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Engineering strategies to safely
drive CAR T-cells into the future
Matteo Rossi and Eytan Breman*

Celyad Oncology SA, Mont-Saint-Guibert, Belgium
Chimeric antigen receptor (CAR) T-cell therapy has proven a breakthrough in

cancer treatment in the last decade, giving unprecedented results against

hematological malignancies. All approved CAR T-cell products, as well as

many being assessed in clinical trials, are generated using viral vectors to

deploy the exogenous genetic material into T-cells. Viral vectors have a long-

standing clinical history in gene delivery, and thus underwent iterations of

optimization to improve their efficiency and safety. Nonetheless, their capacity

to integrate semi-randomly into the host genome makes them potentially

oncogenic via insertional mutagenesis and dysregulation of key cellular genes.

Secondary cancers following CAR T-cell administration appear to be a rare

adverse event. However several cases documented in the last few years put

the spotlight on this issue, which might have been underestimated so far, given

the relatively recent deployment of CAR T-cell therapies. Furthermore, the initial

successes obtained in hematological malignancies have not yet been replicated

in solid tumors. It is now clear that further enhancements are needed to allow

CAR T-cells to increase long-term persistence, overcome exhaustion and cope

with the immunosuppressive tumor microenvironment. To this aim, a variety of

genomic engineering strategies are under evaluation, most relying on CRISPR/

Cas9 or other gene editing technologies. These approaches are liable to

introduce unintended, irreversible genomic alterations in the product cells. In

the first part of this review, wewill discuss the viral and non-viral approaches used

for the generation of CAR T-cells, whereas in the second part we will focus on

gene editing and non-gene editing T-cell engineering, with particular regard to

advantages, limitations, and safety. Finally, we will critically analyze the different

gene deployment and genomic engineering combinations, delineating strategies

with a superior safety profile for the production of next-generation CAR T-cell.
KEYWORDS

CAR T-cells, cell engineering, gene editing, gene modification, transgene delivery
1 Introduction

In the last decade, immune cell therapy, and in particular the introduction of chimeric

antigen receptor (CAR) T-cells, reprogrammed immune cells expressing a CAR to

specifically target tumor antigens, has left an outstanding mark in oncological research

and clinical practice, revolutionizing the way we conceive cancer therapy. Unprecedented
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results, with complete responses as high as >90%, were achieved in

several hematological malignancies such as advanced or resistant

large B-cell lymphoma, acute lymphoblastic leukemia, and multiple

myeloma (1, 2).

Despite the initial successes scored by immune cell therapy, the

limitations of the approach are steadily becoming clearer. The

autologous T-cell collection from patients in sufficient number

and quality for manufacturing purposes can be difficult, due to

the underlying disease and to prior therapies, and the current vein-

to-vein time for CAR T-cell products can be incompatible with the

status of patients with aggressive and fast-progressing disease.

Moreover, further challenges need to be overcome in solid tumor

indications. Homogeneously expressed tumor antigens that are not

shared by critical healthy tissues are difficult to find, and the harsh

conditions of the tumor microenvironment (TME), including

chronic antigen stimulation, insufficient co-stimulation, low

pH, limited oxygen and nutrients, toxic metabolites, and

immunosuppressive factors, limit CAR T-cell homing and

migration and induce exhaustion (3). It is therefore clear that

further improvements are needed to expand the range of

applicability of CAR T-cells and to achieve satisfactory results in

other indications.

Many of the aforementioned limitations could be tackled by

acting upon two key parameters: the delivery methodology of the

transgene and the engineering strategy used for the improvement of

the CAR T-cell therapy.

Indeed, optimizing criteria such as the efficiency and stability of

transgene expression, the genetic cargo capacity, the scalability, and

the production costs would improve the manufacturability of the

CAR T-cells and allow for more extensive manipulation. For the

purpose, a variety of approaches are currently being evaluated for

transgene delivery (Figure 1, Table 1), both vector-based (g-
retroviruses, lentiviruses) and non-vector-based (transposons,

nanovectors, mRNA). Likewise, engineering the CAR T-cells

beyond the mere CAR introduction may help improve both their

manufacturability and functionality. A typical example is the

ablation of key T-cell surface markers, such as the T-cell receptor

and the Human leukocyte antigens (HLAs) to generate allogeneic,

off-the-shelf CAR T-cells, and thus make the therapy more easily

and broadly available. Another sought-after engineering goal, aimed

at providing better resistance and performance of the CAR T-cells

in the TME, is the elimination of negative regulators of the T-cell

function (e.g. receptors for immune checkpoint or for inhibitory

cytokines). Many different engineering strategies are being

developed to improve these as well as other CAR T-cell

characteristics (Figure 2, Table 2). In particular, gene editing, and

especially clustered regulatory interspaced short palindromic

repeat/associated nuclease protein 9 (CRISPR/Cas9)-based

approaches, made genetic engineering faster, easier, and more

versatile than ever (4).

Novel CAR T-cell products are therefore emerging that rely on

different combinations of transgene delivery systems and

engineering approaches. This may lead the immune cell therapy

field to advance toward new therapeutic successes, but at the same

time it opens new outstanding questions about the clinical

scalability, efficacy, and safety of these products. Safety in
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particular warrants special attention, as genotoxicity may occur,

and has already been reported in some instances, both due to the

delivery system and the engineering technology. Here, we will

review the vectors and engineering tools used for CAR T-cell

production at the clinical and preclinical level, as well as the up-

and-coming approaches that are being explored for next-generation

products, outline the advantages and limitations each of them has,

and discuss which combinations may be exploited to design safer

and more effective immune cell therapies.
2 Transgene delivery systems

2.1 Retroviral-based vectors

Retroviral-based vectors are the preferred gene delivery system

for the generation of CAR T-cells (5). Indeed, all U.S. Food and Drug

Administration (FDA)-approved CAR T-cell therapies are

engineered using vectors derived either from g-retroviruses
(Yescarta, Tecartus) or lentiviruses (Kymriah, Breyanzi, Abecma,

Carvykti), two of the seven members of the Retroviridae family (6, 7).

Retroviruses are lipid-enveloped viruses with a single-

stranded diploid RNA genome. Upon infection, the viral

genomic RNA is retrotranscribed by an RNA-dependent DNA

polymerase (reverse transcriptase) and integrates into the host

genome thanks to specific sequences in the long terminal repeats

(LTR) flanking the viral genome. The U3 region of the LTR also

acts as a promoter/enhancer to drive the transcription of the viral

genes. All retroviruses require the same basic elements to assemble

the viral particle, although slightly different isoforms are used by
FIGURE 1

Schematic illustration of different gene delivery methods.
Methodologies are divided into in vivo, ex vivo viral and ex vivo non-
viral methodologies. Lentiviruses, retroviruses and transposons all
are incorporated into the genome, and lead to stable CAR
expression (upper half). In contrast, AAV LNP/Nanocarriers and
mRNA all lead to transient CAR expression (lower half).
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TABLE 1 Advantages, limitations, and safety risks associated with the different transgene delivery systems.

