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Causal associations between
Helicobacter Pylori infection and
the risk and symptoms of
Parkinson’s disease: a Mendelian
randomization study
Xin Wang1†, Deming Jiang2†, Xiao Zhang1, Ran Wang1,
Fengyi Yang1 and Chunrong Xie1*

1Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China,
2Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
Background: Increasing evidence suggests an association betweenHelicobacter

pylori (HP) infection and Parkinson’s disease (PD) and its clinical manifestations,

but the causal relationship remain largely unknown.

Objective: To investigate the causal relationship between HP infection and PD

risk, PD symptoms, and secondary parkinsonism, we conducted two-sample

Mendelian randomization (MR).

Methods:We obtained summary data from genome-wide association studies for

seven different antibodies specific to HP proteins and five PD-related

phenotypes. The inverse-variance weighted (IVW), weighted median, weighted

mode, and MR-Egger methods were used to assess the causal relationships.

Sensitivity analyses were performed to examine the stability of the MR results and

reverse MR analysis was conducted to evaluate the presence of reverse causality.

Results: Genetically predicted HP antibodies were not causally associated with

an increased risk of PD. However, HP cytotoxin-associated gene-A (CagA) and

outer membrane protein (OMP) antibody level were causally associated with PD

motor subtype (tremor to postural instability/gait difficulty score ratio; b = -0.16

and 0.46, P = 0.002 and 0.048, respectively). HP vacuolating cytotoxin-A (VacA)

antibody level was causally associated with an increased risk of PD dementia

[odds ratio (OR) = 1.93, P = 0.040]. Additionally, HP OMP antibody level was

identified as a risk factor for drug-induced secondary parkinsonism (OR = 2.08,

P = 0.033). These results were stable, showed no evidence of heterogeneity or

directional pleiotropy, and no evidence of a reverse causal relationship.

Conclusions:Our findings indicate that HP infection does not increase the risk of

PD, but contributes to PD motor and cognitive symptoms. Different types of HP

antibodies affect different symptoms of PD. Eradication of HP infection may help

modulate and improve symptoms in PD patients.
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1 Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative

disorder, ranking second only to Alzheimer’s disease in terms of

disease burden (1). It is estimated that by 2040, the global number of

patients with PD will exceed 14 million (2). The clinical

manifestations of PD can be classified into motor symptoms and

non-motor symptoms. Motor symptoms primarily involve

bradykinesia, tremors, gait difficulty, and postural instability, while

non-motor symptoms mainly include depression, constipation, sleep

disorders, and cognitive impairments (3). The etiology of PD is not

yet fully understood. The current understanding is that the

pathogenesis of PD is primarily associated with the deposition of

unidentified a-synuclein in the brain and the loss of nigrostriatal

dopamine neurons (4). Recently, the role of microorganisms in the

pathogenesis of PD has gained significant attention (5–7). Notably,

increasing evidence suggests a close association between Helicobacter

pylori (HP) infection and PD (8).

Helicobacter pylori is a Gram-negative, microaerophilic, and

flagellated bacterium that primarily colonizes the human gastric

mucosa, causing conditions such as gastric ulcers and duodenal

ulcers (8). After infecting the human body, HP can secrete various

toxins and then induce the production of various antibodies in host,

including anti-H. pylori IgG, cytotoxin-associated gene-A (CagA),

catalase, chaperonin GroEL (GroEL), outer membrane protein

(OMP), urease subunit-A (UreA), and vacuolating cytotoxin-A

(VacA) antibodies (9–11). The specific toxins and antibodies

generated depend on the strain of HP infecting the host and its

genetic profile (10). Among them, CagA and VacA toxins can

further induce systemic inflammation and neuroinflammation (12).

The mechanisms through which HP infection is associated with PD

may include the production of HP-related toxins, stimulation of

pro-inflammatory cytokines, interference with the effectiveness of

PD medications, and small intestinal bacterial overgrowth (8).

