (14, 44, 45). Moreover, Tensin-3 (TNS3) is cleaved by

MALT1, which influences B cell adhesion and may thus affect cell

responses beyond NF-kB (38).

Originally, A20 was discovered as a MALT1 substrate in

antigen-stimulated lymphocytes by the Rudi Beyaert lab, which

proved that MALT1 is a proteolytic enzyme (14). A20 germline

mutations are associated with a wide range of immunological

diseases, while somatic mutations inactivate its function as a

tumor suppressor in B cell lymphomas (46). Constitutive A20

cleavage by MALT1 is also observed in BCR-addicted and

CARD11 mutant aggressive ABC DLBCL, revealing a post-

translational mechanism to downregulate A20 (35, 36), which is

also observed in MALT1-dependent mantle cell lymphomas (34).

Similarly, the oncogenic API2-MALT1 fusion protein, frequently

found in mucosa associated lymphoid tissue (MALT) lymphoma,

directly catalyzes cleavage of A20 via the MALT1 paracaspase

domain (14). A20 has been coined a ubiquitin editing enzyme,

because the N-terminal ovarian tumor (OTU) domain preferably

hydrolyzes K48- and K63-linked ubiquitin chains, and the C-

terminal zinc finger (ZnF) region, specifically ZnF4 and ZnF7,

facilitate ubiquitin-conjugation by associating with K63- and M1-

linked ubiquitin chains, respectively (47). MALT1 or API2-MALT1

cleave human A20 at arginine 439 between ZnF1 and ZnF2, thereby

segregating the N-terminal deubiquitinating activity from C-

terminal ubiquitin binding (14) (Figure 3). Both A20 fragments

are unable to diminish BCL10-induced NF-kB activation,

suggesting that A20 is inactivated by MALT1 cleavage. Of note,

the cleavage site at arginine 439 is not conserved in murine A20,

which is cleaved by MALT1 more C-terminal between ZnF3 and

ZnF4. Even though the exact position has not been mapped, the

data suggest that MALT1 also inactivates murine A20.

MALT1 can regulate A20 expression in lymphocytes in multiple

ways. While MALT1 scaffolding activates NF-kB and

transcriptional induction of the TNFAIP3/A20 gene, MALT1
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protease also cleaves and inactivates the RNA binding protein

(RBP) Roquin-1 and thereby enhances A20 expression on the

post-transcriptional level (48, 49) (see chapter 3). Post-

translationally, resynthesized A20 is subjected to MALT1

protease-dependent cleavage and inactivation (14, 50, 51),

revealing that MALT1 orchestrates an intricate balance between

positive feedforward and negative feedback mechanisms to tightly

control A20 amounts. In activated T cells, A20 acts as a negative

regulator of CBM-dependent NF-kB signaling by decreasing

conjugation of TRAF6 catalyzed K63-linked polyubiquitin chains

on MALT1, which is critical for TCR-triggered NF-kB activation (6,

8, 50). While the A20 OTU domain is able to hydrolyze K63-linked

ubiquitin chains conjugated to MALT1 in vitro , A20

deubiquitinating (DUB) activity is dispensable for counteracting

CBM mediated NF-kB activation, which critically relies on

ubiquitin binding to A20 ZnF4 and ZnF7 (50, 51). This is in line

with results from inflammatory signaling, showing that selective

destruction of ubiquitin binding to ZnF4 and ZnF7 in mice

phenocopies the autoinflammation and early lethality of complete

A20 ablation, while inactivation of DUB activity does not lead to a

discernable phenotype (52–54). Likewise, A20 recruitment to the

CBM complex and cleavage by MALT1 in T cells relies on intact

ZnF4/7 motifs (51). A20 cleavage is impaired in TRAF6/LUBAC

double deficient cells, suggesting that A20 binding to M1- and K63-

linked ubiquitin chains on BCL10 and MALT1 is necessary for

recognition by the MALT1 protease. Interestingly, association of

ABIN-1 (A20−binding inhibitor of NF-kB-1, also known as TNIP1)

also limits sustained CBM signaling by protecting A20 from

MALT1-catalyzed cleavage. Overall, while many mechanistic

details have been resolved for how A20 is cleaved by MALT1, the

physiological consequences for tuning lymphocyte activation have

been poorly defined, and mapping of the exact cleavage site will be

necessary to generate A20 cleavage-resistant mice.