delivery systems In vivo delivery systems

ovectors mRNA Lentiviruses AAVs LNPs, NCs

ctroporation Electroporation,
cationic lipids
or polymers

Transduction (in vivo) Transduction (in vivo) Endocytosis

Moderate High High High High

N/A N/A Limited (<10 kb) Limited (<4 kb) N/A

No No Semi-random No No

Transient Transient High Transient Transient

N/A N/A Low High Very low

Low Low High High Low

Low Low High High Low

No Yes No1 No1 No

tremely low No Yes Extremely low Extremely low

N/A No Yes No N/A
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Viral delivery systems Non-viral

g-retroviruses Lentiviruses Transposons Na

Transfer method to the
target cells

Transduction (ex vivo) Transduction (ex vivo) Electroporation Ele

Efficiency High High Moderate to low

Cargo size Limited (<10 kb) Limited (<10 kb) Large (~14 kb, >100
kb with BACs)

Integration Semi-random Semi-random Random (SB),
semi-random (PB)

Stability of gene expression High High High

Immunogenicity N/A N/A N/A

Manufacturing complexity High High Moderate

Manufacturing costs High High Moderate

Clinically evaluated for CAR
T-cell generation

Yes Yes Yes

Theoretical risk of
genotoxic effects

Yes Yes Yes Ex

Reported genotoxic effects in
the clinics

Yes Yes Yes

1 Clinically evaluated for gene therapy applications.
AAVs, adeno-associated viruses.
LNPs, lipid nanoparticles.
NCs, nanocarriers.
BACs, bacterial artificial chromosomes.
SB, Sleeping Beauty.
PB, Piggy Bac.
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g-retroviruses and lentiviruses: gag, encoding for the capsid

proteins, pol, for the reverse transcriptase and other factors

necessary for integration, and env, for the envelop glycoprotein,

which determines the virus tropism. In the case of lentiviruses, the
Frontiers in Immunology 04
rev gene is also required to enhance the nuclear export and

expression of the other transcripts (8).

The ability to efficiently deliver a cargo of up to 8–10 kb (6, 8),

the weak immunogenicity (9, 10), and the capacity to integrate their
FIGURE 2

Schematic illustration depicting methods for gene editing and non-gene editing technologies. Gene editing strategies used in CAR T-cells depicted
are divided into nuclease-dependent gene-editing technologies (CRISPR/Cas9, Base editing, prime editing, and PASTE) and nuclease-independent
gene editing technologies (CAST). Non-gene editing technologies (CRISPRa, CRISPRi, CRISPR/Cas13, and RNAi) are also shown.
TABLE 2 Advantages, limitations, and safety risks associated with the different CAR T-cell engineering technologies.

Gene editing technologies Non-gene
editing technologies

ZFN, TALEN CRISPR/Cas9 Base
editing

Prime
editing

PASTE CRISPRa,
CRISPRi

CRISPR/
Cas13

RNAi

Applicability to CAR T-
cell engineering

Complex Complex Complex Complex Extremely
complex

Moderate Moderate Easy

Clinically validated No Yes No No No No No Yes

Clinically evaluated for
CAR T-cell generation

Yes Yes Yes No No No No Yes

Multiplexing Yes, difficult Yes, difficult Yes,
difficult

Yes,
difficult

N/A Yes Yes Yes

Efficiency in CAR T-cells Low Good, but decreases with
the number of targets

Low Low Low High High High

Risk of genotoxic effects High, increases with the
number of targets

High, increases with the
number of targets

Moderate Moderate Moderate Extremely low No No

Risk of off-target effects Moderate Moderate High High Low Moderate High Low
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genetic information into the DNA of the host cells (6, 8) make

retroviral-based vectors especially suitable for gene delivery,

ensuring a relatively high integration efficiency and long-term

stable transgene expression.

2.1.1 Safety considerations on retroviral-
based vectors

The overall safety and efficacy of retroviral vectors for clinical

applications has been proven in many clinical trials (reviewed in

(11, 12)), first in the gene therapy space and more recently in

immune cell therapy. Still, several potential risks remain associated

with the use of retroviral vectors in the clinics.

One obvious safety concern inherently linked to the use of viral

vectors is that recombination of the vector with wild-type viruses

may lead to the unintended generation of replication-competent

viral particles, during vector or CAR T-cell manufacturing or in the

recipient patients. Thanks to the long-standing preclinical and

clinical experience with viral vector delivery in gene therapy, this

risk has been greatly mitigated by optimizing the packaging system

design. Indeed, in current third-generation retroviral packaging

systems, the genes required for vector production are split across

three different plasmids: one plasmid carries the engineered viral

genome, containing the transgene(s) and only the viral sequences

necessary for packaging and integration, whereas all the other

components are supplied in trans by a second plasmid providing

the structural gag gene and the regulatory proteins, and by a third

plasmid providing the env protein. Such design ensures that, even in

case of a recombination event between the engineered vectors and

the genome of wild-type viruses, the resulting genetic material will

never carry all the essential viral genes and therefore that no

replication-competent viral particles can emerge. Safety can be

further increased by introducing deletions in the U3 region of the

LTR, which functions as promoter/enhancer for the viral genome,

thus making the viral vector self-inactivating (SIN) upon

integration (13). Most of the lentiviral vectors used in clinical

applications are third-generation SIN vectors (14), ensuring a

higher safety profile, although they pose alternative issues during

manufacturing, as the LTR deletions tend to reduce the vector titers

(15), and thus require further tweaking of the manufacturing

conditions, such as optimization of the packaging cell lines, of the

transduction efficiency and of the purification steps. At the

regulatory level, the U.S. Food and Drug Administration (FDA)

requires replication-competent retroviruses (RCRs) and lentiviruses

(RCLs) detection assays for viral vectors and virally transduced cell

products (16), and many CAR T-cell clinical trial protocols establish

patient testing for preexisting viral infections as a requirement.

A second risk associated with CAR T-cell manufacturing with

viral vectors is the unintentional introduction of the transgene in

other cell types. Viral vectors are pseudotyped, i.e., the original env

glycoprotein is replaced to improve the tropism for different

primary cell types. Lentiviral vectors, in particular, commonly use

the vesicular stomatitis virus glycoprotein (VSV-G), which

recognizes the ubiquitously expressed low-density lipoprotein

(LDL) receptor (14). Pseudotyping with VSV-G allows the

transduction of a wide range of cells, but at the same time
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increases the chance of off-target transduction. Development of a

resistant transgenic leukemia clone has already occurred in a patient

treated with the CAR T-cell therapy Kymriah, manufactured with a

VSV-G pseudotyped lentiviral vector, upon the accidental

transduction of a leukemia B cell during production (17).

Although rare, such events highlight the risk of using integrating

vectors with broad tropism. As alternatives, the introduction of

more stringent purification steps during manufacturing or the use

of more specific env glycoproteins, such as a measles envelope-

based chimeric protein capable of targeting the CD3 receptor only

present on T-cells (18), have been proposed.

A third outstanding point is whether CAR integration in the T-

cell genome can affect the safety and efficacy of CAR T-cell therapy.