Previous studies have shown that the prevalence of HP infection

in patients with PD is approximately 1.6 times higher than in

control groups (13). Our previous umbrella review indicates that

patients with PD can have multiple microbial infections, with the

highest level of evidence related to HP infection (14). However, a

systematic review has shown that the prevalence of HP infection in

PD ranges from 37% to 59%, similar to the general population (15).

Furthermore, HP infection is also associated with the clinical

manifestations and severity of PD (16, 17). Meta-analysis shows

that PD patients with HP infection have more severe motor

symptoms and poorer response to medication (16). However, it is

worth noting that the results of intervention studies are

inconsistent. Some small-sample studies suggest that HP

eradication therapy can effectively improve the clinical symptoms

of PD, particularly bradykinesia and stride length (18). However, a

larger randomized controlled trial of HP eradication in PD suggests

that eradicating HP does not improve the clinical outcomes of PD,

including both motor and non-motor symptoms (19). Based on

current research findings, the direct link between HP infection and

PD, as well as its impact on the clinical symptoms of PD, remains

inconclusive. However, establishing a definitive causal relationship
Frontiers in Immunology 02
is crucial for developing preventive measures or treatment strategies

for PD by eradicating HP.

Mendelian randomization (MR) is a causal inference

epidemiological analysis method. It integrates summary data from

genome-wide association studies (GWAS) to determine the causal

relationship between exposure and outcome (20). Genetic variants,

specifically single-nucleotide polymorphisms (SNPs), are used as

instrumental variables (IVs) in the MR analysis. As genetic variants

follow the laws of segregation assortment and independent

assortment, MR results are less likely to be influenced by reverse

causality and environmental factors that may confound the

estimated relationship (20–22). In this study, we conducted two-

sample MR analysis to explore the causal relationship between HP

infection-related antibodies levels and PD risk and clinical

symptoms of PD. Given the overlapping pathogenic mechanisms

between secondary parkinsonism and PD, we also examined the

association between HP infection and secondary parkinsonism.

Additionally, we investigated the reverse causal relationship

between PD and HP infection.
2 Materials and methods

2.1 Mendelian randomization design

The study design of this research is illustrated in Figure 1. In

this current study, we used genetic variants as IVs for MR analysis.

The validity of our MR study is based on three core assumptions: (1)

the assumption of relevance: genetic variants are highly correlated

with the exposure; (2) the assumption of independence: genetic

variants are unrelated to confounding factors; and (3) the

assumption of exclusion restrictions: genetic variants only affect

the outcome through the exposure and not through other pathways.
2.2 GWAS data sources

The data used in this study was derived from previously

published GWAS. To avoid bias due to population stratification,

this study only utilized GWAS summary data from individuals of

European ancestry. HP infection was defined based on

measurements of serum-specific antibodies against HP proteins.

The GWAS dataset for HP protein antibodies was obtained from

the UK Biobank and included 8,735 individuals with seven antibody

levels for anti-H. pylori IgG, GroEL, OMP, UREA, CagA, VacA, and

catalase (9).

We selected five PD-related phenotypes, including PD, PD

motor subtype, PD dementia, Secondary parkinsonism, and drug-

induced secondary parkinsonism. The summary statistics data for

PD were obtained from the largest published meta-analysis of PD

GWAS made by International Parkinson’s Disease Genomics

Consortium, involving 33,674 PD cases and 449,056 European

ancestry controls (23). The summary statistics data for PD motor

subtype were derived frommultiple North-American and European

PD research cohorts, including 3,212 European ancestry PD cases
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(24). We chose the tremor to postural instability/gait difficulty

(PIGD) score ratio as a measure of PD motor subtype because it

provides a continuous outcome based on the tremor/PIGD score

ratio and has the advantage of a larger sample size (24). The

summary statistics data for dementia due to PD, secondary

parkinsonism, and drug-induced secondary parkinsonism were

obtained from over 21,000 individuals in the Finnish population.

All these summary data can be found and downloaded from the

IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/). Details of

the included GWAS data in this study are provided in

Supplementary Table 1.
2.3 Instrumental variables selection

A series of quality control measures were implemented to select

eligible IVs for HP infection that meet the assumptions of MR

analysis. In order to achieve more comprehensive results, we

applied two threshold levels to filter SNPs related to the exposure.

