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Background: Osteoporosis (OP) associated with aging exerts substantial clinical

and fiscal strains on societal structures. An increasing number of research studies

have suggested a bidirectional relationship between circulating inflammatory

markers (CIMs) and OP. However, observational studies are susceptible to

perturbations in confounding variables. In contrast, Mendelian randomization

(MR) offers a robust methodological framework to circumvent such confounders,

facilitating a more accurate assessment of causality. Our study aimed to evaluate

the causal relationships between CIMs and OP, identifying new approaches and

strategies for the prevention, diagnosis and treatment of OP.

Methods: We analyzed publicly available GWAS summary statistics to investigate

the causal relationships between CIMs and OP. Causal estimates were calculated

via a systematic analytical framework, including bidirectional MR analysis and

Bayesian colocalization analysis.

Results: Genetically determined levels of CXCL11 (OR = 0.91, 95% CI = 0.85–

0.98, P = 0.008, PFDR = 0.119), IL-18 (OR = 0.88, 95% CI = 0.83–0.94, P =

8.66×10–5, PFDR = 0.008), and LIF (OR = 0.86, 95% CI = 0.76–0.96, P = 0.008,

PFDR = 0.119) were linked to a reduced risk of OP. Conversely, higher levels of

ARTN (OR = 1.11, 95% CI = 1.02–1.20, P = 0.012, PFDR = 0.119) and IFNG (OR =

1.16, 95% CI = 1.03–1.30, P = 0.013, PFDR = 0.119) were associated with an

increased risk of OP. Bayesian colocalization analysis revealed no evidence of

shared causal variants.

Conclusion: Despite finding no overall association between CIMs and OP, five

CIMs demonstrated a potentially significant association with OP. These findings

could pave the way for future mechanistic studies aimed at discovering new
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treatments for this disease. Additionally, we are the first to suggest a

unidirectional causal relationship between ARTN and OP. This novel insight

introduces new avenues for research into diagnostic and therapeutic strategies

for OP.
KEYWORDS

Mendelian randomization, circulating inflammatory protein, osteoporosis, Bayesian
colocalization analysis, artemin (ARTN)
1 Introduction

Osteoporosis (OP) is a severe skeletal disorder characterized by

a high incidence and mortality rate. It is characterized by decreased

bone strength, increased fragility, and a propensity for fractures,

which can lead to cardiovascular diseases and even premature

mortality (1–7). Currently, OP affects approximately 18.3% of the

global population, and its incidence is increasing due to

environmental pollution and an aging population, highlighting

the need for vigilance (8). However, regrettably, the current

approach to OP treatment primarily focuses on prevention,

utilizing pharmacological interventions to slow bone loss while

ensuring adequate nutrition. Nevertheless, the clinical diagnosis of

OP relies heavily on dual-energy X-ray absorptiometry (DEXA),

and a convenient method for widespread use is not available. This

may explain the higher prevalence of OP in underdeveloped

regions. Therefore, in-depth research on the pathogenesis of OP

is urgently needed for the early prevention and accurate diagnosis of

OP and to develop effective treatment strategies.

Circulating inflammatory markers (CIMs) are garnering

increasing interest in medical research because of their potential

to offer critical insights into early disease diagnosis, prognosis

evaluation, and therapeutic strategies. These small molecule

proteins, which are produced by immune cells, play pivotal roles

in regulating and controlling immune and inflammatory responses.

Through intercellular signal transduction, CIMs regulate and

coordinate the body’s responses to infections, injuries, or other

stimuli. These CIMs are widely present within the body and can

interact with various immune cells, including macrophages,

lymphocytes, and granulocytes. As crucial modulators of the

inflammatory process, they participate in key biological processes,

including cell proliferation, differentiation, migration, and

apoptosis. Common CIMs include tumor necrosis factor (TNF),

interleukin (IL) family members, interferon (IFN) family members,

and chemokines. These CIMs can be synthesized and released by

activated immune cells, thereby regulating and promoting the

inflammatory process. They play essential roles in the immune

system, modulating cell proliferation, mediating inflammation, and

clearing pathogens, among other physiological and pathological

processes. Nevertheless, excessive or abnormal production of CIMs
02
may lead to chronic inflammatory diseases, such as rheumatoid

arthritis, inflammatory bowel disease, and autoimmune diseases (9–

13). Consequently, further research on CIMs is paramount for

understanding the mechanisms of inflammation and developing

treatment methods for related diseases. Various inflammatory

mediators, including IL-1, IL-6, IL-8, TNF-a, and IL-12, are

known to be involved in the onset and progression of

osteoporosis (14). These mediators interact with proteins related

to bone resorption, impairing the function of osteoblasts and

ultimately leading to osteoporosis.