Despite the integration of retroviral vectors being not targeted, it is

not a random process. Rather, it has been defined as semi-random,

as different genomic features are diversely susceptible (19, 20):

vector integration preferentially occurs at fragile sites,

transcriptionally active regions and those recurrently involved in

translocation events (21–26). g-retroviruses and lentiviruses exhibit

a distinct pattern of integration within the host genome (27), which

is maintained in the derivative gene delivery systems (28) and has

been confirmed in CAR T-cells generated with these technologies

(29). g-retroviral vectors preferential insert near transcription start

sites, CpG islands, enhancers, and promoters. Given the

promiscuous nature of the g-retroviral LTR enhancer/promoter,

insertion close to regulatory elements can lead to induction of

neighboring host genes. If proto-oncogenes are involved, this may

result in oncogenic transformation: in two distinct clinical trials for

the treatment of inherited immunodeficiencies, patients injected

with g-retrovirus-engineered hematopoietic stem cells developed

leukemia as a result of insertional activation of proto-oncogenes

LMO2, MDS1-EVI1, PRDM16 and SETBP1 (30, 31). Lentiviral

vectors, on the other hand, integrate more frequently within

transcription units, preferentially in introns of transcriptionally

active genes. Such integration pattern, along with the frequent use

of eukaryotic promoters in SIN vectors to replace the inactive LTR

promoter/enhancer, reduces the risk of insertional oncogenesis for

lentiviral vectors (32). Still, the site of CAR integration may affect

gene expression at the transcriptional level, by leading to loss-of-

function mutations, or at the post-transcriptional level, by

impairing alternative splicing (29). These alterations can in turn

impact CAR T-cell function and, as a consequence, the therapeutic

outcome. In a genome-wide analysis of retroviral vector integration

on pre-infusion CAR T-cell products, poor clinical response was

associated with more integration events in genes involved in

neutrophil activation (29), which may mediate immune

suppression activity (33, 34). Likewise, in patients experiencing

high-grade cytokine release syndrome (CRS) insertions were most

commonly found in pathways involved in acetyltransferase/

transmembrane transporter activity (29). In a leukemia patient,

complete response was driven by the profound expansion of a single

CD19 CAR T-cell clone (35). The unusual clonal expansion was

linked to loss of TET2 activity: the patient carried a missense

mutation in one allele of the TET2 locus, and the CAR transgene

had integrated into the functional TET2 allele, thus abolishing TET2
frontiersin.org
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function (35). Similarly, clonal expansion of a CD22 CAR T-cell

upon integration of the transgene in the CBL locus was observed

prior to eradication of residual disease in a patient with B-cell acute

lymphoblastic leukemia (36). Although in the last two examples the

insertional mutagenesis events resulted in the expansion of

therapeutically effective clones, insertion in undesirable loci may

stochastically lead to less favorable outcomes. As of December 31,

2023, the FDA has reports 22 cases of secondary T-cell cancers in

patients treated with five of the six FDA-approved CAR T-cell

products (37). Among the 14 cases for which adequate data were

available, half have manifested within 1 year from administration

(range: 1 to 19 months), and in three cases the CAR transgene has

been detected in the malignant clone, suggesting a direct

involvement of the CAR T-cell product in the development of the

secondary malignancy. With more than 27,000 doses of

administered only in the United States to date, the overall rate of

CAR T-cell-related secondary cancers is still quite low. However,

the diffusion of CAR T-cell therapies, particularly for indications

outside oncology (38–42), calls for particular attention to the

matter. Along this line, the FDA has recently issued a draft

guidance recommending the long-term monitoring for adverse

events, including cancer, of patients receiving CAR T-cell

products engineered with integrating vectors (43).
2.2 Non-viral gene delivery

Despite their widespread use, the application of viral vectors for

CAR T-cell generation is subjected to several limitations. Safety

concerns linked to the risk of insertional mutagenicity are emerging

and, as a consequence, the regulatory constraints are becoming

increasingly complex. Moreover, the payload size, although

sufficient for classic CARs, may become limiting for more

advanced designs requiring the expression of other elements (e.g.,

armored CAR T-cells, dual CARs, or tandem CARs) (44). From the

manufacturing standpoint, large-scale GMP-grade viral vector

production involves intricate production, purification, and quality

assessment steps and is costly. Hence alternative, non-viral delivery

methods for the generation of CAR T-cells are actively being

explored, such as transposons, nanovectors and integration-

deficient viral vectors.

2.2.1 Transposon-based delivery systems
Among non-viral gene delivery methods, transposon-based

systems are the most advanced and promising in preclinical and

clinical settings. Transposons are mobile genetic elements with the

ability to reposition themselves within the genome (45, 46).

Classically, transposons encode for a transposase gene flanked by

inverted terminal repeats (ITRs). The transposase recognizes and

binds sequences into the ITRs, catalyzes the excision of the

transposon from its original position, and integrates it into

another chromosomal locus, without the need for sequence

homology. Transposon-based delivery systems have been

designed by splitting the transposase function and the ITRs into

two components, with the payload lying between the two ITRs in a
Frontiers in Immunology 06
transposon vector or minicircle, and the transposase supplied in

trans. The most widely used transposon delivery systems are the

Sleeping Beauty (SB), reconstructed from inactive transposon

sequences isolated from fish genomes (47) and the first

transposon shown capable of efficient transposition in vertebrate

cells, and the PiggyBac (PB), originally identified in insect cell lines

(48). The two systems have many common characteristics and

advantages. They allow permanent genomic insertion of transgene

cassettes, leading to sustained and efficient transgene expression.

Opposed to retroviral vectors, that undergo a severe loss of vector

titer for payloads above ~9 kb, they have less strict constrains on the

cargo size: the PB system can accommodate up to ~14 kb, and the

SB has been pushed to over 100 kb when in combination with

bacterial artificial chromosome (BACs) (49). The transposon

elements can be maintained and propagated as plasmid DNA,

making them simple and inexpensive to manufacture, with

estimated costs 5 to 10 times lower than the viral vector

production (50). Moreover, transposon systems efficiently

transfect resting and naïve primary T-cells, not requiring T-cell

activation as a prerequisite for gene delivery during CAR T-cell

manufacturing, and thus potentially leading to products with

superior phenotypical characteristics (51). As such, transposon-

based gene delivery systems maintain the favorable characteristics

of integrating viral vectors (i.e., stable chromosomal integration and

long-lasting transgene expression) while bypassing many of their

shortcomings (15).

2.2.2 Limitations and advancements of
transposon-based delivery systems

Although the greater cargo capacity remains one of the main

advantages of transposons over viral delivery systems, an inverse

correlation between the size of the payload and the efficiency of the

transposition has been observed, and overall transposons display

lower transfection efficiencies than viruses (52, 53). This is partially

linked to the technology most widely used to deliver the transposon

components into the target cells. Indeed, the primary method of

non-viral gene delivery is through electroporation, i.e. the

application of electrical fields to cells to generate pores in the cell

membrane, allowing the entrance of the exogenous material. This

technique, however, can cause high stress to the recipient cells,

resulting in decreased viability and cell loss (54–56). As one of the

main factors determining the magnitude of the damage is the

amount of DNA delivered, the electroporation toxicity can be

mitigated by reducing the size of the transposon vector, e.g. by

using minicircles (57), and by delivering the transposase in other

forms than plasmid DNA, e.g. mRNA or protein (58). These

alternatives also grant a higher level of safety over the delivery as

DNA, due to the transient expression of the enzyme and the

impossibility of integration of the transposase-coding sequence

into the host genome, thus preventing the repeated and

unintentional mobilization of the transposon. In parallel,

transposases have also been extensively optimized, increasing

their transposition efficiency (59–62), to make CAR T-cell

production through this method more scalable (60). In particular,

the current benchmark SB transposase, SB100X (59), allows for
frontiersin.org
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viral-vector-like efficiency of gene integration, thanks to a 100-fold

increase in transposition activity in comparison to the first-

generation enzyme. Such improvement comes from the

combination of molecular evolution and rational, crystal

structure-driven optimization of the DNA binding domain

through point mutation (61). Through a similar approach, the

SB100X transposase has been further engineered to overcome the

stability, solubility, and aggregation issues that limited its use as

recombinant protein in CAR T-cell manufacturing (58). The

improved biochemical properties of this high solubility SB (hsSB)

enable purification of biologically active recombinant protein,

electroporation of the protein into human cells, and freeze-thaw

cycles without compromising transposase activity. As a result, anti-

CD19 CAR T-cells could be efficiently generated via hsSB

electroporation and displayed antitumor potency in xenograft

mice comparable to approved viral vector-based commercial

products (58).