Specifically, a stringent significance threshold (P < 5×10-6) was used

for the primary analysis results, and a lenient significance threshold

(P < 1×10-5) was used for sensitivity analysis (25). We did not select

a genome-wide significance threshold (P < 5 × 10-8) due to

insufficient SNPs available for MR analysis. Additionally, the IVs

selected show no significant correlation with the PD phenotype (P <

5 × 10-8). The linkage disequilibrium threshold was set at R2 =
Frontiers in Immunology 03
0.001, and the distance to search for linkage disequilibrium R2-

values was set at 10,000 kb. If SNPs selected from the exposure were

not present in the outcome dataset, proxy SNPs with significant

correlation (R2 > 0.8) to the selected variants were used.

Subsequently, we evaluated the strength of association between

SNPs and the phenotype using the F-statistic (F = b2/se2) for each
SNP. SNPs with an F-statistic below 10 were considered weak IVs

and were excluded from the analysis (26). SNPs harmonization was

performed to ensure consistency of effect alleles in the exposure and

outcome datasets, eliminating ambiguous SNPs with intermediate

allele frequencies and those with inconsistent alleles. Detailed

information on the IVs is provided in the Supplementary 2, 3.

We also conducted reverse MR analysis by treating PD-related

phenotypes as the exposure, extracting PD IVs with a significance

threshold of P < 5×10-8, and the remaining phenotypes with a

significance threshold of P < 5×10-6.
2.4 Statistical analysis

We conducted two-sample MR analyses to determine the

potential causal effects of seven different HP antibodies on PD-

related phenotypes. Four methods were used to detect causal effects

between the exposure and outcomes, including inverse variance

weighted (IVW), MR-Egger, weighted median, and weighted mode

method. The IVW technique combines a meta-analysis approach
FIGURE 1

Overall design of the MR study. MR, Mendelian randomization; SNPs, single-nucleotide polymorphisms; PD, Parkinson’s disease; CagA, cytotoxin-
associated gene-A; GroEL, chaperonin GroEL; OMP, outer membrane protein; UREA, urease subunit-A; VacA, vacuolating cytotoxin-A.
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with Wald estimation for each SNP, but it is applicable only when

there is no horizontal pleiotropy (27). The IVW method is

characterized by its simplicity and higher effectiveness. MR-Egger

regression allows for the assessment of pleiotropy using an intercept

term. MR-Egger regression assumes that more than 50% of the IVs

are affected by horizontal pleiotropy. If the intercept term is zero,

the results of MR-Egger regression are consistent with IVW,

indicating no horizontal pleiotropy (28). MR-Egger regression

provides an estimate that is not affected by violations of the

standard IVs assumptions. The weighted median method allows

for unbiased causal effect estimation even when up to 50% of the

IVs are invalid (29). The weighted median method offers superior

precision compared to MR-Egger analysis. The weighted mode

calculates the causal effect of the largest cluster of valid IVs. The

weighted mode method remains consistent even in the presence of

invalid instruments when the highest number of similar individual

instrument causal effect estimates is derived from valid instruments

(30). These methods are based on different assumptions and

conditions, and complement each other. If the results of at least

one MR analysis method are significant (P < 0.05), we consider a

causal relationship between HP antibody levels and the outcomes

(31). If the significance results of MR analyses are consistent under

different significance thresholds for IVs selection, the results are

considered robust.

Multiple sensitivity analyses were conducted to validate the

robustness of the MR findings. We used Cochran’s Q statistics to

detect heterogeneity through the IVW andMR-Egger methods (32).

