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T cell receptors (TCRs) play crucial roles in regulating T cell response by rapidly

and accurately recognizing foreign and non-self antigens. The process involves

multiple molecules and regulatory mechanisms, forming a complex network to

achieve effective antigen recognition. Mathematical modeling techniques can

help unravel the intricate network of TCR signaling and identify key regulators

that govern it. In this review, we introduce and briefly discuss relevant

mathematical models of TCR initial triggering, with a focus on kinetic

proofreading (KPR) models with different modified structures. We compare the

topology structures, biological hypotheses, parameter choices, and simulation

performance of each model, and summarize the advantages and limitations of

them. Further studies on TCR modeling design, aiming for an optimized balance

of specificity and sensitivity, are expected to contribute to the development of

new therapeutic strategies.
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Introduction

T cells play pivotal roles in adaptive immunity. Their activation is initially triggered by

T cell receptors (TCRs) recognizing foreign or non-self peptides presented by major

histocompatibility complex (MHC) molecules on the surface of antigen presenting cells

(APCs) (1, 2). The accurate antigen recognition by TCRs guarantees the immune system

precisely targets and eliminates foreign pathogens or transformed cells. Previous studies

have revealed that TCRs possess the capability to detect rare foreign antigens from high

quantities of self antigens, endowing the immune system with ultra sensitivity to detect

infected or aberrant cells (3). The antigen discrimination of TCRs is achieved usually within

a time window of a few minutes, requiring the speed of recognition process to be fast (4).

Furthermore, TCRs’ antigen recognition is also highly specific, safeguarding immune

surveillance and preventing the development of autoimmune diseases or impaired immune
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responses induced by unwanted recognition of self antigens. Thus,

the study of natural rules governing TCR antigen discrimination

system, achieving high speed, high sensitivity, and high specificity,

has long been a central issue in the field of adaptive immunity (5).

Based on accumulated experimental studies, several hypotheses

have been proposed to explain the regulatory mechanism in TCR

antigen discrimination. Previous studies have considered the

interactions between TCR and peptide-MHC (pMHC) molecules

as the major determinant in the discrimination process. Typically,

the binding affinities of TCR-pMHC complexes make primary

contributions to TCR specificity (6). The interactions can induce

a series of modifications, such as the sequential intracellular

phosphorylation of immunoreceptor tyrosine based activation

motifs (ITAMs) on CD3 subunits of TCR, serving to magnify the

differences of TCR signal cascade between an agonist and an

antagonist (7, 8). Additionally, TCR triggering involves multiple

mechanisms, such as the cooperation of coreceptors, the

phosphatases regulated negative feedback, the mechanically-

chemically coupled regulation of TCR and pMHC engagement,

etc (9–13). Experimental evidence has demonstrated the lifetime of

TCR-pMHC complex acting as the “threshold” to discriminate

foreign and self peptides (14–16). Self antigens typically dissociate

rapidly from TCRs (short lifetime), while foreign antigens can

establish more endurable interactions (long lifetime) when

engaged with TCRs. Moreover, TCRs engineered by affinity-

mature strategy have been reported to induce off-target

cytotoxicity, indicating the high binding affinity of TCR and

pMHC may impair TCR’s specificity (17). However, some ligands

with shorter lifetimes can also trigger T cell responses (18, 19).

Recent studies have revealed the mechanical force regulated

mechanism for TCR antigen recognition (20–24). Using the

single-molecule force experiment, Liu and his colleagues found

that TCR with antigenic pMHC can form a “catch-bond” with an

extended bond lifetime under optimal force (20, 25). In contrast,

self peptides can only form “slip-bond”. Following this “catch-

bond” mechanism, Zhao et al. proposed a biophysically based

strategy called “catch bond engineering to tune high sensitive

TCRs” for T cell therapy with reduced cross-reactivity potentials

(26). Overall, the TCR signaling system is an intricate network

involving multiple molecules, reactions, and mechanisms, each

alone remains insufficient to interpret the characteristics of TCR

signaling comprehensively (27), but together they can explain the

rapid and reliable recognition of foreign antigens by specific TCR

(1, 28, 29).