2.2.3 Safety considerations on transposon-based
delivery systems

In the last decade, an increasing number of clinical trials has

been launched using CAR T-cells generated via transposon-based

delivery systems (extensively reviewed in (15, 63, 64)), with efficacy

results in line with trials based on retroviral-vector generated CAR

T-cells. Unfortunately, however, the same kind of safety issues have

also emerged. In the CARTELL trial (ACTRN12617001579381), a

phase-I study investigating the efficacy and safety in relapsed and

refractory B-cell malignancies of an anti-CD19 CAR T-cell product

generated with the PB technology, 2 out of 10 patients developed

CAR T-cell-originated lymphoma, resulting in one fatality (65).

Post-hoc analysis revealed an unusually high vector copy number

(VCN) of the transgene (24 in one patient, compared to the FDA-

recommended threshold of 5) in the malignant CAR T-cells,

associated with significant copy number gains and losses of

multiple chromosomes and transcriptional readthrough from the

transgene promoter, although the other patient only showed a VCN

of 4 (66). Interestingly, intronic insertion into the BACH2 gene,

with consequent downregulation of the gene expression, was

observed in both patients. BACH2 is a DNA-binding

transcriptional regulator with a putative tumor suppressor role

and has already been associated with cutaneous T-cells

lymphomas (67, 68). Although no causal correlation could be

established between these events and the CAR T-cell-originated

malignancies in exam, it is conceivable that a high VCN and the

integration into or in the vicinity of proto-oncogenes increase the

probability of insertional oncogenesis (64).

Conversely, no adverse events were observed in clinical trials

where CAR T-cells were generated via SB technology. The reason

may reside in the different integration profiles of the two

transposon-derived vectors. Indeed, PB displays a g-retrovirus-like
integration pattern, with a higher frequency of insertion into

transcriptional start sites of genes, CpG islands and DNase I

hypersensitive sites (69, 70), and it is more prone than SB to

associate with oncogenes (71). Conversely, SB integration occurs

in a close-to-random manner (69, 72), so that SB has a higher
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probability to land in safe harbor sites compared to PB and

retroviral vectors (69).

Another safety liability of the PB system may be the recent

discovery in the human genome of an active DNA transposase with

high homology to the PB enzyme, namely piggyBac transposable

element derived 5 (PGBD5) (73, 74). PGBD5 catalytic activity has

already been mechanistically linked to site-specific DNA

rearrangements associated with several childhood solid tumor

types (75). PGBD5 can possibly mediate the remobilization of PB

transposons in PB-engineered human cells, although some

observations suggest that PGBD5 may not be able to efficiently

bind, excise or integrate the PB transposon, due to species-restricted

recognition of the cognate ITRs (76).

Based on the available information, despite both transposon-

based systems overall represent a valid alternative to viral vectors

for CAR T-cell manufacturing, SB may have an edge over PB and

viral vectors themselves thanks to its more favorable safety profile.

Still, it is important to remark that any technology based on the

integration of genetic material into the host genome presents an

inherent risk of causing adverse events due to gene dysregulation or

insertional mutagenesis.

2.2.4 Non-integrating delivery systems
Approaches that do not require the stable integration of the

CAR-encoding transgene may overcome the risks associated with

integration. Potential alternatives under preclinical investigation

are non-viral episomal DNA nanovectors, such as the nano-S/

MARt (nS/MARt) (77), and integration-deficient viral vectors (78,

79). Despite proof of concept for the generation of clinical-grade

CAR T-cells using these technologies has been obtained, the

therapeutic efficacy of such products still awaits clinical

validation. Another strategy to eliminate the risk of oncogenic

insertion is to transiently express the CAR from an mRNA

template (80). The CAR-encoding mRNA, typically delivered

into T-cells by electroporation, ensures transgene expression for

approximately one week, with expression levels declining over

time (80, 81). Such transient expression may also be a valuable

means to reduce potential toxicity, particularly when the CAR

target is also present in healthy tissues. The available clinical data

suggest that mRNA-generated CAR T-cells have a good safety

profile and exhibit short-term anti-tumor efficacy (82, 83),

although by means of multiple injections, but their ability to

achieve durable responses has yet to be proven.
2.3 In vivo CAR T-cell therapy

The next frontier of immune cell therapy manufacturing may

completely eliminate ex vivo cell manipulation, and rather aim at

the generation of the therapeutic cells directly in vivo (84). Indeed,

the possibility of selectively delivering the genes of interest – the

CAR components in this specific case – to the target cells directly

within the patient’s body would overcome in a single leap most

manufacturing and logistic hurdles that currently limit the

availability and diffusion of immune cell therapies.
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In the last decade the toolbox for gene delivery has been further

developed to meet the needs of immune cell therapy, with particular

regard to the specificity of the vector targeting, in order to minimize

toxicity linked to high vector doses and off-target effects. Target

specificity was mainly pursued by giving the vectors selectivity for

immune cell markers, like CD3, CD4, CD5, or CD8, through the use

of high-affinity binders, such as scFvs or designed ankyrin repeat

proteins (DARPins) (85). These advancements supported the

successful in vivo generation of CAR T-cells in preclinical models.

The most widely used in vivo delivery systems to date are

lentiviral vectors, adenovirus-associated vectors (AAVs), and non-

viral vectors such as lipid nanoparticles (LNPs) and

nanocarriers (NCs).

2.3.1 Application of lentiviral vectors to in vivo
CAR T-cell generation

VSV-G pseudotyped lentiviral vectors have a broad tropism,

achieving high transduction efficiencies on different human cell

types. A major risk for in vivo delivery is the unintentional

engineering of non-target cells, as no selection and purification

process of the recipient cells is possible. Attempts to alter receptor

usage of the VSV-G protein have been made, e.g. by fusing to the

VSV-G antibody single-chain variable fragments (scFv) specific for

surface markers expressed on the target cells.Lentiviral vectors have

been successfully targeted towards CD30 and epidermal growth

factor receptor (EGFR) (86), but the engineering of VSV-G remains

challenging, as it mediates both receptor binding and membrane

fusion (87). A more viable strategy relies on the substitution of

VSV-G with glycoproteins from alpha- and paramyxoviruses,

which have separate envelope proteins for binding and fusion and

thus allow for alterations of the tropism without interfering with the

fusion process (88, 89). Such lentiviral vectors have been targeted

against T-cell markers (CD3, CD4, CD8) using both scFvs and

DARPins (reviewed in (85), reaching an on-target selectivity in

human peripheral blood mononuclear cells (PBMCs) of up to

99% (90).