With the DUB CYLD, another ubiquitin regulator has been

identified as a substrate of MALT1 in activated T cells (45). CYLD is

also cleaved by oncogenic API2-MALT1 or chronic MALT1

protease activity in lymphoma cells (34, 45, 55–57). CYLD

contains three N-terminal microtubule and ubiquitin binding

CAP-Gly domains and a C-terminal ubiquitin-specific protease
Frontiers in Immunology 05
(USP) domain, which hydrolyzes K63- and M1-linked ubiquitin

chains and binds to LUBAC via SPATA2 (58–61). Cleavage of

human CYLD takes place at the evolutionary conserved arginine

324 between the second and third CAP-Gly domains, yielding a C-

terminal fragment that can still mediate ubiquitin binding via the

third CAP-Gly as well as DUB activity and LUBAC binding via the

USP domain (Figure 3) (59). However, at least in lymphoma cells

both CYLD fragments are unstable and degraded by the proteasome

in the presence of ibrutinib suggesting that MALT1 cleavage may

inactivate CYLD functions (56).

CYLD is critical for counteracting constitutive activation of NF-

kB and JNK signaling in T lymphocytes (62) and initial results

pointed to a specific role of CYLD cleavage by MALT1 for driving

JNK activation (45). However, analyses of primary T and B cells

from MALT1 PD mice could not confirm an involvement of

MALT1 protease in the initiation of antigen-induced JNK

signaling (18–20). Thus, the functional relevance of CYLD

cleavage for lymphocyte activation remains enigmatic.

Nevertheless, in BCR-addicted ABC DLBCL and MCL low CYLD

expression is correlated with poor overall survival and MALT1

cleavage reduces CYLD expression post-translation (56). Thus, in

aggressive lymphomas MALT1 releases the negative regulatory

impact of CYLD on NF-kB signaling, target gene expression and

tumor growth. Evidence for a non-hematopoietic role of CYLD

cleavage was derived from endothelial cells stimulated with

thrombin, which induces CARD10-dependent MALT1 protease

activation through binding to the GPCR protease activated

receptor-1 (PAR-1) (63). CYLD binds and stabilizes microtubules

via CAP-Gly domains, and accordingly CYLD cleavage triggers

microtubule instability, which eventually leads to disruption of the

endothelial barrier. Precisely how CYLD fragmentation promotes

microtubule disassembly is not clear, but the data suggest that

MALT1 protease controls leukocyte migration from the blood

vessels to the sites of tissue inflammation in an NF-kB-
independent manner . Future analyses must uncover

pathophysiological roles of CYLD cleavage in lymphoid and non-

lymphoid cells.

While A20 and CYLD counteract multiple NF-kB signaling

pathways, the MALT1 substrate HOIL-1 is an integral subunit of
FIGURE 3

Domain structure, cleavage sites and functions of MALT1 substrates involved in signaling and adhesion. OTU, Ovarian tumor; ZF, Zinc finger; CAP,
Cytoskeleton-associated protein; USP, Ubiquitin-specific protease; UBL, Ubiquitin-like; NZF, Npl4 Zinc Finger; RING, Really interesting new gene;
IBR, In Between Ring fingers; ABD, Actin binding domain; SH2, Src homology-2; PTB, Phosphotyrosine-binding.
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LUBAC, which drives NF-kB in response to pro-inflammatory and

innate immune stimulation (64). Like other MALT1 substrates,

HOIL-1 is cleaved in antigen-stimulated lymphocytes and in

malignant ABC DLBCL cells (44, 65, 66). HOIL-1 is cleaved at

arginine 165, yielding a short N-terminal fragment that retains the

UBL (ubiquitin-like) domain and thus the ability to bind to HOIP

(Figure 3) (44, 66). The C-terminal fragment of HOIL-1 contains

the RBR (RING in between RING) domain, whose catalytic activity

can transfer monoubiquitin to LUBAC subunits, which was

suggested to impair the ability of LUBAC to conjugate M1-linked

ubiquitin chains (67).

LUBAC is required for optimal CBM complex signaling and NF-

kB activation after acute TCR/BCR stimulation of lymphocytes as well

as chronic BCR survival signaling in ABCDLBCL cells (10, 12, 13, 68).