The presence of heterogeneity among IVs should be taken into

account if statistically significant (P < 0.05). The presence of

horizontal pleiotropy may pose a challenge to the second MR

hypothesis. Therefore, two methods were employed to assess

potential horizontal pleiotropy. The MR-Egger regression

examined whether the results were driven by directional

horizontal pleiotropy (28). The intercept derived from the MR-

Egger method was employed to evaluate the Instrument Strength

Independent of Direct Effect (InSIDE) assumption, which posits

that horizontal pleiotropic effects are independent of variant-

exposure associations. A Pintercept < 0.05 indicates the presence of

horizontal pleiotropy. The Mendelian randomization pleiotropy

residual sum and outlier (MR-PRESSO) detected any outliers

reflecting potential pleiotropy bias and corrected for horizontal

pleiotropy (33). The number of distributions in the MR-PRESSO

analysis was set to 1000. P < 0.05 was considered statistically

significant. Additionally, to determine whether the causal

relationship of the MR analysis was caused by a single SNP

(potential heterogeneous SNP), leave-one-out sensitivity analyses

were conducted to validate the stability of causal effect estimates.

The method involved sequentially excluding each SNP from the IVs

to assess the presence of potential outliers.

Finally, a reverse MR analysis was performed between five PD-

related phenotypes and HP protein antibodies to examine whether a

reverse causal association existed. If the identified significant causal

relationship in the forward MR analysis is also significant in the

reverse MR analysis, then this relationship will be considered to

exhibit reverse causality. The reverse MR procedure was the same as

that for the above TSMR analysis.
Frontiers in Immunology 04
Statistical analysis was performed using R software (version

4 .1 .3) . The MR analyses were conducted us ing the

“TwoSampleMR” package (34) (version 0.5.10) for MR analysis,

and the MR-PRESSO R package (version 1.0) was used for

MR-PRESSO.
3 Results

Based on a stringent significant threshold of P < 5 × 10−6, there

were 11, 15, 5, 10, 10, 15, and 9 IVs for anti-HP IgG, CagA, GroEL,

OMP, UREA, VacA, and catalase antibody levels, respectively.

Based on a lenient locus-wide significant threshold of P < 1 ×

10−5, there were 21, 26, 10, 18, 24, 25, and 16 IVs for anti-HP IgG,

CagA, GroEL, OMP, UREA, VacA, and catalase antibody levels,

respectively. The F-statistics for all SNPs were greater than 10,

indicating the absence of weak IVs (Supplementary Tables 2, 3).
3.1 Causal relationship of Helicobacter
pylori infection and Parkinson’s disease risk

Under the stringent significant threshold, genetically predicted

HP antibody levels, including anti-HP IgG, CagA, GroEL, OMP,

UREA, VacA, and catalase antibody, showed no association with

the risk of PD using the IVW method [odds ratio (OR), 1.00–1.08;

P = 0.089–0.999; Table 1]. Similar results were obtained when using

the MR-Egger, weighted median, and weighted model methods

(Supplementary Table 4). The non-significant results remained

consistent under the lenient significant threshold (Supplementary

Table 5). Reverse MR analysis revealed no reverse causal

relationship between PD risk and HP antibodies levels

(Supplementary Table 6).
3.2 Causal relationship of Helicobacter
pylori infection and Parkinson’s
disease symptoms

Under the stringent significant threshold (Table 2 and

Supplementary Table 4), genetically predicted HP CagA antibody

level was negatively associated with the tremor/PIGD score ratio

using the IVW method (b = -0.162; Standard Error (SE) = 0.05; P =

0.002) and the weighted median method (b = -0.191; SE = 0.07; P =

0.007). Genetically predicted HP GroEL antibody level was also

negatively associated with the tremor/PIGD score ratio using the

IVW method (b = -0.249; SE = 0.10; P = 0.010). In contrast,

genetically predicted HP OMP antibody level was positively

associated with the tremor/PIGD score ratio using the MR-Egger

method (b = 0.461; SE = 0.18; P = 0.048). Additionally, genetically

predicted HP VacA antibody was identified as a risk factor for PD

dementia using the MR-Egger method (OR = 1.93; 95% Confidence

Interval (CI) = 1.10–3.39; P = 0.040).