However, the relationship between the levels of CIMs and OP is

not yet clear and may be related to the relatively high

concentrations of these proteins in the body. Currently, some

scholars believe that there is an association between CIMs and

OP (9, 13), but the mechanisms underlying this association remain

unclear. In recent years, Mendelian randomization (MR) has

emerged as an innovative statistical method and has gained

widespread attention in the fields of medicine and biology. This

method uses genetic variations as instrumental variables (IVs) to

assess the causal relationships between exposures and outcomes

(15), thus offering new insights into many diseases that have

traditionally been difficult to elucidate.

In this study, we performed bidirectional MR analysis to

investigate the causal effects of CIMs on OP and vice versa. This

may provide a theoretical basis for further elucidation of the causal

relationship between them.
2 Materials and methods

2.1 Study design

The MR analysis in our study was based on three assumptions:

(1) the genetic instrumental variables (IVs) are strongly associated

with exposure; (2) the selected genetic IVs are not associated with

potential confounders; and (3) the genetic IVs can only affect the

risk of outcome dependently through exposure (16). This

bidirectional MR analysis was performed in two steps. First, CIMs

were investigated as exposures, and OPs were investigated as

outcomes in the first step. In the second step, this was reversed.
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Figure 1 shows an overview of the three assumptions and study

design. The confounders are listed in Supplementary Table 1.
2.2 Data sources

The summary-level data used in this study are deidentified

public data and are available for download. Each GWAS involved in

this study was approved by the ethics committee of the

respective institution.

OP-related GWAS summary statistics were extracted from the

FinnGen consortium, including data from 365,314 individuals of

European ancestry and 7300 individuals with OP. More details for

phenotype and modeling, genotype quality control, and related

association analyses can be found on the FinnGen website (https://

www.finngen.fi/en/) (17). Associations were tested after adjusting

for covariates, including heel bone mineral density, heel bone

mineral density left, heel bone mineral density right, bone

density, lumbar spine bone mineral density, self-reported

osteoporosis, and carbamazepine-induced cutaneous adverse

drug reactions.

Summary statistics for CIMs were publicly available from the

GWAS Catalog (accession numbers from GCST90274758 to

GCST90274848) (http://ftp.ebi.ac.uk/pub/databases/gwas/

summary_statistics/GCST90274001-GCST90275000). A total of

91 phenotypes were included. The original GWAS of immune

traits was performed using data from European individuals, and
Frontiers in Immunology 03
there were no overlapping cohorts. The corresponding information

for these 91 CIMs can be found in Supplementary Table 2.
2.3 Genetic instrumental variable
(IV) selection
1. The IVs selected for analysis are highly related to the

corresponding exposures, and we chose significant single

nucleotide polymorphisms (SNPs) based on a loose cutoff

of p < 1 × 10-5 to ensure sufficient IVs for screening.

2. The IVs are mutually independent and avoid the offset

caused by linkage disequilibrium (LD) between the SNPs

(r2 < 0.1, LD distance > 500 kb).

3. We eliminated IVs with an F-statistic <10 to minimize

potential weak instrument bias F = R2 (n-k-1)/k (1-R2) (n

is the sample size, k is the number of included IVs, and R2

is the exposure variance explained by the selected SNPs).
2.4 MR analysis

The inverse variance weighted (IVW), weighted median,

weighted mode, simple mode, and MR−Egger methods were used

to evaluate the bidirectional relationships between CIMs and OP as
FIGURE 1

Flowchart of bidirectional MR analysis between CIMs and OP.
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the main statistical approach (https://mrcieu.github.io/

TwoSampleMR/). The IVW method was considered the most

accurate method for estimating causal relationships if there was

no clear evidence for the presence of directional pleiotropy (p for

MR−Egger intercept > 0.05) (16, 18). When there was insufficient

evidence of heterogeneity (p for MR heterogeneity > 0.05) in these

selected genetic IVs, a random-effects model was used; otherwise, a

fixed-effects model was used. A weighted median method was also

used, which can generate effective causal estimates when at least

50% of the selected genetic IVs are valid (18). MR-PRESSO was

used to test for pleiotropy and detect outliers. Considering multiple

testing of OP and CIMs, we applied a moderate approach (false

discovery rate, FDR) by adjusting the p values separately to correct

for multiple hypothesis testing (19, 20). FDR q-values less than 0.3

were considered to indicate statistical significance.
2.5 Bayesian colocalization analysis