Accordingly, most studies suggest that HOIL-1 cleavage by MALT1

impairs antigen-driven NF−kB activation by decreasing M1-linked

ubiquitination, for instance of NEMO, thereby executing a negative

feedback loop to terminate signaling (44, 65, 66). However, conflicting

results have been found regarding the mechanism, how HOIL-1

cleavage affects antigenic signaling. Overexpression experiments

suggested that the HOIL-1 N-terminal fragment retains the ability

to mediate NF-kB signaling, whereas the C-terminus counteracts NF-

kB activation (66). In contrast, others did not find evidence that the

HOIL-1 C-terminal fragment is integrated and regulates LUBAC, but

rather that HOIL-1 cleavage leads to reduced LUBAC activity and

impaired NF-kB activation (44, 65). In line with reduced LUBAC

activity upon HOIL-1 cleavage, skin fibroblasts expressing cleavage-

resistant HOIL-1 show slightly augmented NF-kB activation in

response to IL-1b (69). However, no phenotype was described in

HOIL-1 cleavage-resistant mice, which carry the homozygous R165A

mutation generated by CRISPR/Cas9 genome editing (70). In these

mice, antigenic signaling, development and numbers of T and B

lymphocyte subsets as well as humoral immune responses were

normal, arguing that HOIL-1 cleavage does not contribute to the

severe pathology observed in MALT1 PD mice. However, the results

do not exclude that HOIL-1 cleavage may be relevant in certain

pathological settings, for instance in inflammatory responses in the

skin caused by CARD14 activating mutations associated with psoriasis

(71). Further, the impact of MALT1 cleavage on the roles of the HOIL-

1 RBR in impeding LUBAC function by conjugating monoubiquitin

on HOIP, SHARPIN and HOIL-1 or in catalyzing ester bonds

between ubiquitin and substrates remains unresolved (67, 72).

By integrating protein sequences and functional data, Bell et al.

verified known MALT1 substrates and predicted several novel

substrates, some of which are involved in cell signaling, including

TRAF family member associated NF-kB activator (TANK), TAK1

binding protein 3 (TAB3) and Caspase-10 (CASP10) (30). Cleavage

of these three substrates was validated after overexpression of active

MALT1 or API2-MALT1 and the cleavage sites were mapped by

mutagenesis. TANK cleavage was also detected after PMA/

Ionomycin stimulation in B cell lines, but in all cases the

functional consequences remain to be defined.

Besides these regulators implicated in NF-kB signaling, Tensin-

3 was identified by an unbiased proteomic approach as a MALT1

substrate that is cleaved in ABC DLBCL, MCL and activated B cells

(38). Tensins 1–4 comprise a family of proteins that link actin
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cytoskeleton to integrins, but only Tensin-3 is a MALT1 substrate

(38, 73). MALT1 catalyzes cleavage of Tensin-3 at two conserved

residues, arginine 614 and 645, separating the N-terminal actin

binding domain (ABD) from the C-terminal SH2 and

phosphotyrosine binding (PTB) domains, which abrogates the

ability of Tensin-3 to bridge actin and integrins (Figure 3).

Interestingly, Tensin-3 is selectively expressed in primary B cells

or B cell lines, but not in T cells, pointing to a specific role in B cell

biology and lymphomas (38). To elucidate its function, Tensin-3

non-cleavable (TNS3-nc) mice (R614A/R645A) were generated.

TNS3-nc mice did not display gross phenotypic changes and B

cell development and responses were normal, but germinal center

reactions and antibody responses in immunized mice were mildly

reduced. While Tns3 deficiency did not impact NF-kB or JNK

signaling, B cell adhesion to fibronectin-coated plates was impaired.

MALT1-uncleavable Tensin-3 showed increased adhesion of

human and murine B cells, suggesting a role in B cell homing

and migration. In an ABC DLBCL xenotransplant, TNS3 ablation

did not affect growth of the primary tumor, but dissemination of

tumor cells to the bone marrow and spleen, suggesting that Tensin-

3 cleavage may augment lymphoma cell metastasis through

modulating B cell adhesion (38). However, the direct impact of

Tensin-3 cleavage on metastasis of aggressive lymphoma awaits

further investigations and it remains to be seen how other

substrates, like BCL10, affect cell adhesion in this context.
4 Control of transcriptional and post-
transcriptional gene expression by
MALT1 substrate cleavage

Besides controlling upstream signaling pathways, MALT1

protease is directly involved in the regulation of transcriptional

and post-transcriptional gene expression. The non-canonical NF-

kB family member RelB is a substrate of MALT1, which influences

NF-kB target gene expression (74). Moreover, with Regnase-1, -2

and -4, Roquin-1 and -2, and N4BP1, six RBPs have been identified

as MALT1 substrates, making this class of proteins the largest group

of all MALT1 targets so far (30, 48, 75, 76).