Under the lenient significant threshold (Table 3 and

Supplementary Table 5), genetically predicted HP CagA antibody

level was negatively associated with the tremor/PIGD score ratio
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using the IVW method (b = -0.083; SE = 0.04; P = 0.018) and the

weighted mode method (b = -0.193; SE = 0.09; P = 0.038). Similarly,

genetically predicted HP OMP antibody level was positively

associated with the tremor/PIGD score ratio using the MR-Egger

method (b = 0.352; SE = 0.14; P = 0.026). Additionally, genetically

predicted HP Catalase and VacA antibody were identified as risk

factors for PD dementia using the weighted median method (OR =
Frontiers in Immunology 05
1.45; 95% CI = 1.01–2.09; P = 0.045) and the MR-Egger method

(OR = 1.81; 95% CI = 1.05–3.11; P = 0.043), respectively.

Finally, the causal relationship between HP CagA antibody level

and the tremor/PIGD score ratio using the IVW method, HP OMP

antibody level and the tremor/PIGD score ratio using the MR Egger

method, HP VacA antibody level and dementia due to PD using the

MR Egger method, and HP OMP antibody level and drug-induced
TABLE 1 MR results of causal links between HP antibodies levels on PD (IVW method).

Exposure Outcome Nsnp
locus-wide
significance

OR
(95% CI)

P value

Anti-HP IgG PD
9 P < 5 × 10-6 1.00 (0.63-1.58) 0.999

16 P < 1 × 10-5 1.08 (0.77-1.52) 0.664

CagA PD
10 P < 5 × 10-6 1.00 (0.93-1.07) 0.97

20 P < 1 × 10-5 0.99 (0.94-1.04) 0.637

Catalase PD
9 P < 5 × 10-6 1.08 (0.99-1.17) 0.089

16 P < 1 × 10-5 1.05 (0.98-1.12) 0.183

GroEL PD
4 P < 5 × 10-6 1.02 (0.87-1.20) 0.799

8 P < 1 × 10-5 1.02 (0.91-1.15) 0.713

OMP PD
7 P < 5 × 10-6 1.04 (0.94-1.16) 0.450

14 P < 1 × 10-5 1.00 (0.92-1.09) 0.960

UREA PD
10 P < 5 × 10-6 1.07 (0.97-1.17) 0.183

23 P < 1 × 10-5 1.01 (0.94-1.09) 0.704

VacA PD
15 P < 5 × 10-6 1.01 (0.94-1.09) 0.714

23 P < 1 × 10-5 1.03 (0.97-1.09) 0.317
MR, Mendelian randomization; HP, Helicobacter pylori; OR, odd ratio; CI, confidence interval; PD, Parkinson’s disease; IVW, inverse-variance weighted method; HP, Helicobacter Pylori; CagA,
cytotoxin-associated gene-A; GroEL, chaperonin GroEL; OMP, outer membrane protein; UREA, urease subunit-A; VacA, vacuolating cytotoxin-A.
TABLE 2 MR positive results of causal links between HP antibodies levels on PD-related phenotypes (P < 5 × 10-6).

Exposure Outcome Nsnp Methods
OR

(95% CI)
Beta P value

P value
(Egger

intercept)

Pivw value
(Cochran’s

Q)

P value
(MR-

PRESSO)

CagA
PD motor subtype
(tremor/PIGD
score ratio)

10 IVW
0.85

(0.77-0.94)
-0.162 0.002

0.608 0.409 0.814

CagA
PD motor subtype
(tremor/PIGD
score ratio)

10
Weighted
median

0.83
(0.72-0.95)

-0.191 0.007

GroEL
PD motor subtype
(tremor/PIGD
score ratio)

10 IVW
0.78

(0.64-0.94)
-0.249 0.010 0.350 0.665 0.409

OMP
PD motor subtype
(tremor/PIGD
score ratio)

10 MR Egger
1.59

(1.12-2.24)
0.461 0.048 0.058 0.083 0.585

VacA
Dementia due

to PD
7 MR Egger

1.93
(1.10-3.39)

0.660 0.040 0.079 0.095 0.040

OMP
Drug-induced
secondary

parkinsonism
7 IVW

2.08
(1.06-4.08)