Bayesian colocalization analysis can evaluate the shared local

genetic architecture between two traits and is valuable for further

identifying MR associations caused by LD confounding (21). In this

study, the “COLOC” package was used to perform Bayesian

colocalization analysis (22). This package incorporates

sophisticated algorithms and models to estimate the probability of

colocalization between genes associated with the two traits under

investigation. To determine whether colocalization occurred, a

threshold was set based on previous studies. Specifically, PPH4

represents the probability that both traits share the same causal

variant. If the posterior probability of hypothesis 4 (PPH4)

exceeded 80%, it was considered significant evidence supporting

the colocalization of genes (23).
2.6 Statistical analysis

To assess the causal relationship between OP and 91 CIMs, the

“Mendelian-Randomization” package (version 0.4.3) (24) was

primarily used to carry out the IVW (25), weighted median-based

(18), and mode-based methods (26). To test for heterogeneity

among certain IVs, Cochran’s Q statistic and related p values

were used. Random effects IVW, as opposed to fixed effects IVW,

was employed in the event that the null hypothesis was rejected

(25). MR−Egger, a widely used approach that assumes the presence

of horizontal multiplicity if its intercept term is large, was employed

to eliminate the effect of horizontal pleiotropy (27). Moreover, a

potent technique known as the MR pleiotropy residual sum and

outlier (MR-PRESSO) method was applied to exclude any potential

horizontal pleiotropic outliers that might have a significant impact

on the estimation outcomes within the MR-PRESSO package (28).

Furthermore, funnel plots and scatter plots were generated. Scatter

plots demonstrated that outliers had no effect on the results. Funnel

plots showed that there was no heterogeneity, and the correlation

was robust. The bidirectional MR effect between each CIM and OP

and its corresponding SNPs can be found in the Supplementary
Frontiers in Immunology 04
Material named dat.csv. The positions of the valid SNPs for OP and

each CIM in the context of the annotation can be accessed in the

sheet corresponding to the CIM accession ID, with the suffix

csv-dat.xlsx.
3 Results

3.1 Exploration of the causal effect of CIMs
on OP onset

To explore the causal impact of CIMs on OP, two-sample MR

analysis was performed. The threshold for statistical significance

was set as an FDR below 0.3, and the quantity of SNPs for each

metric was considered to augment the robustness of the genetic IVs.

All these genetic IVs met the requirements of linkage disequilibrium

(LD)-independent (r2 < 0.1) and achieved a genome-wide

significance level (p < 1 × 10−5).

In our examination of CIMs as an exposure variable, we

employed a multitude of SNPs as instrumental variables to

strengthen our analysis. The IVW approach indicated a statistically

significant association between 10 CIMs and the occurrence of OP,

and the number of CIMs was reduced to five after eliminating

horizontal pleiotropy of variables by MR-PRESSO. Only three

CIMs were found to play a protective role in OP pathogenesis,

including 11 SNPs for chemokine (C-X-C motif) ligand 11

(CXCL11) (IVW, OR = 0.91, 95% CI = 0.85–0.98, P = 0.008, PFDR
= 0.119), 58 SNPs for interleukin 18 (IL-18) (IVW,OR = 0.88, 95% CI

= 0.83–0.94, P = 8.66×10-5, PFDR = 0.008), and 24 SNPs for leukemia

inhibitory factor (LIF) (IVW, OR = 0.86, 95% CI = 0.76–0.96, P =

0.008, PFDR = 0.119). Two CIMs were found to be risk factors for the

pathogenesis of OP, including 34 SNPs in artemisinin (ARTN) (IVW,

OR = 1.11, 95% CI = 1.02–1.20, P = 0.012, PFDR = 0.119) and 18 SNPs

in interferon gamma (IFNG) (IVW, OR = 1.16, 95% CI = 1.03–1.30,

P = 0.013, PFDR = 0.119) (Figure 2). The causal effects of all five CIMs

on OP are listed in Supplementary Table 3.
3.2 Exploration of the causal effect of OP
onset on CIMs