RelB was discovered as the third substrate of MALT1, which is

cleaved after acute or chronic antigen receptor stimulation in

lymphocytes and lymphoma cells, respectively (74). RelB is an

NF-kB family member and binds gene regulatory sequences

through its N-terminal Rel homology domain (RHD) (77). Like

RelA (p65) and c-Rel, RelB contains a transcriptional activation

domain (TAD) in the C-terminus and controls target gene

expression primarily by dimerizing with nuclear p52, the nuclear

product generated by p100/NFKB2 processing in the non-canonical

NF-kB pathway. MALT1 cleaves RelB at arginine 85 between the

leucine zipper and the RHD, leaving the RHD and TAD intact (74)

(Figure 4). However, N-terminally truncated RelB is unstable and

rapidly degraded by the proteasome, indicating that MALT1

cleavage induces RelB loss-of-function. Functionally, RelB - and

even more the uncleavable RelB R85G – was shown to compete with

canonical RelA and c-Rel for binding to NF-kB sites on the DNA
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and to impede gene induction by canonical NF-kB in Jurkat T and

ABC DLBCL cell lines. Accordingly, RelB overexpression is toxic in

NF-kB-addicted ABC but not GCB DLBCL cells. However, even

though earlier studies suggested that RelB interferes with NF-kB
activation and RelB deficiency in mice causes autoinflammation, the

role of RelB is certainly not limited to its negative impact on

canonical NF-kB. For instance, cooperation of RelA and RelB in

different thymocyte subsets enhances IL-17 production of gd T cells

and RelB controls homeostatic proliferation of Treg cells (78, 79). In

Hodgkin’s lymphoma, RelB/p52 controls gene expression and

survival independent of RelA/p50 (80). Thus, it seems unlikely

that MALT1 cleavage of non-canonical RelB exerts effects solely by

enhancing canonical NF-kB, and further investigations

are warranted.

Beyond the impact on signaling and transcriptional responses,

the identification of six RBPs as MALT1 substrates indicates a

pronounced effect on post-transcriptional gene regulation. The

discovery that MALT1 cleaves Regnase-1 (also known as

ZC3H12A or MCPIP1) provided first evidence that the MALT1

protease directly affects mRNA metabolism (75). Regnase-1

contains a NYN (Nedd4-BP1, YacP nucleases)-type ribonuclease

(RNase) domain, which binds and degrades distinct, primarily

translationally active mRNAs, thereby functioning as a brake to

prevent uncontrolled translation of transcripts in lymphocytes and

macrophages (75, 81–83). Indeed, both T- or B-cell-specific

ablation of Regnase-1 causes fatal autoimmune pathologies

demonstrating an essential role for Regnase-1 in maintaining

immune homeostasis (75, 84). Upon T cell co-stimulation,

Regnase-1 is cleaved by MALT1 at arginine 111, just N-terminal

to the RNase domain (75) (Figure 4). Regnase-1 is degraded after

MALT1 cleavage, which with the concomitant decrease of Regnase-

1-controlled transcripts such as ICOS, Rel, OX40, IL2, and NFKBIZ
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after MALT1 inhibition suggests inactivation of Regnase-1 by

MALT1 (48, 75). In mice, conditional overexpression of

uncleavable Regnase-1 R111A mutant in CD4 T cells arrested

thymic T cell development at the double positive stage causing

peripheral lymphopenia (85). However, defective or aberrant

MALT1 protease activation does not affect thymic T cell

development (8, 19), suggesting that decreases in T cell numbers

may be caused by Regnase-1 overexpression and not defective

cleavage (85). Recently, the Regnase-1 paralogs Regnase-2

(ZC3H12B) and Regnase-4 (ZC3H12D) were identified as

MALT1 substrates upon overexpression of MALT1 or API2-

MALT1 fusion protein (30). Similar to Regnase-1, main MALT1

cleavage sites for both RBPs are in the N-terminus at arginine 64

(Regnase-4) and arginine 165 (Regnase-2) (Figure 4). MALT1-

catalyzed cleavage of Regnase-4 was confirmed in PMA/

Ionomycin stimulated B cells, leading to a severe decrease of the

full-length protein (30). The functional significance of the parallel

inactivation of multiple Regnase family members by MALT1 awaits

further investigations. Of note, all four Regnase paralogs are able to

downregulate ICOS expression in Regnase-1 knock out T cells,

indicating at least partially overlapping functions (86). Thus,

MALT1 cleavage of multiple RBPs may elicit more robust effects

on post-transcriptional gene regulation.