2.3.2 Application of adenovirus-associated
vectors (AAVs) to in vivo CAR T-cell generation

Despite their long history in gene therapy, AAVs suffer several

limitations for in vivo CAR T-cell generation. Their single-stranded

DNA genome allows for limited cargo capacity (~4 kb) (91) and for

mostly transient transgene delivery, especially in actively

proliferating cells such as activated lymphocytes (92). Moreover,

due to the lack of an envelope, AAVs need to rely on clathrin-

mediated endocytosis for binding and internalization, with the

involvement of several capsid and cellular proteins in the process.

This adds a layer of complexity to the tweaking of AAV specificity,

requiring either the engineering of the capsid proteins or the

functionalization of the capsid itself with the binders.

Nonetheless, highly selective modification of CD8+ within

primary human splenocytes was achieved though DARPin-

targeted AAVs (DART-AAVs) (92). Furthermore, AAVs were

successfully used for in vivo CAR T-cell generation in humanized

mouse models (93) The obtained CAR T-cells showed potent, dose-
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dependent antitumor activity ex vivo, and in vivo functionality and

efficiency comparable to that of conventionally manufactured CAR

T-cells (93).

2.3.3 Non-viral technologies for in vivo CAR T-
cell generation

The effort imbued in the development of SARS-CoV-2 vaccines

led to a substantial advancement in non-viral vector technologies.

These delivery systems rely on the chemical and physical properties

of the payload and carrier combination, rather than on the

sophisticated viral machinery. In LNPs, the nucleic acid is

encapsulated in a lipid particle through electrostatic interaction,

whereas in NCs its negative charges are exploited to complex it with

positively charged polymers. They can host DNA or mRNA

payloads and better preserve T-cell viability compared to other

non-viral delivery technologies, such as electroporation (94).

Furthermore, the possibility to be easily functionalized with

targeting molecules and their low immunogenicity makes them

highly suitable for in vivo CAR T-cell generation. In a head-to-head

comparison between electroporation and LNPs for the ex vivo

generation of CAR T-cells via mRNA delivery, LNPs led to

prolonged mRNA persistence and CAR surface expression. The

obtained CAR T-cells also showed a less exhausted phenotype,

likely due to the reduced stress compared to electroporation (94).

Both LNPs and NCs proved capable of delivering plasmid DNA and

in vitro-transcribed RNA cargos to T-cells in vivo (95–97), and

antibody-conjugated LNPs were specifically targeted toward

PECAM-1 (98), CD4 (99) and CD5-positive (96) cell populations.

2.3.4 Current limitations and outstanding issues
in in vivo CAR T-cell therapy

In general, several factors need to be considered for the clinical

translation of in vivo strategies. The vast majority of preclinical

studies are performed in humanized mouse models, which provide

only on-target cells of human origin, making the prediction of the

vector biodistribution and of the off-targets in the human body

difficult. Likewise, the kinetics of in vivo-generated CAR T-cells are

necessarily different from their ex-vivo-produced counterparts: for

the latter, high numbers of effector cells are instantly available upon

administration, whereas for the former the vector injection leads to a

limited pool of engineered cells, that will have to expand in vivo over

time. How this difference may affect the behavior and the efficacy of

the CAR T-cells in the clinical setting has yet to be elucidated. In all

non-integrating technologies, the transgene expression is eventually

lost, possibly requiring re-dosing to maintain CAR T-cell levels that

ensure long-lasting tumor management. However, the

immunogenicity of most vectors for in vivo use may be an obstacle

for their repeated administration. Neutralizing antibodies have been

shown to rise already after the first systemic injection for both LVs

and AAVs (9, 100), and pre-existing neutralizing antibodies may be

present in a relevant fraction of the patients due to vaccinations or

previous infections (101). Lastly, despite the eased manufacturing of

in vivo-generated CAR T-cells, the availability of sufficient quantities

of GMP-grade vectors will be a key factor in the clinical deployment

of in vivo strategies.
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3 Engineering strategies

Despite the unprecedented responses obtained with CAR T-cell

therapies in hematological malignancies (102–107), these initial

successes did not translate into other indications, and results in

solid tumors have been especially underwhelming (108, 109).

Multiple factors contribute to the poor clinical responses observed

in these contexts. The tumor microenvironment (TME) of solid

tumors often has immunosuppressive properties and imposes

metabolic pressure on the CAR T-cells, thus promoting the

formation of dysfunctional effector cells and regulatory T-cells

(Treg) (110, 111). As a result, current CAR T-cell products still

exhibit poor long-term persistence and exhaustion in solid

indications, limiting the duration of responses (112). In addition,

a considerable fraction of patients cannot benefit from CAR T-cell

therapies due to the poor quality and quantity of T-cells they can

provide for autologous CAR T-cell manufacturing. Further

engineering is therefore needed to overcome the hurdles

encountered so far in the CAR T-cell field (Table 2).
3.1 Gene editing technologies

The advent and rapid development of gene-editing technologies

has given researchers an outstanding toolbox for the engineering of

CAR T-cells, allowing for the relatively easy knock-out of undesired

genes and knock-in of useful transgenes. Nuclease-based systems,

such as zinc-finger nucleases (ZFNs), meganucleases (113),

transcription activator-like effector nucleases (TALENs) (114, 115),

megaTALs, and clustered regulatory interspaced short palindromic

repeat/associated nuclease protein 9 (CRISPR/Cas9) (55, 116)-

derived systems all showed potential in CAR T-cell engineering

and have been used in multiple clinical applications (117).

All these nuclease-based technologies create genetic modifications

by means of the same fundamental principle: they introduce targeted

DNA double-strand breaks (DSBs) in the cell genome, which are in

turn unfaithfully repaired by the cell’s DSB repair system, thus resulting

in the target gene alteration. The two main mechanisms of repair, non-

homologous end joining (NHEJ) and homology-directed repair (HDR)

(118), are both exploited, to different aims. NHEJ is the predominant

repair mechanism in the cell and mediates the direct ligation of the

loose DNA ends at DSBs. Its error-prone nature often results in

insertions or deletions at the repair site, leading to loss of genetic

information or frameshift mutations that eventually knock out the

target gene. HDR is less frequent and is mainly active during the late S-

and G2- phases of the cell cycle, when DNA replication is completed

and the sister chromatids can serve as repair templates. By supplying a

template DNAwith homology arms to the sequences flanking the DSB,

in combination with the targeted nuclease, HDR can be exploited to

knock in an exogenous sequence while knocking out the gene of

interest. ZFN and TALEN-based technologies rely on protein modules

for the target sequence recognition, whereas CRISPR-based systems use

an RNA guide for this purpose.

The application of these technologies in CAR T-cell production

and the resulting clinical trials have been extensively reviewed
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elsewhere (15, 119–123). Here we will mainly focus on the

current limitations and safety concerns associated with their use

in CAR T-cell engineering.

3.1.1 Safety considerations on gene
editing technologies

A first risk factor while using nuclease-based genome editing

approaches is the possibility of accidentally introducing off-target

cleavages. Indeed, Cas9:gRNA complexes can recognize and bind

genetic loci with as little as 5-nt of homology with their RNA guide

(122), leading to unintended, irreversible off-target genetic

alterations. A variety of strategies has been proposed to mitigate

such risk, i.e., more sophisticated approaches to gRNA design (124,

125) that rely on a deeper understanding of the parameters leading

to off-target binding (126, 127), the use of single-strand nickases

along with paired sets of gRNAs (128–130), or the delivery of a pre-

formed Cas9:gRNA ribonucleoprotein (RNP) complexes into cells.