Conversely, when considering OP as the exposure variable, no

CIM achieved statistical prominence in the conventional purview

[ARTN (IVW, OR = 1.03, 95% CI = 0.98–1.07, P = 0.205, PFDR =

0.881), CXCL11 (IVW, OR = 1.01, 95% CI = 0.97–1.04, P = 0.791,

PFDR = 0.965), IFNG (IVW, OR = 1.02, 95% CI = 0.98–1.07, P =

0.315, PFDR = 0.881), IL-18 (IVW, OR = 0.98, 95% CI = 0.95–1.02, P

= 0.404, PFDR = 0.918), LIF (IVW, OR = 1.03, 95% CI = 0.99–1.08, P

= 0.157, PFDR = 0.881)] (Figure 3). However, significant linkages

might not be precluded under the more accommodating FDR

benchmarks of the present study. Notably, the MR−Egger

intercept and the global test from MR-PRESSO discounted the

possibility of horizontal pleiotropy, thereby strengthening the

validity of our results. The consistency of these findings was also

supported by scatter plots and funnel plots, which indicated the
frontiersin.org
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reliability of our conclusions regarding the relationship between

CIMs and OP. The results of the reverse causal effect of OP on all

CIMs are listed in Supplementary Table 4.
3.3 Bayesian colocalization analysis of
CIMs and OP onset

Using Bayesian colocalization analysis, we examined the

associations between several CIMs (ARTN, CCL11, IFGN, IL18,
Frontiers in Immunology 05
and LIF) as exposure factors and OP as an outcome. We found no

evidence to support the presence of shared causal variants using

COLOC analysis in the training and testing cohorts (ARTN: PPH4

= 0.030; CCXL11: PPH4 = 0.052; IFGN: PPH4 = 8.23e×10–6; IL-

18: PPH4 =0.042; LIF: PPH4 =0.005) for the association between

CIMs and OP (rs17490485, ARTN; rs4859679, CCXL11; rs438211,

IFNG; rs735622, IL-18; rs116967415, LIF). The regional

colocalization plots for these associations and the detailed results

of the shared genetic IVs and located genes are listed in

Supplementary Table 5; Supplementary Figure 1.
B

A

FIGURE 2

Causality outcomes for CIMs and OP. (A) Volcano plot showing the association between various CIMs and OP risk. Significant CIMs are labeled.
(B) Forest plot presenting ORs with 95% CIs for selected CIMs using different MR methods. Five CIMs were identified as being associated with OP
after MR analysis. ARTN and IFNG were risk factors for OP. CXCL11, IL-18, and LIF were identified as protective factors against OP. CIM, circulating
inflammatory marker; OP, osteoporosis; MR, Mendelian randomization; OR, odds ratio; FDR, false discovery rate; nsnp, number of single nucleotide
polymorphisms; ARTN, Artemin; IFNG, interferon gamma; CXCL11, chemokine (C-X-C motif) ligand 11; IL-18, interleukin 18; LIF, leukemia
inhibitory factor.
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4 Discussion

In our study, we performed bidirectional Mendelian

randomization to investigate the potential causal associations

between OP and 91 CIMs. Based on relatively large publicly

available GWAS meta-analyses, we found positive unidirectional

causal associations between CIMs and OP. Five CIMs (ARTN,

CXCL11, IL-18, LIF, and IFNG) demonstrated a potential

association with OP, and OP occurrence was not associated with

an alteration in CIMs. These unidirectional associations were

consistent with the sensitivity analyses but not supported by the

colocalization analyses.

After MR analysis, we identified three protective factors for OP:

CXCL11, LIF and IL-18.

CXCL11 is a small cytokine of the CXC chemokine family and

has been shown to inhibit osteoclast differentiation of CD14+

monocytes (29). In our study, CXCL11 was shown to play a

protective role in OP pathogenesis. The potent inhibition of

osteoclastogenesis by IFN-b is partly mediated by the chemokine

CXCL11. Similarly, our study revealed that CXCL11 plays a

protective role in the pathogenesis of OP.

Several studies have shown a role for LIF in stimulating bone

formation in vivo (30, 31). The expression level of LIF mRNA is

increased upon osteogenic differentiation, resulting in LIF

production by osteoblasts (32). Bozec et al. showed a 40%

decrease in bone volume in newborn LIF-mutant animals. These

animals did not have altered osteoblasts but demonstrated

significant increases in osteoclast number and size, relative
Frontiers in Immunology 06
osteoclast surface area, and bone resorption (33). These findings

suggest that LIF prevents OP by controlling osteoclast survival and

size and explains why LIF was a protective factor against OP in

our study.

IL-18 demonstrated a protective effect against osteoporosis in our

study, possibly because IL-18 promotes osteogenic differentiation of

hBMSCs through the SLC7A5/c-MYC pathway. SLC7A5 and c-MYC

play important roles in the IL-18-induced expression of osteogenic

markers in hBMSCs. IL-18 upregulates the expression of SLC7A5 and

c-MYC at the early stage of hBMSC osteogenic differentiation, and

SLC7A5 and c-MYC inhibition blocks the osteogenic differentiation

induced by IL-18 (34). The bone density of elderly patients with

osteoporosis increases significantly after anti-osteoporosis treatment.