The wide-ranging effects of MALT1 on mRNA metabolism was

further supported by the discovery that the RBPs Roquin-1

(RC3H1) and its paralog Roquin-2 (RC3H2) are also substrates of

MALT1 in activated T lymphocytes (48). Sanroque mice develop

severe autoimmune disease, caused by the missense mutation in the

RNA-binding ROQ domain of Roquin-1 (87, 88). Accordingly,

Roquin-1 and its paralog Roquin-2 bind transcribed RNAs and

control gene expression at the post-transcriptional level by either

inducing mRNA decay or translational repression (88–91). MALT1
FIGURE 4

Domain structure, cleavage sites and functions of MALT1 substrates involved in transcriptional and post-transcriptional regulation. LZ, Leucine zipper;
RHD, Rel homology domain; TAD, Transactivation domain; UBA, Ubiquitin-associated; RNase-NYN, ribonuclease-N4BP1, YacP-like nuclease; ZF, Zinc
finger; RING, Really interesting new gene; PRR, Proline-rich region; CC, Coiled-coil; Hydroph, Hydrophobic region; KH-like, K Homology-like.
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cleaves Roquin-1 at arginines 510 and 579 and Roquin-2 at arginine

509, generating an N-terminus containing the RNA binding ROQ

domain (48) (Figure 4). The Roquin-1 N-terminal fragment is

either unable (e.g. Ox40) or severely impaired (e.g. ICOS) in

repressing Roquin targets, suggesting that MALT1 cleavage

inactivates Roquins (48, 86). Rc3h1 Mins (MALT1-insensitive)

mice, carrying missense mutations destroying both MALT1

cleavage sites in Roquin-1, display normal immune homeostasis

under steady state conditions (92). However, it was demonstrated

that prevention of Roquin-1 cleavage by MALT1 impairs

differentiation of pro-inflammatory Th17 cells and protects from

acute experimental autoimmune encephalomyelitis (EAE).

Moreover, Malt1 TBM mice, containing point mutations

rendering MALT1 incapable of interacting with TRAF6, succumb

to fatal autoimmune inflammation caused by chronic T cell

activation resulting from constitutive MALT1 protease activity

(8). Blocking Roquin-1 cleavage by crossing Rc3h1 Mins mice

onto the Malt1 TBM background prevented spontaneous T cell

activation and rescued early lethality driven by uncontrolled

MALT1 protease function (92). Given the simultaneous

processing of multiple RBPs by MALT1, the strong impact of

Roquin-1 cleavage alone on these inflammatory phenotypes may

be unexpected. However, Roquin-1 and Regnase-1 interact, and

share several mRNA targets, including the repression of Regnase-1

expression as a negative feedback mechanism (48, 82, 86, 91). Thus,

due to a high degree of cooperativity between the RBPs, expression

of uncleavable Roquin-1 alone seems to affect the entire post-

transcriptional program, which may explain the strong

amelioration of disease phenotypes. It is tempting to speculate

that the homozygous human MALT1 missense mutation

c.2418G>C that abrogates binding of TRAF6 selectively to the

MALT1B isoform may also cause the complex immune disorder

by augmenting post-transcriptional gene expression through

Roquin-1 cleavage (41), but further studies are needed to support

that MALT1 protease controls human immunity at the level of

mRNA metabolism.

With N4BP1 (NEDD4-binding protein 1) another

endoribonuclease has been identified as a MALT1 substrate (76).

The RNase domains of N4BP1 and Regnase-1 are related and

N4BP1 acts as an IFN-inducible RBP that restricts HIV-1

replication by recognizing and degrading viral RNAs (76, 93).

Upon T cell activation, MALT1 cleaves N4BP1 at arginine 509,

leading to its inactivation. N4BP1 expression restricts HIV-1

production in latently infected human T cells, and N4BP1

cleavage by MALT1 contributes to the reactivation of HIV-1 after

TCR stimulation. These results open a new perspective how

MALT1 protease can directly control anti-viral responses. Of

note, Regnase-1 has also been established as an HIV-1 restriction

factor in resting CD4 T cells (94). Even though it remains

speculative, inactivation of various host factors by MALT1 may

influence HIV life cycle at different stages, which may also be of

therapeutic relevance.