0.732 0.033 0.377 0.370 0.563
f

MR, Mendelian randomization; HP, Helicobacter pylori; OR, odd ratio; CI, confidence interval; PD, Parkinson’s disease; PIGD, postural instability/gait difficulty; IVW, inverse-variance weighted
method; CagA, cytotoxin-associated gene-A; GroEL, chaperonin GroEL; OMP, outer membrane protein; VacA, vacuolating cytotoxin-A.
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secondary parkinsonism using the IVW method, all yielded

consistent results under both IVs selection thresholds, as shown in

Figure 2. Furthermore, reverse MR analysis revealed no reverse causal

relationships for these positive associations (Supplementary Table 6).
3.3 Causal relationship of Helicobacter
pylori infection and
secondary parkinsonism

There was no evidence to suggest a causal association between

HP antibody levels and secondary parkinsonism. However, under the

stringent significant threshold (Table 2 and Supplementary Table 4),

genetically predicted HPOMP antibody was identified as a risk factor
Frontiers in Immunology 06
for drug-induced secondary parkinsonism using the IVW method

(OR = 2.08; 95% CI = 1.06–4.08; P = 0.033). This result was replicated

under lenient conditions (OR = 1.94; 95% CI = 1.24–3.04; P = 0.004;

Table 3 and Supplementary Table 5). Reverse MR analysis found no

evidence of a causal effect of drug-induced secondary parkinsonism

on HP antibodies levels (Supplementary Table 6).
3.4 Sensitivity analysis results

In the sensitivity analyses, heterogeneity analysis showed no

evidence of a significant causal effect of HP antibodies levels on the

tremor/PIGD score ratio, PD dementia, and drug-induced

secondary parkinsonism. Except for a potential pleiotropic effect
TABLE 3 MR positive results of causal links between HP antibodies levels on PD-related phenotypes (P < 1 × 10-5).

Exposure Outcome Nsnp Methods
OR
(95%
CI)

Beta P value
P value
(Egger

intercept)

Pivw value
(Cochran’s

Q)

P value
(MR-

PRESSO)

CagA
PD motor subtype
(tremor/PIGD
score ratio)

17 IVW
0.92
(0.86-
0.99)

-0.083 0.018

0.608 0.409 0.586

CagA
PD motor subtype
(tremor/PIGD
score ratio)

17
Weighted
mode

0.82
(0.70-
0.97)

-0.193 0.038

OMP
PD motor subtype
(tremor/PIGD
score ratio)

13 MR Egger
1.42
(1.09-
1.86)

0.352 0.026 0.058 0.083 0.288

Catalase Dementia due to PD 15
Weighted
median

1.45
(1.01-
2.09)

0.374 0.045 0.646 0.254 0.686

VacA Dementia due to PD 23 MR Egger
1.81
(1.05-
3.11)

0.594 0.043 0.079 0.095 0.031

OMP
Drug-induced
secondary

parkinsonism
15 IVW

1.94
(1.24-
3.04)

0.665 0.004 0.377 0.370 0.265
MR, Mendelian randomization; HP, Helicobacter pylori; OR, odd ratio; CI, confidence interval; PD, Parkinson’s disease; PIGD, postural instability/gait difficulty; IVW, inverse-variance weighted
method; CagA, cytotoxin-associated gene-A; OMP, outer membrane protein; VacA, vacuolating cytotoxin-A.
FIGURE 2

MR stable results of the positive causal effect of HP infection on PD-related phenotypes. MR, Mendelian randomization; HP, Helicobacter pylori; PD,
Parkinson’s disease; IVW, inverse-variance weighted method; CagA, cytotoxin-associated gene-A; OMP, outer membrane protein; VacA, vacuolating
cytotoxin-A; OR, the odds ratio. 95% CI, 95% confidence interval.
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between HP VacA antibody levels and PD dementia (MR-PRESSO

global test P = 0.031 at lenient condition and P = 0.040 at stringent

condition), no other significant causal associations were detected

for pleiotropy under the MR Egger intercept test and MR-PRESSO

global test (Tables 2, 3). The detailed results of all sensitivity

analyses were shown in Supplementary Tables 7-12. In the Leave-

one-out analysis, only two SNPs (rs116944686 and rs145350770)