To better understand the dynamic features of the TCR antigen

recognition system and identify key regulators, mathematical

modeling techniques have been applied. Several models have been

proposed based on experimental observations, including

phenotypical models such as the serial engagement model,

coreceptor scanning model, conformation change model, kinetic

proofreading model, and kinetic segregation model, etc. (30–32)

Mathematical modeling allows for computer-aided simulations,

enabling the translation of these biological models into

quantitative representations. This facilitates the elucidation of

TCR initiation characteristics and prediction of TCR responses to

diverse stimuli (33, 34). By incorporating quantitative experimental
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data on protein-protein interactions, phosphorylation events, and

intracellular signaling cascades, these mathematical models not only

help decipher the intricate networks governing TCR signaling, but

also unravel the underlying regulatory mechanisms (35–39).

Moreover, these models can also be utilized to inspire novel

experimental designs and interventions that modulate TCR

signaling. This can lead to improved manipulation of immune

re sponse s and po t en t i a l l y enhance the e ffica cy o f

immunotherapies. For instance, predicting TCR responsiveness to

diverse antigens can aid in screening out neoantigens, designing

cancer-targeting chimeric antigen receptors (CARs) and T cell

receptor engineered T cells (TCR-Ts), or recombined antigens for

use in vaccines, thereby contributing to the development of novel

immunotherapies applied to clinics (40–43). In the following, we

will briefly summarize the relevant mathematical models with a

particular focus on the kinetic proofreading models, which have

been widely used to mimic TCR initial triggering.
Kinetic proofreading model

The kinetic proofreading (KPR) model describes a classic

phenomenon wherein the effective signal is not immediately

generated when a ligand initially engages with a receptor. Instead,

there are several intermediate steps involving the phosphorylation

of tyrosine residues. This process typically begins with the binding

of the ligand and receptor to form a complex (44, 45) (Figure 1A).

The KPR model was first proposed by McKeithan in 1995 to study

the mechanism of TCR antigen recognition and signal transduction

(46). It suggests that the pMHC initially binds to a TCR and forms

the complex that then undergoes a series of intermediate steps to

become an activated complex. Many of these steps involve the

phosphorylation of immunoreceptor tyrosine based activation

motif (ITAM) sites on intracellular CD3 subunits and require the

participation of multiple molecules. This includes the recruitment

of zeta-chain associated protein kinase 70 kDa (ZAP-70), the

activation of tyrosine kinases such as Src family kinase (SFKs)

Lck, and the participation of co-stimulators (CD27, CD28, and

ICOS, etc.), coreceptors as CD8 or CD4, and phosphatases, etc. (27,

47–49). These events in concert determine whether the downstream

signaling cascade is able to generate efficient signals and activate T

cell responses. Consequently, a time delay exists between the initial

binding and the transmission of the signal. As a result, non-specific

antigens typically form short-lived complexes with TCRs, then fail

to elicit downstream signals before dissociation. On the other hand,

specific antigens (foreign or non-self antigens) that form long-lived

complexes generate more durable signals compared to non-specific

antigens. This enables the recognition and discrimination of

corresponding antigens (6, 50–52).
Basic KPR model

The basic KPR model postulates that once the TCR-pMHC

complex forms, it will undergo a series of intermediate states,

potentially involving modifications of the complex through
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intracellular tyrosine phosphorylation. Dissociation of the modified

complex (Ci, i = 0, 1, 2,…, N) can lead to either reversal or directly

recycled back to the unmodified state (U0), for instance, through the

action of phosphatases. A productive signal is transduced only after

several such modifications have taken place (Figure 1B).

To quantitatively analyze the basic KPR model, numerous

assumptions and simplifications must be made due to the lack of

knowledge about the relevant rate constants for most intermediate

steps. In the hypothesis of basic KPRmodel, McKeithan assumed that

the intermediate steps occurred in an obligatory sequential order and

can go back toward the initial state (unmodified state) at a constant

rate, namely the proofreading loop. Under this assumption, they

investigated how the dissociation rates (off-rate, koff ) impacted on

regulating the output signal of TCR initial triggering (53). Through

the steady-state analysis, they revealed that a few fold difference in

dissociation rates could lead to a thousand times difference in

generated signals, demonstrating the high specificity of TCR

antigen recognition. In other words, the dissociation rates of TCRs

from pMHCs with self antigens need to be sufficiently high to allow

for dissociation before the TCR-pMHC complex reaches the final

state and generates signals. Moreover, the association rates (on-rate,

kon), which describes how fast TCRs can bind to pMHCs, work

synergistically to affect the signal production. As a consequence, the

affinity (Ka  =  kon=koff ), is proposed to directly quantify the potency

of a pMHC triggering TCRs. According to the basic KPR model,

antigens with high binding affinities (faster on-rates or smaller off-

rates) would result in longer durations of TCR/pMHC interaction
Frontiers in Immunology 03
and generate stronger effective signals (46). It is worth noting that the