Regnase-1, Roquins and N4BP1 are also subject to MALT1-

catalyzed cleavage in lymphomas addicted to aberrant BCR

signaling, oncogenic CARD11 or API2-MALT1 (57). By

inactivating these RBPs, MALT1 protease augments expression of
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NF-kB-dependent (e.g. NFKBIZ, BCL2A1 or IL10) and NF-kB-
independent (e.g. NFKBID, ZC3H12A) genes. Of note, NFKBIZ/

IkBz expression is controlled by NF-kB and acts as a survival factor

in ABC DLBCL (95). On the post-transcriptional level, somatic

mutations in the 3’UTR of NFKBIZ abrogate binding of Regnase-1,

thereby enhancing expression of NFKBIZ/IkBz in a subset of

DLBCL patients (96). Inactivation of Regnase-1 or Roquin-1/2 by

MALT1 cleavage serves as an alternative mechanism to release the

post-transcriptional brake and induce high expression of oncogenic

NFKBIZ/IkBz in ABC DLBCL (57).

An interesting aspect is that some of the RBPs controlled by

MALT1 have also been associated with secondary functions,

especially in the regulation of ubiquitination and upstream NF-kB
signaling complexes. Roquins contain N-terminal RING domains

that function as E3 ligases and catalyze conjugation of various

ubiquitin linkages, but it is unclear if and under what circumstances

MALT1 cleavage affects E3 ligase activity (97). Upon DNA damage

or Toll-like receptor 4 (TLR4) stimulation, Regnase-1 interacts with

TANK via the N-terminal ubiquitin association (UBA) domain

(98). Regnase-1 recruits the ubiquitin hydrolase USP10 to TANK/

NEMO and TANK/TRAF6 complexes, thereby facilitating their de-

ubiquitination and termination of NF-kB signaling. Both Regnase-1

and TANK are cleaved by MALT1 (30), but if and how this may

affect the activity of upstream signaling complexes has not been

resolved. Similarly, N4BP1 associates with NEMO and thereby acts

as a potent suppressor of NF-kB activation after innate TLR1/2,

TLR7 and TLR9 stimulation in macrophages (99, 100).

Interestingly, Caspase 8 (CASP8) cleaves and inactivates N4BP1

in response to TNFa, TLR3 or TLR4 stimulation. CASP8 and

MALT1 cleavage takes place at similar positions, suggesting that

innate and adaptive immune pathways utilize reminiscent, but

independent processes to inactivate N4BP1 (76, 99, 100). If

CASP8 and MALT1 affect N4BP1 signaling or RNase functions

or both remains to be established.
5 API2-MALT1 fusion protein:
oncogenic activation by shift in
substrate specificity

The oncogenic API2-MALT1 fusion protein is generated by the

chromosomal translocation t(11;18)(q21;q21) and activates

canonical and noncanonical NF-kB survival signaling in MALT

lymphoma (7, 101, 102). MALT1 protease is constitutively activated

in the context of the API2-MALT1 and substrates cleaved by

MALT1 in the context of an assembled CBM complex are also

cleaved by API2-MALT1 (30). However, in the case of NIK (NF-kB
inducing kinase) and LIMA1 (LIM domain and actin-binding

protein 1) a very peculiar shift in substrate specificity has been

observed, because both proteins are substrates of API2-MALT1, but

not MALT1 (102, 103). Cleavage of NIK at arginine 325 separates

the N-terminal TRAF3 binding region, which destabilizes NIK by

recruiting the E3 ligases cIAP1/2, from the protein kinase domain in

the C-terminus (102) (Figure 5). The truncated kinase fragment of

NIK is stabilized, thereby catalyzing chronic IKKa phosphorylation
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and p100 processing to p52, which drives activation of non-

canonical NF-kB. Since NIK is cleaved only by API2-MALT1 and

not by endogenous CBM-associated MALT1, non-canonical NF-kB
activation is a special feature of MALT lymphomas and not seen in