were identified as driving the association between HP OMP

antibody levels and the tremor/PIGD score ratio under lenient

conditions (Figure 3 and Supplementary Figure 1).
4 Discussion

In this study, we utilized publicly available GWAS data and

employed the MR analysis method to investigate the causal

relationships between seven HP infection-related antibodies and

five PD-related phenotypes. Our findings suggest that none of the

HP infection-related antibodies have a causal relationship with an

increased risk of PD. However, these antibodies are associated with

clinical symptoms of PD. Specifically, CagA and OMP antibodies are
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causally linked to a decreased and increased tremor/PIGD score ratio,

respectively, while VacA antibodies increase the risk of PD dementia.

Furthermore, we discovered that OMP antibody level is associated

with an increased risk of drug-induced secondary parkinsonism. Our

study suggests that a nuanced approach to managing HP infection in

patients with PD, especially concerning the management of PD

symptoms, should be considered. Early detection and appropriate

treatment of HP infection could potentially mitigate the progression

or exacerbation of PD symptoms.

As early as 1960, researchers identified a potential association

between HP infection and PD (35), which has since been supported by

numerous observational studies. In our previous study, we reviewed

nine meta-analyses and found robust evidence supporting a strong

association between HP and PD compared to other microorganisms

(14). However, currently, there is no clear evidence to suggest that HP

infection directly causes PD or vice versa. Our study indicates that

there is no causal relationship between HP infection and PD based on

genetic information. We hypothesize that HP infection may be not

directly associated with synuclein deposition, which is a core

pathogenic mechanism of PD. Therefore, advocating for the use of

HP eradication therapy to prevent PDmay not be supported based on
FIGURE 3

The results of Leave-one-out analysis for HP infection on PD-related phenotypes (P < 5×10-6). HP, Helicobacter pylori; PD, Parkinson’s disease;
CagA, cytotoxin-associated gene-A; OMP, outer membrane protein; VacA, vacuolating cytotoxin-A.
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our findings. The mechanisms by which HP infection may contribute

to PD are believed to involve the microbiome-gut-brain axis and the

cytotoxin-neuroinflammation hypothesis (8). These hypotheses

emphasize that HP may act as a risk factor rather than a causative

factor for PD. On one hand, HP infection may disrupt the balance of

the gut microbiota through virulence factors (such as CagA, VacA,

and Ure), indirectly impacting the brain via the gut-brain axis (36, 37).

On the other hand, HP infection may disrupt the blood-brain barrier

and induce neuroinflammation through cytotoxins, indirectly

affecting neuronal cells (38).

Previous studies link HP infection to PD, not only in terms of

comorbidity, but also in relation to clinical symptoms and severity of

PD (13–17). Our results demonstrate a causal relationship between

HP infection and both motor and cognitive symptoms of PD. Several

meta-analyses have shown that PD patients with HP infection

increased clinical severity, more severe motor symptoms, and

poorer medication response (16, 17). Interventional studies have

found that eradicating HP improves motor symptoms, particularly

stride length and symptom fluctuations, and enhances clinical

response to levodopa in PD patients (15, 39–41). Previous research

has indicated that CagA positivity, along with being VacA and

urease-B immunoblot negative, increases the predicted probability

of being labeled as parkinsonian by the age of 80, serving as a

biomarker for the risk and progression rate of idiopathic PD (37).