affinities characterized by kon and koff can be obtained experimentally

(54, 55). Three-dimensional (3D) assays are traditionally used to

quantify the kinetics for TCRs and pMHCs interactions, including

surface plasmon resonance (SPR), 3D fluorescence resonance energy

transfer (FRET), and single-molecule fluorescent microscopy

(SMFM) (56–60). As these methods usually assess the off-rates or

the affinities between TCRs and pMHCs in solution, the

corresponding kinetics are thus referred to as 3D kinetics. Most

experimentally obtained kinetics for KPR models belong to this

category. However, the binding strength measured by 3D assays

often does not align with the functional output of T cells, which may

be influenced by the different environmental conditions in solution

compared to the in vivo cell-cell contact membrane environment

(61). As a result, two-dimensional assays including adhesion

frequency, thermal fluctuation, and 2D FRET have been developed

to measure the kinetics of TCR-pMHC interactions between two

contacting surfaces (referred to as 2D kinetics), which have shown

better consistency with the ligand potency for T cell activation (52,

62–65). Even with the improvements in measuring kinetics,

experimental studies have shown that the affinities still do not align

well with the functional potency of TCRs, indicating the

incompletion of the basic KPR model (66). To further understand

TCR antigen recognition, researchers are tasked to consider

additional regulatory factors and mechanisms within the TCR

model and find approaches to optimize it. Thus, several modified

models were proposed based on the KPR model.
B

A

FIGURE 1

Basic kinetic proofreading model (A) The structural schematic diagram of TCR and pMHC in the unbound state (U0). The phosphorylation of ITAMs
primarily represents the intermediate steps of the KPR model. (B) Schematic diagram of the basic kinetic proofreading model. The successive steps
( Ci , i = 1, 2, …, N) occur after the TCR and pMHC on the antigen-presenting cell (APC) form the complex (C0) at an association rate (kon). The TCR
undergoes these steps at a forward rate (kp) until the last step (CN) as the output signal. Each state of the complex (Ci, i = 0, 1, 2, …, N) can reverse to

the unbound state (U0) at a dissociation rate ().
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KPR model with fast rebinding

T cells transiently interact with APCs and decide how to

respond within seconds of an encounter. The rapid turnover of T

cell and APC contacts in vivo accelerates the search for specific but

rare foreign antigens among numerous self antigens (67). Once the

decision to respond is made upon the initial recognition of a specific

antigen by the TCR, a stable adhesion between the T cell and APC is

established, forming an immune synapse that can persist for up to

30 minutes. This immune synapse facilitates a second, sustained

phase of signaling (4, 68–71). During this sustained signaling phase,

the rapid engagement of many TCRs with a single pMHC is thought

to increase T cell sensitivity, allowing sufficient downstream signals

to accumulate within the indicated period (72, 73). T cells have been

observed to respond to stimulatory pMHC in less than a minute,

and a stable contact interface is not required for pMHC detection

(74). Basic KPR models as aforementioned cannot predict the

specificity of T cell response on such short time scales. Hence, it

is difficult to determine the early T cell response based on

equilibrium parameters such as the affinity or binding constant

(Kd   =  1=Ka), as these parameters can not precisely represent

transient kinetics of TCR-pMHC interactions at the interface of T

cell and APC at such short time frames. Therefore, a putative

mechanism was suggested for antigen discrimination during the

early phase of TCR signaling, arguing that after the complex

dissociation, the TCR and pMHC molecules remain in close

proximity and rapidly rebind without changing the signaling state

(75, 76). This modified topology of the basic KPR model accounts

for the persistence of TCR signaling when in proximity. Thus, KPR

model with fast rebinding was proposed with the additional
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assumption that TCR can rapidly rebind to pMHC after the

dissociation at much higher rates over the initial on-rate.