BCR-addicted ABC DLBCL. LIMA1 acts as a tumor suppressor, but

cleavage at arginine 206 and lysine 289 surrounding the LIM

domain generates a short LIM-only (LMO) fragment that has

potent oncogenic functions and enhances B cell lymphomagenesis

in vitro and in vivo (103) (Figure 5). So far, LIMA1 is the only

substrate that is cleaved after lysine, which is surprising, because

neither full length nor paracaspase-only MALT1 accepts a lysine in

P1 (104). For NIK and LIMA1, the API2 moiety of the oncogenic

fusion is required for substrate recognition, revealing that MALT1

cleavage is context dependent, a circumstance that needs to be

considered when searching for novel MALT1 substrates.
6 Conclusions and perspectives

The breakthrough discovery of MALT1 protease function in 2008

inspired tremendous research on how this intriguing catalytic activity

shapes immune responses. Identification of MALT1 substrates and

genetic or pharmacologic MALT1 inactivation have been pursued as

the two main strategies to decipher the functions of the MALT1

protease. While the discovery of various substrates untangled cellular

pathways and processes controlled by MALT1 cleavage activity, its

inactivation demonstrated that MALT1 protease is essential for

maintaining peripheral immune tolerance and driving the growth

of hematologic and non-hematologic cancers. However, in most

cases, it is unclear how cleavage of individual substrates contributes

to the pathophysiological functions of MALT1.

It remains an open question, whether we have identified the

majority of MALT1 substrates or if we are still looking at the tip of

the iceberg. Initial discoveries of substrates primarily relied on

serendipity, but recent bioinformatic-guided substrate discovery

has identified and confirmed approximately 20 and predicted

about 10 more MALT1 substrates (30). However, the algorithm

for predicting MALT1 substrates is also based on protein functions,

which may create a bias towards known/expected rather than new/

unexpected substrates. The relatively loose recognition motif (L-X-

S/P-R-G) can be found in many proteins, raising questions about

how substrates are recognized and where cleavage occurs in a

physiological context. Indeed, the shift in substrate selectivity in

the oncogenic API2-MALT1 fusion protein exemplifies the
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importance of molecular context. It will be crucial to study if

different CARDs can facilitate recruitment and targeting of

unique MALT1 substrates in a stimulus and cell-type-specific

manner, for instance by comparing if CARD14 promotes cleavage

of other substrates in keratinocytes than CARD11 in lymphocytes.

Further, while there is good evidence that substrates like HOIL-1,

BCL10 and A20 are recruited to the CBM complex for cleavage,

substrates like RBPs have never been detected at the CBM complex.

Using chemical probes, it was shown that active MALT1 is not

retained at the CBM complex, but we lack tools to monitor the

cellular localization of proteolytically active MALT1, which can also

be necessary for the selection of substrates (105). Overall, current

studies connecting known substrates to MALT1 protease functions

must still be complemented by the discovery of new substrates.

While initial studies mainly focused on analyzing effects of MALT1

substrate cleavage in a cellular context, more recently, in vivo functions

were explored by generating transgenic mice expressing the non-

cleavable substrates MALT1 (R149A), HOIL-1 (R165A), Tensin-3

(R614A/R645A) and Roquin-1 (R510/579A). None of these mice

spontaneously develop any severe phenotypes. However, Treg cells

were mildly decreased in mice expressing cleavage resistant MALT1,

correlating with improved anti-tumor immunity (39). Moreover,

cleavage resistant Roquin-1 protects mice from EAE and fatal

autoimmune inflammation caused by chronic MALT1 protease

activation, revealing that continuous Roquin-1 cleavage, just like its

complete ablation, triggers autoimmunity (92). These results

emphasize that MALT1 acts as a bifurcation point, with its

scaffolding and protease functions coordinating gene induction at the

transcriptional and post-transcriptional levels, respectively. Overall,

inactivation of these substrates alone is not sufficient to phenocopy

the severe effects observed in catalytically inactive Malt1 PD mice

under steady state conditions. However, the effects of individual

substrates can modulate responses to immunological challenges. In

the future, it will be interesting to see whether combining multiple

uncleavable substrates will also affect immune homeostasis.

MALT1 protease is indispensable for Treg cell development and

suppressive functions. However, Treg cells provide a paradigm for

the difficulties to causally link the effects of the MALT1 protease

with the cleavage of specific substrates. Canonical and non-

canonical NF-kB activation is required for Treg cell identity and

function (106, 107). In addition, CYLD is involved in differentiation

of Treg cells (108). Thus, MALT1 cleavage of A20, CYLD or RelB

may directly or indirectly enhance NF-kB activation in Treg cells.