The latter strategy allows for Cas9 to be active immediately, but the

RNP is also quickly degraded once internalized, therefore

decreasing the amount of time Cas9 is present for potential off-

target cleavage (131, 132).

Field evidences clearly point at the necessity of multiple genetic

interventions to overcome the current CAR T-cell limitations, and

gene editing technologies have already been explored for the

simultaneous targeting of multiple genomic sites in T-cells (133–

137). Still, their use for multiplexed gene editing poses relevant

biological and technical challenges. Some evidence show that the

targeting of Cas9 to different genes simultaneously in human cells

could in principle mediate genetic disruptions for each target at

efficiencies similar to those achieved by targeting each locus

individually (138). However, most often the co-occurrence of all

the desired edits within the same cell wanes for high-grade

multiplexing (122), posing a serious limit to the scalability and

manufacturability of multi-edited products. The competition for a

dwindling pool of endonucleases as the number of gRNAs scales up

(139) may contribute to this phenomenon, giving raise to

unpredictable patterns of genetic modification. To limit cross talk

between components, different Cas nucleases have been used in

combination, e.g. Cas9 and Cas12, each recognizing a slightly

different gRNA structure, thus enabling orthogonal assembly of

the ribonucleoprotein complexes (140). The downside of this

approach, however, is that a much larger payload needs to be

accommodated in the delivery vector, due to the combined presence

of the different Cas nucleases.

If the off-target activity and the complexity of multiplexing

might be mitigated in the future by advancements in gene-editing

technologies, dealing with mutational events and chromosomal

rearrangements represents a bigger challenge. Indeed, the

biological mechanism behind gene editing itself, which relies on

DSBs and on the error-prone DSB-repair machinery, is intrinsically

at risk of introducing undesired mutations and chromosomal

aberrations. CRISPR/Cas9 cleavage has been linked to gross

chromosomal aberrations such as large deletions in early mouse

(141, 142) and human embryos (143), as well as in embryonic stem

cells and induced pluripotent stem cells (144, 145). More specifically
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in the CAR T-cell field, CRISPR-based editing of primary human T-

cells at the TRAC locus (Ch14q11.2) was shown to lead to

chromosome 14 truncation at the cleavage site in 5.3% of the cells

(146). Given the acrocentric nature of chromosome 14, this is

functionally equivalent to chromosomal loss. Even more

strikingly, when the TRAC and TCRB (Ch7q34) loci were co-

edited, the percentage of cells with chromosome 14 truncation

raised to 9%, along with chromosome 7 truncation at the TCRB

locus in 9.9% of the cells (146). This body of evidence is especially

relevant for the immune cell therapy field, as TCR disruption is an

obliged step for the generation of allogeneic CAR T-cell products.

Lastly, the intrinsic modus operandi of the repair machinery, that

acts stochastically on different alleles in the resolution of DSBs, may

lead to intra-allelic mosaicism and, eventually, to batch-scale

chimerism even in clonal genetically edited cell products (137,

147, 148).
3.2 Evolutions of gene editing technologies

To overcome the risk of off-target cleavages and chromosomal

aberrations inherent to classical nuclease-based gene-editing

technologies, several innovative strategies are in active development,

that do not rely on double-strand breaks and thus offer a potentially

safer route to genetic editing. In particular, base editing and prime

editing allow the introduction of genetic alterations without the

requirement of inducing DSBs.

3.2.1 Base and prime editing
Base editing consists in the sgRNA-directed exchange of single

nucleotides mediated by modified forms of Cas9, Cas9 nickases

(nCas9), which lack the capacity to cleave DNA, but instead are

fused to bacterial deaminases to substitute single nucleotides on just

one strand. These point mutations are subsequently resolved during

DNA replication, ultimately altering the codon sequence, e.g., to

insert premature STOP codons (149, 150). CRISPR-free base editors

have also been recently proposed (151). Base editors allow the

correction of pathogenic allele variants, holding great promise for

the therapy of monogenetic disorders, including sickle cell disease

(152), b-hemoglobinopathies (153, 154) and heterozygous familial

hypercholesterolemia (155). The first applications in cellular

immunotherapy are also emerging, e.g. to engineer fratricide-

resistant CAR T-cells by targeting the pan-T lineage antigens

CD3 and CD7 (156) and to generate allogeneic CAR T-cells

through simultaneous KO of TRAC, CD52, CD7 and PD-1 (157).

Compared to CRISPR-edited CAR T-cells, base-edited CAR T-cells

showed improved proliferation, lower DNA damage response

pathway activation, and no karyotypic abnormalities following

multiplexed editing while proving efficacious against T-cell acute

lymphoblastic leukemia (T-ALL) both in vitro and in preclinical

models (157, 158).

Base editing allows for transition mutations (purine-for-purine

and pyrimidine-for-pyrimidine substitutions), but not for

transversion mutations (swapping purines for pyrimidines and

vice versa). Prime editing overcomes this limitation by linking
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nCas9 to a reverse transcriptase that allows for single base

exchanges as well as insertions and deletions of synthetic DNA

sequences (159). This technology, however, still suffers from

limitations in editing efficiency and in the maximum size of the

insert. Efforts are ongoing to improve these aspects, e.g. by

designing more efficient guide RNAs for the nCas9 (160) and by

building new iterations of the platform with increased payload

capacity, such as paired-guide prime editing, which currently allows

for insertions of up to ~5 kb (159).

Similarly to standard nuclease-based editors, base and prime

editors are at risk of modifying off-target genomic sites. A general

strategy to mitigate this risk has consisted in limiting cellular

exposure to the editors beyond the duration necessary to achieve

the desired on-target editing levels. The delivery of editors and

guides as RNP complexes rather than as DNA sequences or the use

of small-molecule-controlled editors greatly reduced off-target base

editing (161–163), exploiting the faster rate of on-target compared

to off-target editing.

3.2.2 Recombinase- and transposase-based gene
editing technologies

Targeting the transgene integration to selected loci has been a

long-standing goal in gene editing, as it would overcome many of

the safety risks associated with insertional mutagenesis.