Specifically, the KPR model with fast rebinding suggests that the

modified TCR-pMHC complex dissociates into the intermediate

state in proximity (Pi, i = 1, 2,…, N). In this state, pMHC and TCR

are biochemically unbound but remain physically close and can

quickly reassociate through fast rebinding. Due to its unchanged

biochemical state intracellularly, TCR in Pi state can either react

forward to a further modified state (Pi+1) or recycle back to the

unbounded and unmodified state (U0) (Figure 2). The transient

dissociation between pMHC and TCR extracellularly does not

immediately impact TCR’s intracellular state and reaction. Thus,

the parameters representing the forward reaction rates for both

TCR-pMHC complex (Ci, i = 1, 2,…, N) and unbounded TCR in Pi
state can be set in the same magnitude. The parameter representing

the reaction rate of fast rebinding (kon−rebinding), which is very hard

to be obtained experimentally, is generally thought to be relevant to

the initial on-rate (kon−initial). It has been proposed and indirectly

quantified to be much faster, ensuring that it is consistently large

enough to enable the required model performance in TCR

sensitivity and specificity (18).

To address antigen discrimination at short time scales, instead of

steady-state analysis, a set of ordinary differential equations (ODEs)

are utilized to describe the time-series dynamics in TCR initial

triggering. The computed probability of the productive signal after

a short period (e.g., t = 30 seconds) is considered as a read-out of the

T cell response. By applying both the ODEs and the spatial Monte-

Carlo simulations, Dushek and his colleagues investigated the

capability of TCR antigen discrimination based on the values of

kon−initial and koff (76). The assumed signal persistence of TCR
FIGURE 2

Kinetic proofreading model with fast rebinding TCR and pMHC on the APC form the complex (C0) at an initial association rate ( kon−initial) and reverse
to the unbound state (U0) at a dissociation rate (koff ). The TCR undergoes the successive steps including intermediate complex (Ci, i = 0, 1, 2, …, N-1)
and modified proximity (Pi , i = 1, 2, …, N-1) at a forward rate (kp) until the last step (CN and PN) as the output signal. The modified state of the

complex (Ci, i = 1, 2, …, N) can dissociate into the proximal state (Pi, i = 1, 2, …, N) at a dissociation rate (koff ) and rapidly re-associate at an
association rate (kon−rebinding).
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corresponding to the “fast rebinding” process allows individual TCR

to integrate the duration of multiple rebinding events. This “sum-of-

binding” mechanism not only captures rapid and reliable T cell

responses to specific pMHC, but also leads to enhanced sensitivity to

the initial on-rate (kon−initial), whereas the basic KPR model for TCR

recognition has a trade-off between specificity and sensitivity.

Incorporating the “fast rebinding” mechanism into basic KPR

model amplifies the discrimination of antigens, and optimizes the

specificity and sensitivity of TCRs without introducing cross-

reactivities. For instance, an order of magnitude change in the

initial on-rate can enhance the probability of productive signal by

several orders of magnitude. This model with heightened sensitivity

promotes T cells to discriminate a wider spectrum of antigens than

would be predicted by a traditional serial engagement/KPR model.
KPR model with coreceptor

Coreceptors, such as CD4 and CD8, are also important players

facilitating TCR antigen discrimination and T cell activation (77–

81). When TCRs bind to antigenic pMHCs, these coreceptors are

involved in the recognition process both extracellularly and

intracellularly (82, 83) (Figure 3A). Previous research has shown

that the extracellular domains of CD8 can bind to different regions

of MHC molecules, facilitating TCRs to effectively scan the surface

of APCs for searching cognate antigens (78, 84, 85). Besides, CD8

can also stabilize the binding of TCR and pMHC for cognate
Frontiers in Immunology 05
antigens, increasing the probability of T cell activation in

response to weak antigenic stimuli (16, 86). In addition, they can

promote TCR to dissociate from non-cognate antigens, preventing

T cell activation in response to irrelevant stimuli. Thereafter, TCR

coreceptor scanning model is proposed to explain this mechanism,

suggesting that TCRs bind to the pMHCs through a dynamic

equilibrium of binding and unbinding events (87). The binding

process is facilitated by the coreceptors, which can bind to the MHC

molecules in different conformations and modulate the binding

kinetics of the TCR to cognate antigens. The TCR coreceptor

scanning mechanism assists T cells to recognize and respond to a

wide range of antigens presented by pMHCs more efficiently (87).