Alternatively, the atypical IkB protein NFKBID/IkBNS is also
FIGURE 5

Domain structure, cleavage sites and functions of substrates selectively cleaved by the oncogenic API2-MALT1 fusion protein. BR, basic region; PRR,
Proline-rich region; NCR, non-catalytic region; ABD, Actin-binding domain; LIM, LIN-11, Isl-1 and MEC-3.
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needed for Treg development, and IkBNS expression is

counteracted at the post-transcriptional level by Roquins, which

in turn are cleaved and inactivated by MALT1 (48, 109). However,

there are only minor changes in steady state frequencies of Treg

cells in Roquin-1 uncleavable mice, arguing that cleavage of

Roquin-1 alone is not sufficient to brake peripheral tolerance

(92). Indeed, it seems likely that more than one MALT1 substrate

is involved in controlling Treg cell development and function. Since

it will be highly resource- and time-consuming to intercross mice

with various uncleavable substrates, it needs to be explored if ex vivo

manipulations of Treg-like cell lines or primary Treg cells can help

to rationalize which MALT1 substrates are involved in maintaining

Treg identity and function (110). Further, identification of relevant

MALT1 substrates that drive immune disorders caused by germline

mutations in CBM components, so called CBM-opathies, will

provide further insights into how the tight control of MALT1

protease activity maintains immune homeostasis (28).

While outstanding work described key roles of MALT1 in

immune and oncogenic signaling, we are only beginning to

understand what substrates and pathways are responsible for

mediating the effects of MALT1 protease. Clinical trials have been

initiated to explore beneficial but also potential adverse effects of

MALT1 targeting in lymphoma and solid cancers (24). Identifying

relevant substrates will be important to better understand the

systemic effects of MALT1 inhibition.
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ABC
DLBCL

Activated B cell-type diffuse large B cell lymphoma

ABD Actin binding domain

ABIN-1 A20−binding inhibitor of NF-kB-1

API2 Apoptosis inhibitor 2

AR Antigen receptor

BCL10 B-cell lymphoma/leukemia 10

BCR B cell antigen receptor

CARD Caspase recruitment domain

CASP10 Caspase 10

CASP8 Caspase 8

CBM CARD-BCL10-MALT1

CC Coiled-coil

CLR C-type lectin receptor

CYLD Cylindromatosis

DD Death domain

DUB Deubiquitinating enzyme

EAE Experimental autoimmune encephalomyelitis

GCB
DLBCL

Germinal center B cell-type diffuse large B cell lymphoma

GPCR G protein-coupled receptor

GR Growth receptor

HOIL-1 Haem−oxidized IRP2 ubiquitin ligase 1

HOIP HOIL-1 interacting protein

ICOS Inducible T Cell Costimulator

IFN Interferons

IKK IkB kinase

JNK c-Jun N-terminal kinase

LIMA1 LIM domain and actin-binding 1

LMO LIM-only

LUBAC Linear ubiquitin chain assembly complex

MAGUK Membrane-associated guanylate kinase

MALT1 Mucosa-associated lymphoid tissue lymphoma translocation
protein 1

MCL Mantle cell lymphoma

N4BP1 NEDD4-binding protein 1

NEMO Nuclear factor-kappa B essential modulator

NFKBID NF-kappa-B inhibitor delta

NFKBIZ NFKB inhibitor zeta

NIK NF-kB inducing kinase

(Continued)
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NYN Nedd4-BP1, YacP-like Nuclease domain

OTU Ovarian tumor

PAR-1 Protease activated receptor-1

PCASP1 Paracaspase 1

PD Paracaspase dead

PKC Protein kinase C

PMA Phorbol 12-myristate 13-acetate

PTB Phosphotyrosine binding

RBP RNA binding protein

RBR RING in between RING

RHD Rel homology domain

RTK Receptor tyrosine kinase

SHARPIN SHANK associated RH domain interactor protein

SR Self-cleavage resistant

T6BM TRAF6 binding motif

TAB3 TAK1 binding protein 3

TAD Transcriptional activation domain

TANK TRAF family member associated NF-kB activator

TBM TRAF6-binding mutant

TCR T cell antigen receptor

TLR Toll-like receptor

TNF Tumor necrosis factor

TNFAIP3 TNFa-induced protein 3

TNS3 Tensin-3

TNS3-nc Tensin-3 non-cleavable

TRAF6 Tumor necrosis factor receptor associated factor 6

Treg Regulatory T cells

UBA Ubiquitin associated

USP Ubiquitin-specific protease

ZnF Zinc finger
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