This may be related to the ability of IL-18 to inhibit osteoclast activity,

induce the proliferation and differentiation of bone marrow-derived

lymphoid progenitor cells, and promote NK cell proliferation and

cytotoxicity (35, 36).

We also found two risk factors associated with OP by MR

analysis: ARTN and IFNG.

As a member of the glial cell-derived neurotrophic factor

(GDNF) ligand family, the major function of ARTN is to drive the

molecule to induce sympathetic neuron migration and axon

projection (37), and ARTN has been implicated in pain signaling,

including that derived from the joint and bone (38–40). Some studies

suggest that ARTN/GFRa3 signaling is involved in the pathogenesis

of bone pain, and inhibition of this process could be used to treat

pain in osteoarthritis (OA) when pathological features are present in

the subchondral bone (38, 39). Other studies have suggested that
FIGURE 3

Reverse causality outcomes for CIMs and OP. After MR analysis, no CIM achieved statistical prominence when OP was the exposure variable. None
of the PFDRs were less than 0.3. CIM, circulating inflammatory marker; OP, osteoporosis; MR, Mendelian randomization; OR, odds ratio; FDR, false
discovery rate; nsnp, number of single nucleotide polymorphisms; ARTN, Artemin; IFNG, interferon gamma; CXCL11, chemokine (C-X-C motif)
ligand 11; IL-18, interleukin 18; LIF, leukemia inhibitory factor.
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ARTN is regulated by estrogen and mediates estrogen resistance in

breast cancer (41, 42). It has been well documented that estrogen is

closely related to osteoporosis, especially postmenopausal

osteoporosis in women (43–45). In bone, estrogen inhibits

osteoclast formation and bone resorption activity by binding to the

estrogen receptor, promoting osteoprotegerin (OPG) expression,

and inhibiting the action of nuclear factor-kb ligand (RANKL).

However, to date, research on the relationship between ARTN and

OP remains relatively limited, and there is currently no conclusive

evidence of a direct association between ARTN and OP. Our study is

the first to find that ARTN is positively correlated with the risk of OP

from a genetic point of view.

INFG is a classic proinflammatory mediator that is overexpressed

in the course of OP (46). Comprehensive studies have confirmed that

circulating IFNG levels are significantly elevated in patients with OP

and that their upregulation also correlates with a severe OP

phenotype (47, 48). This finding is consistent with the results of

our study, which revealed that IFNG is a risk factor for OP.

Previous studies have focused on disease-to-disease or symptom-

to-disease relationships. To our knowledge, no MR analysis focused

on the causal relationship between OP and multiple CIMs has yet

been reported. Our study used several variants summarized from

large-scale GWASs on OP and CIMs to increase the statistical power

to detect causal associations. This approach extends the findings of

previous studies. Moreover, this approach can be applied to identify

potential novel molecular pathways relevant to the diagnosis and

treatment of OP, as the pathophysiological mechanisms of this

relationship have not yet been fully elucidated. Therefore, we

performed a colocalization analysis to identify five causal variants

and localize them to their respective genes. Current evidence that the

five CIMs mentioned above (ARTN, CXCL11, IFGN, IL-18, and LIF)

are involved in the pathogenesis of CIMs and OP is inconclusive.

Thus, further in-depth studies are needed.

Our study has limitations. First, although we obtained positive

sensitivity analysis results in MR analysis, colocalization analysis

suggested that the association between CIMs and OP remained

uncertain. Second, our MR analysis suggests a potential causal link

between CIMs and OP risk, but this does not confirm direct

causality. MR results rely on the assumption that the genetic

variant is randomly associated with both CIMs and OP and is not

influenced by confounders. Violations of these assumptions may

bias the findings. Due to MR design limitations, we lack specific

biomarker-level data. These results should be interpreted alongside

other study evidence. Recognizing these limitations, our study

provides a hypothesis that can guide future research investigating

the specific levels and biological roles of these biomarkers in relation

to OP risk. Third, because we used summary-level MR data, we

were unable to perform subgroup-specific analysis.
5 Conclusion

In conclusion, we found unidirectional causal relationships

between CIMs, including ARTN, CXCL11, IFGN, IL-18, and LIF,

and OP in our MR sensitivity analysis, and a potential association

between ARTN and OP was proposed for the first time. This
Frontiers in Immunology 07
association was not supported by colocalization analysis but still

has great value for further in-depth study.
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