The intracellular domains of coreceptors can recruit activated

Src family kinases, specifically Lck, and thus facilitate the

phosphorylation of tyrosine residues in the CD3 intracellular

domain (88, 89). This phosphorylation is crucial for transmitting

downstream signaling in T cell activation. Thus, KPR model with

coreceptor was proposed with the additional assumption that

coreceptors assist in amplifying the TCR discrimination power of

diverse ligands. In order to incorporate the effect of coreceptors,

some studies chose to alter the topology of basic KPR model. For

instance, Dushek and his colleagues have postulated a modified

KPR model that orchestrates both the participation of coreceptors

and fast rebinding process, and this model suggests that coreceptors

can assist TCR to be more sensitive to weak pMHCs. However, the

altered topology of the basic KPR model may introduce more

parameters that cannot be obtained by experiments, thus the
B

A

FIGURE 3

Kinetic proofreading model with coreceptors (A) The structural schematic diagram of TCR and pMHC in the unbound state (U0). The
phosphorylation of ITAMs primarily represents the intermediate steps of the KPR model. (B) Schematic diagram of the basic kinetic proofreading
model. The successive steps (Ci , i = 1, 2, …, N) occur after the TCR and pMHC on the APC form the complex (C0) at an association rate (kon−co).
The TCR undergoes these steps at a forward rate (kp−co) until the last step (CN) as the output signal. Each state of the complex (Ci , i = 0, 1, 2, …, N)

can reverse to the unbound state (U0) at a dissociation rate (koff−co).
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artificial manual parameters may puzzle the regulatory mechanism

of coreceptors in TCR signal transmission (75). On the other hand,

instead of modifying the model structure itself, the effect of

coreceptors can otherwise be reflected in changing the parameter

values accordingly. For instance, the addition of coreceptors can

change the values of the binding kinetics between TCR-coreceptor

and pMHCs (kon−co and koff−co) and the forward rate (kp−co) of the

KPR model, respectively (Figure 3B) (90–92). However, there also

exist limitations for this method. While it is possible to

experimentally measure the binding kinetics for trimolecules

(TCR, coreceptor, and pMHC), it remains difficult to clearly

determine the reaction order as well as their kinetics between

TCR and pMHC or between coreceptor and MHC (48).

KPR model with negative/positive feedback

Although the KPR model amplifies the kinetic differences of

TCRs in response to altered peptides, allowing for their

discrimination, it typically requires a sufficient number of forward

steps and a noticeable dependence on the dissociation rate of the

TCR-pMHC complex. Furthermore, the open loop characteristics

of basic KPR model are not suitable for explaining the observed

antagonism phenomenon, wherein the presence of antagonists can

suppress the TCR response to agonists. Therefore, modified KPR

models have been proposed to incorporate negative/positive

feedback involving multiple mechanisms (93–97). In the KPR

model with negative/positive feedback, it’s assumed that two

competing feedback pathways (the positive feedback pathway

ERK activation and the negative pathway SHP-1 activation) exist

wherein TCR-pMHC interactions trigger the MAPK cascade as a

high-gain digital amplifier inducing a swift SHP-1-mediated

negative feedback and a slower digital ERK-1-dependent positive

feedback shaping the digital threshold of T cell activation.
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The Altan-Bonnet and Germain groups modified the basic KPR

model by adding digital positive feedback based on ERK activity and

analog negative feedback involving Src homology 2 domain

phosphatase-1 (SHP-1) (Figure 4) (98–100). They used an

elaborate model with hundreds of variables and equations to

define a sharp ligand discrimination threshold while preserving a

rapid and sensitive response. This model also showed that the

threshold is highly sensitive to delicate alterations in SHP-1

expression levels. Another molecular model was proposed to

elucidate experimental observations for extremely low

concentrations of agonists by adding feedback regulation on the

relevant KPR kinases (e.g., Lck) (101). Although this model

explained the disparate observations, particularly for the co-

existence of agonist and antagonist, it is also quite complex with

up to 50 parameters, and has to be solved stochastically. Based on

these previous studies, Paul Francois et al. proposed a phenotypic

model for early T cell activation that relies on the basic KPR model

with only the SHP-1 negative feedback (32). Compared with the

aforementioned studies, this model can simultaneously explain how

TCR discriminates the rare foreign peptides rapidly from a great

many self peptides, and fits a larger range of experimental data with

minimal variables and parameters. This model can largely be solved

analytically and does not require any cooperativity between self and

foreign peptides at low concentrations of agonists. Using this

simplified model, Paul Francois and his colleagues explained the

counterintuitive response induced by weak agonists with high

concentrations and tied it to the activity of the phosphatase SHP-

1. Besides, they also characterized antagonistic effects as a trade-off

for antagonism between antagonist lifetime and concentration.