Unfortunately, none of the current clinical-stage engineering

technologies fulfills this goal: viral and transposon-based delivery

systems do not allow any targeting, whereas nuclease-based, HDR-

dependent technologies are limited to actively dividing cells,

strongly constraining their applicability. However, novel

technologies with the potential of site-directed integration of large

payloads are quickly emerging. Phage-derived site-specific

recombinases can catalyze the exchange of two dsDNA sequences

by recognizing a “landing pad” DNA sequence at the site of

insertion. This characteristic has been exploited to mediate the

recombination of large cargo sequences in the desired genomic

locus pre-installed with the unique landing pads (164). Using this

approach, incorporation of very large DNA payloads (>100 kb) with

very high efficiency (90%) after selection steps was shown in human

iPSCs (4). Site-specific recombinases have remarkable advantages:

they do not leave exposed DSBs, there is virtually no upper limit to

the size of the cargo, and they are not prone to off-target effects,

provided the pre-installed landing pad is inserted precisely on

target. Still, their application is rather complex, consisting in

multiple steps: the CRISPR-Cas-mediated pre-installment of the

landing pads, the delivery of the recombinase-expressing vector and

of the DNA payload, the removal of unnecessary auxiliary

sequences (e.g. the vector backbones). Each of the steps requires

selection and enrichment of the intermediate product cells to cope

with the otherwise very low recombination rate (less than 1% in

cells containing the landing pad), making this approach not yet

scalable nor applicable to most primary cells (4). However, novel

evolutions of this technology may overcome these constraints in the

near future. Programmable addition via site-specific targeting

elements (PASTE) technology, consisting of a Cas9 nickase fused

to RT and a serine integrase, can integrate large sequences in human
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cell lines, primary T cells, and non-dividing primary human

hepatocytes with efficiencies between 5% and 60% (165). Lastly,

CRISPR-guided transposon systems (CAST), combining the site-

specificity of a catalytically inactive Cas with the ability of the

transposon machinery to integrate the cargo in the host genome,

have been used to deliver payloads of up to 10 kb (166–168),

although their applications has been so far limited to gene editing

in bacteria.

Although these novel approaches do not yet show efficiencies

required for clinical scalability and manufacturing and have not

been sufficiently tested in primary cells, the extremely rapid

evolution of the field may soon bring them closer to be applied in

clinical settings.
3.3 Non-gene editing technologies

All gene editing technologies directly intervene on the DNA

sequence, with two unavoidable consequences: the risk of

undesirable genomic mutations and the irreversibility of the

modifications. On the other hand, non-gene editing technologies

do not directly alter the genetic information of the host cell,

negating the risk of detrimental genetic alterations and opening

the possibility of modulating the intensity of their effect, rather than

being an on/off system.

3.3.1 CRISPR activation (CRISPRa) and CRISPR
inhibition/interference (CRISPRi)

Branching from the standard CRISPR/Cas9 gene editing

approach, catalytically disabled Cas9 (dCas9) have been fused to

transcriptional modulators. The dCas9 lacks its catalytic activity,

but retains its sequence-specific binding ability, thus allowing the

transcriptional modulators to alter the target gene expression at the

epigenetic or transcriptional level, without the need of DSBs (169).

This approach can be used to enhance or repress the transcription

of the target gene. CRISPR activation (CRISPRa) exploits effectors

such as VP64, VPR, Suntag, p300, and Synergistic activation

mediator (SAM) to induce epigenetic changes, e.g. histone

acetylation, that lead to enhanced gene expression (169, 170).

CRISPR inhibition/interference (CRISPRi) uses epigenetic

regulators of DNA methylation, histone acetylation, or histone

methylation, e.g. Krüppel-associated box (KRAB), DNMT3A, and

HDAC, to downregulate gene expression (169, 170). Recently, a tool

for programmable epigenetic memory based on DNA methylation,

named CRISPRoff, has also been described, that can make such gene

inhibition heritable (171). CRISPRa and CRISPRi have mainly been

used in functional genomics screenings thus far. A genome-wide

CRISPRi/CRISPRa screening in primary human T-cells was

employed to identify therapeutically relevant T cell states which

may prove useful in the design of novel T cell-based

immunotherapies (172). Likewise, a CRISPRa gain-of-function

screening in murine CAR T-cells highlighted proline metabolism

as a driver of CAR T-cell fitness and function (173). Still, the first

applications in cell engineering are already emerging, notably also

in contexts such as iPSCs (170) and primary T-cells (172, 174).
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Specifically, multiplex gene modulation of up to four genes (ITGA3,

THY1, IL3RA, and NGFR) was achieved in human CD34+

hematopoietic stem and progenitor cells (HSPCs) and human

CD3+ T-cells, without any discernible detrimental effects on the

HSPCs capacity to engraft long-term in immunodeficient mice and

on T-cell expansion (174). CRISPRa and CRISPRi have also been

exploited to tweak primary T-cell responses, e.g. cytokine secretion,

by impinging on their regulatory pathways (172). Interestingly,

both the magnitude and the duration of the CRIPSRa/CRISPRi

effect could be tuned by careful sgRNA selection, and further tuning

may also be possible by adapting other sgRNA properties, such as

the poly(A) tail length, codon usage, and incorporation of modified

nucleotides (174). In terms of safety, several studies have found

CRISPRa and CRISPRi to be highly specific (175–177). In contrast

to gene editing with nuclease-active Cas9, the combination with

epigenetic effectors makes CRISPRa and CRISPRi only active within

a short distance from the targeted transcription start sites. In

addition, the extent of the potential adverse effects is mitigated by

the reversible nature of the modifications and can be further

reduced by temporally restraining the activity of the editors via

their transient delivery as RNP complexes.

3.3.2 mRNA-targeting approaches: CRISPR/Cas13
A radically different approach for non-gene editing technologies

consists in targeting the mRNA of the gene of interest, rather than

its genomic sequence, thus inducing defined cellular phenotypes

without introducing genomic alterations. In this light, the recent

discovery of CRISPR/Cas13, a Cas-based system that uses CRISPR

RNA guides to target RNA, spurred considerable interest (178, 179).

This Cas allows for direct transcriptome engineering via RNA

editing and KD, without the requirement for permanent genetic

manipulations (180–182). In early reports CRISPR/Cas13 mediated

potent and specific target RNA downregulation in eukaryotic cells,

outperforming CRISPRi, apparently with minimal off-target

transcriptome changes (178, 180, 183). The system has since been

adapted for use in a variety of contexts, from yeast (184) to

Drosophila (185) to mice (186–189), and has been applied to

neutralize viral infections in animal models (190, 191). However,

the high specificity of CRISPR/Cas13 in eukaryotic cells observed in

early studies represents a paradox. Indeed, due to its molecular

architecture, with the catalytic site located on the outside of the

protein, facing away from the guide RNA-target RNA complex,

Cas13 is prone to indiscriminately cleave any bystander RNA. This

effect, termed collateral cleavage activity, has been observed both in

vitro and in bacteria (192). Coherently, several recent publications

report Cas13-mediated toxicity and collateral RNA cleavage in

eukaryotes (reviewed in (192)), although the reason for the

discrepancies with earlier studies is still matter of investigation.

3.3.3 mRNA-targeting approaches: RNA
interference (RNAi)

A more established approach for transcriptional regulation,

RNA interference (RNAi), has also been tweaked and adapted in

the last few years for the engineering of CAR T-cells, with

interesting results. RNAi is a bundle of technologies, namely
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small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs),

and microRNAs (miRNAs), all based on small non-coding RNAs

that regulate gene expression post-transcriptionally. They do not

require a direct intervention on the target’s genomic sequence and

thus they do not incur the risk of causing genomic alterations.

siRNAs are delivered in their mature, functionally active form,

with no possibility to self-replenish the initial siRNA pool. Hence,

siRNAs are not suitable for the development of engineered immune

cells. Indeed, the rapid dilution of the siRNAs in the fast-dividing

activated T cells makes this approach only applicable to obtain

transient biological effect. On the other hand, shRNAs and miRNAs

are continuously transcribed as precursors in the recipient cells,

ensuring the long-term gene downregulation required for effective

CAR T-cell engineering. shRNAs and miRNAs share the same

molecular machinery for their maturation: following transcription,

the immature hairpin structure is processed by RNase III

enzymes (first Drosha, then DICER in the case of miRNAs, only

DICER in the case of shRNAs), leading to the formation of a mature

RNA duplex, which is in turn incorporated into the RNA-induced

silencing complex (RISC). The accessory passenger RNA strand

is then released and the RISC-guide strand riboprotein

mediates target mRNA recognition and downregulation (193–

195). Two important differences exist in the biogenesis of

shRNAs and miRNAs. First, shRNAs are transcribed by RNA

polymerase III, whereas miRNAs are driven by RNA polymerase

II. Hence, miRNAs are usually expressed at lower, more tolerable

levels than shRNAs and can be easily embedded in polycistronic

transcriptional units that facilitate CAR T-cell engineering (196).