Furthermore, the antibody profile-based discriminant index is also

associated with symptoms such as gait, posture, bradykinesia, stoop,

and cognition (39). Our results further reveal that different antibody

types influence different symptoms of PD. Among them, CagA and

OMP antibodies modulate the subtype proportions of motor

symptoms. The motor subtypes of PD are primarily classified as

tremor-dominant and PIGD subtypes (24). Our findings imply that

CagA antibody shows a negative association with the tremor/PIGD

score ratio, suggesting a higher tendency towards inducing PIGD. In

contrast, OMP antibody exhibits a positive association with the

tremor/PIGD score ratio, indicating a stronger association with

tremor. Different motor subtypes in PD involve varying

mechanisms and simultaneously impact disease progression to

different extents (42, 43). For instance, studies have shown that

PIGD is associated with increased cognitive impairment and

reduced response to levodopa (44). Motor symptoms in PD stem

from dopamine dysfunction. Research indicates that CagA-positive

HP strains could induce variations in dopamine, serotonin, and other

hormone levels in the circulatory system, potentially causing damage

across multiple systems, including the central nervous system, and

manifesting as associated symptoms (45). A study shows that L-dopa

may directly interact with the OMPs of HP responsible for adhesion

to gastric epithelial cells. This interaction alters the pharmacokinetics

of levodopa and subsequently affects the treatment of motor

symptoms (46). Additionally, VacA antibody is associated with an

increased risk of cognitive impairment in PD. VacA activates

p38MAPK and induces the activation of activating transcription

factor 2 (8). The p38MAPK signaling pathway plays a role in

neuroinflammatory responses facilitated by microglia and

astrocytes. Animal research suggests that the p38MAPK pathway

contributes to inflammation triggered by b (1-42) deposition and

cholinergic hypofunction (47), and involves with several cognitive
Frontiers in Immunology 08
impairment disorders (48–50). In summary, our study suggests that

after synuclein deposition, HP infection may be involved in the

occurrence of different symptoms of PD through various

mechanisms. Monitoring different antibody types may help predict

patients with different symptom subtypes, and eradicating HP may

contribute to modulating and improving different symptoms. For

example, for drug-resistant tremor-predominant PD, monitoring

circulating CagA antibody levels is necessary, while PD patients

presenting cognitive symptoms require monitoring of circulating

VacA antibody levels. These patients may benefit from HP

eradication. In conducting clinical trials, we suggest simultaneously

monitoring the titers of different HP antibodies and PD clinical

symptoms to clarify their relationship further. Exploring interactions

of different HP antibodies with dopamine pharmacokinetics, gut

microbiota (gut-brain axis), or central neuropathology related to PD

(synuclein in brain tissues such as the striatum, substantia nigra, etc.)

may help elucidate the underlying mechanisms.

Previous studies have mainly explored the relationship between

idiopathic Parkinson’s syndrome or PD and HP infection. We

investigated for the first time the association between HP infection

and secondary parkinsonism and found that OMP antibody level

increases the risk of drug-induced secondary parkinsonism. This

could be related to HP infection-induced gastrointestinal motility

disorders, which affect drug absorption (51). Previous research has

shown that HP infection may reduce the bioavailability of levodopa

and decrease dopaminergic status (8, 13, 52, 53). Further exploration

is needed to determine if patients with HP infection are more

susceptible to drug-induced secondary parkinsonism.

This study has certain limitations. Firstly, it should be noted that

the sample size for HP infection GWAS data is small (< 1000), which

may lead to the omission of important IVs, particularly in the case of

CagA, where only 985 individuals were included in the GWAS.

Therefore, caution should be exercised when interpreting negative

results, and positive results need to be further validated with an

expanded sample size. Secondly, HP infection GWAS is based on

serological samples, and there is a distinction between HP

seropositivity and actual ongoing infection. False-negative or false-

positive results cannot be ruled out, so our findings should be

interpreted cautiously. Thirdly, the GWAS data for PD motor

subtypes is partially sourced from the UK, and we are unable to

determine if there is any overlap with the GWAS data for HP

infection. Lastly, the dataset used primarily includes European

populations, so the results may not be generalizable to other

populations, and further exploration is needed in Asian populations.
5 Conclusions

In conclusion, this study explores the causal relationship between

seven HP infection-related antibodies and five PD-related

phenotypes through two-sample MR analysis. Our findings suggest

that none of the HP infection-related antibodies have a causal

relationship with an increased risk of PD, but they may affect the

motor and cognitive symptoms of PD and increase the risk of drug-

induced secondary parkinsonism. Our research supports the

improvement of clinical symptoms of PD through HP eradication.
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