Using the same model structure, Guillaume Gaud et al. tested the

role of ITAMmultiplicity in TCR signaling and accurately predicted

a non-monotonicity of antagonism depending on the affinity of the

antagonist ligand (27).
FIGURE 4

Kinetic proofreading model with positive/negative feedbacks The successive steps (Ci , i = 1, 2, …, N) occur after the TCR and pMHC on the APC form
the complex (C0) at an association rate (kon). The TCR undergoes these steps until the last step (CN) as the output signal. The detailed network of
positive and negative feedback pathways can be referred in Ref.98. Each state of the complex (Ci , i = 0, 1, 2, …, N) can reverse to the unbound state
(U0) at a dissociation rate (koff ).
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Discussion

The antigen recognition of TCR is a complicated process

involving many factors and has been intensively studied in the

past few decades. However, the underlying mechanism governing

this process is not completely clear up to now. Most studies have

agreed that high speed, high sensitivity, and high specificity are the

most essential characteristics for TCR triggering. “High speed”

means that the recognition signal can be generated very quickly,

within seconds (9, 102, 103), after the initial engagement of TCR

and pMHC. This characteristic is ultrasensitive to the magnitude of

reaction rates in simulation. It can be easily achieved by adjusting

the parameters, such as the forward reaction rate of TCR-pMHC

complex (kp), or the rebinding reaction rate (kon−rebinding ) of

disassociated TCR and pMHC molecules, etc. As for the

characteristics of “high sensitivity” and “high specificity”, they are

assumed to be essential to ensure the accurate recognition triggered

by non-self or foreign antigens while avoiding unnecessary side

effects induced by non-specific recognition of cognate antigens.

However, till now, the mathematical models of TCR triggering

always result in a trade-off of these two properties. In other words,

the increase of TCR sensitivity often comes at the cost of reducing

its specificity, and vice versa. This is also the general limitation of

KPR models. Thus, different modified KPR models are proposed to

achieve either high sensitivity or high specificity, or both in a

compromised manner.

Another general limitation of KPR models lies in their

assumption of an equal reaction rate for intermediate steps. It is

still unknown whether all the intermediate steps share the same

forward and backward reaction rates. So, this type of parameters in

KPR models cannot be experimentally measured and heavily

depends on the hypothesis in each study. For instance, to simplify

the simulation, the forward rate constants for all intermediate steps

are often assumed to have the same value (75, 76). Another type of

parameters, such as the on-rate or off-rate of TCR and pMHC

binding, can be obtained explicitly by experimental measurement

directly or indirectly. For example, as aforementioned, the off-rate is

the reciprocal of the bond lifetime of TCR-pMHC interacting, and

the on-rate can be calculated by the experimentally measured

affinity (Ka) or binding constant (Kd). Different studies applied

different experimental setups to characterize these parameters,

which may lead to magnitude difference of the parameter values

(21, 61, 75, 76).

Besides, “time scale” and “dynamic nature of cellular

environment” are also two important factors that differ in

different KPR models. The signal caused by TCR antigen

recognition not only occurs rapidly, but also can be maintained

and transduced downstream for a longer period of time. For

instance, an increase in intracellular calcium signal can be

detected on the time scale of several minutes (102, 103). The

clustering of TCRs happens upon the engagement of ligands in a

few minutes, helping to sustain the TCR downstream signaling

(104, 105). Thus, different models also vary greatly in simulation

time scale, depending on their own study purposes. As a result, the

one focusing on the time scale of “second” usually cannot explain
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the signals or biological events that occur at the minute or even

longer time scale, which represents another type of model

limitation. Moreover, the dynamic nature of the cellular

environment, such as the movement of the cytoskeleton, the

clustering of TCRs, etc., are not considered by all KPR models.

The fast rebinding KPR model partially considered this by

introducing the fast rebinding step, which allows the dissociated

pMHC and TCR molecules in proximity can rebind very quickly

without changing the intracellular state of TCRs.

All of these existing mathematical models have been developed

to explain the TCR antigen recognition behavior, aiming to find the

canonical rule that can simultaneously possess the properties of

high speed, high sensitivity, and high specificity. However, up to

now, none of these models can mimic the three properties

simultaneously as realistic TCR behavior. Instead, each model

would rather focus on distinct but crucial procedures of TCR

antigen recognition, such as the participation of coreceptors, the

feedback from downstream signal (e.g., ERK activation pathway),

etc. Thus, selecting the proper mathematical model in one’s study

preferably depends on the research priority of the TCR

discrimination process, correspondingly resulting in the strength

and limitations of each model. One of the major issue of current

TCR modeling is the lack of the generic criteria for model

comparison. The properties, such as speed, sensitivity, and

specificity, can not be compared across different models

quantitatively with a unified standard. As in different models, or

even for the same model in different studies, different initial

conditions, experimental data, as well as model assumptions, were

used to characterize the same property. For instance, both

experimental 2D and 3D assays were used to estimate the off-rate

of TCR and pMHC interaction, leading to the magnitude difference

of this parameter (52, 61). Some studies take into account the

concentration of pMHCs and TCRs, while others focus on the

reaction at the single-molecule level, resulting the different

calculations for specificity and sensitivity (75, 76, 98). As for

prediction accuracy, different labs or studies often used different

sets of experimental data for evaluations. These experimental

functions of TCRs were either measured by different functional

assays (e.g., IL-2 releasing or calcium influx, etc.) or measured for

different TCR systems that seldom have consistent observations

(102, 103, 106, 107). Therefore, the evaluation of each model was

conducted only on their own or selected data, and the comparisons

between models are hard to implement due to the lack of

standardized and harmonized TCR functional data.

Taking advantage of the various KPR models mentioned above

to investigate TCR initial triggering, we have gained a deeper

understanding of how TCRs recognize foreign or non-self

antigens and initiate corresponding T cell responses in a fast,

sensitive, and specific manner (108). Nevertheless, there remain

unsolved questions that require further exploration. For instance,

recent studies have uncovered the importance of mechanical force

in regulating the TCR and pMHC interaction (22, 23). Under force,

an agonist can form the “catch-bond” with TCR where increasing

the force strengthens the binding of TCR and pMHC until excessive

force overpowers the bond, turning it into a slip bond. While an
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antagonist only forms the “slip-bond” with TCR where increasing

the force shortens the lifetime of TCR-pMHC. Therefore, different

TCR-pMHC pairs have different patterns of force-dependent bond

lifetime (represented by the reciprocal of off-rate, 1=koff ). As T cells

can exert approximately 10-20 pN force at the molecular level (109),

it is possible to accurately estimate the off-rate of TCR-pMHC

binding under the force in physiological conditions. Although

currently there are no TCR models adopting these force-

dependent kinetics, Fan, et al. have proposed an NKG2D model

by using the force-dependent disassociation rate. Their simulation

results have demonstrated that the force-dependent affinity had

better discrimination power for NKG2D as compared to in solution

kinetics or in situ affinity measured without force, suggesting the

possibility and effectiveness of integrating force-dependent kinetics

into the KPR models (110). Moreover, exploring how T cells

integrate multiple cues to generate different signals in different

contexts is also essential for understanding their role in maintaining

homeostasis of the immune system. Hitherto, the relationship

between single-cell-level and population-level T cell responses is

still not fully understood. Most established mathematical models

have used the 3D kinetic parameters obtained from 3D assays rather

than the more physiologically significant 2D kinetic parameters that

are measured by 2D assays, such as thermal fluctuation or 2D FRET,

etc. As a consequence, in order to get a more reliable simulation,

these models need to be updated and iterated with 2D kinetic

parameters. Furthermore, other regulatory players (e.g., co-

stimulatory and co-inhibitory molecules) have not yet been added

to the current mathematical model due to unclarified regulatory

mechanisms, although they have been reported to be involved in

regulating T cell responses.

Using experimental observations and computer-aided

simulations, mathematical models have the potential to elucidate

the key players and molecular reactions that govern TCR signaling

initiation. This, in turn, will facilitate the identification of

prospective therapeutic targets for immune-related diseases and

disorders. Further study regarding the TCR model design with
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optimized specificity and sensitivity will undoubtedly shed light on

new therapeutic strategies for immune-related disorders.
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