Second, in addition to the very high expression levels, shRNA

bypass Drosha during their maturation process, possibly

overloading the cytoplasm with double-stranded RNA which may

obstruct the natural miRNA pathway and thus lead to toxicity (197,

198). Synthetic miRNAs, in which the guide sequence has been

swapped for an shRNA-based one directed against the gene of

interest, can overcome this issue, as they still closely exploit the

natural miRNA pathway (199), standing out as the most valid RNAi

technology for immune cell engineering. Clinical validation of the

miRNA-based RNAi approach in CAR T-cells has been obtained in

two phase I clinical trials (NCT04613557, NCT03466320). These

studies show both the functional efficiency and the high safety

profile of the technology.

Beyond the aforementioned examples, RNAi has been used to

engineer various features of CAR T-cells, with promising results in

preclinical models, and some of these strategies are currently under

evaluation in clinical trials (NCT06051695, NCT05617755,

NCT06245915, NCT04649112, NCT04825496, NCT05028933).

Notable applications are the downregulation of IFNg or GM-CSF

to reduce the risk of cytokine release syndrome (200, 201), the

targeting of immune checkpoints to inhibit CAR T-cell exhaustion

and enhance functionality (136, 202), the silencing of factors, such

as adenosine 2A receptor (A2aR), to improve resistance to the

immunosuppressive tumor microenvironment in the context of

solid tumors (203), and the simultaneous knock-down of TCR and

HLA class I for the generation of allogeneic CAR T-cells (196).

These applications elucidate one of the greatest advantages of RNAi

over other engineering technologies, i.e. the possibility to modulate
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the expression of the target gene to levels compatible with its

biology, reaching functionally relevant levels of inhibition without

the detrimental effects that a full KO may cause.

Another valuable characteristic of miRNAs is their frequent co-

occurrence within the same transcriptional unit within the genome.

About 50% of conserved vertebrate miRNAs are organized in clusters

(194, 204), making them an ideal engineering strategy for multiplex

applications. miRNA systems for multiple gene targeting have already

been used successfully against HIV-1 and HCV (205–207), although

their clinical applicability in immune cell therapy has been hampered

by the relatively weak knock-down efficiencies obtained thus far

(208). More recently, however, miRNA-based multiplex platforms

able to effectively target up to four genes have been proposed for the

engineering of CAR T-cells (196, 209) and optimized to reach

efficiencies compatible with the use in clinical products (196).

Overall, multiplex RNAi technologies allow for an easy, safe,

efficient, and tunable modulation of several genes simultaneously.
4 Perspective: engineering a new
generation of safer and more effective
CAR T-cells

The CAR T-cell revolution gave hope to patients who did not

have a valid therapeutic option. Still, for many indications, and

especially for solid tumors, the current CAR T-cell design is not

sufficient to succeed in these challenges, thus requiring further

modifications. In the vast majority of novel CAR T-cell products,

these are achieved via gene editing, mainly with CRISPR/Cas9. The

mechanism of action of gene editing technologies is intrinsically at

risk of creating undesired mutations and chromosomal aberrations

in the modified cells, and preclinical data convincingly confirm that

this is not a remote eventuality (141–145). While clinical trials are

not yet conclusive regarding genotoxicity due to gene editing,

several factors need to be considered. Indeed, the CRISPR

technology is still relatively young and only recently moved into

clinics, with the consequence that the amount of clinical data and

the follow-up time do not yet allow for an in-depth estimate of its

safety profile in patients. Moreover, in many gene-edited products,

CRISPR technology is used for the generation of allogeneic CAR T-

cells, whose persistence is still limited compared to their autologous

counterparts. The rise of harmful CAR T-cell clones may therefore

be counteracted by their fast in vivo clearance.

While the genotoxicity risk is still hypothetical in the case of

gene editing, secondary tumors correlated to the transgene delivery

system have been observed, both for viral vectors and for

transposons. As these two strategies cover the manufacturing of

the vast majority of CAR T-cells at preclinical and clinical level, a

systematic, albeit low, risk of genotoxicity is virtually present in all

CAR T-cell products. Gene editing adds a further layer of

complexity to the picture, as future products will be burdened by

the combined hazard coming from both the gene delivery system

and the engineering technology. Mitigation measures will therefore

become crucial for the future of immune cell therapies: reinforced

long-term surveillance for secondary tumors will likely be a
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requirement, while alternative, safer technologies, such as base

and prime editing, will need to be promptly ameliorated for

broader clinical applicability. Overall, the investments aimed at

improving the safety of CAR T-cell products will be as important as

the ones concerning efficacy and persistence. Currently, the best

compromise between manufacturability, efficacy and safety may be

represented by the combination of lentiviral-based vectors and

more established non-gene editing technologies such as RNAi.

Non-gene edited technologies also present the added value of

allowing the modulation of gene expression, a characteristic of

great relevance when targeting genes that impinge on delicate

biological equilibriums, such as activation/exhaustion and cell

metabolism, and whose complete ablation would be detrimental.

In vivo technologies look especially promising, as their application

can be envisioned beyond the mere deployment of the CAR

components. Both viral and non-viral vectors are being actively

tested for in vivo CRISPR delivery and editing (210–212), for

oncological as well as for gene therapy applications. Even more

interestingly, in vivo targeting can be envisioned for the modification

of other components of TME (213), such as macrophages, regulatory

cells and the cancer cells themselves, thus manipulating the cytokine,

immune checkpoints and metabolite milieu. Several areas of

intervention could be envisioned (reviewed in (3)). CAR T-cell

penetration into the tumor could be enhanced by acting on the

tumor vasculature or on cancer associated fibroblasts (CAFs), or

locally expressing matrix-degrading enzymes. CAR T-cell

functionality could be better preserved by acting on

immunosuppressive immune cells in the TME (Tregs, tumor-

associated fibroblasts, myeloid-derived suppressor cells), on

immunosuppressive soluble factors (such as TGF-b and IL-4), or on

inhibitory receptors and ligands expressed by tumor or stromal cells

(such as immune checkpoint ligands). Such a combinatorial approach

may create a more permissive environment for CAR T-cells to operate,

granting unprecedented possibilities of success for unmet medical

needs. An interesting novel way by which the safety of CAR T-cell

therapy could be enhanced involves the use of CAR T-cell-derived

Extracellular Vesicles (EVs). Expression of the CAR on the EV surface

renders the EVs responsive to the CAR antigen, and incorporation of

perforin and granzyme B in the EV cargo leads to lysis of the target cell.

As EVs do not proliferate and have a limited life span, they hold several

advantages in terms of safety. First, they do not pose the risk of

secondary cancers development. Second, the potential CAR T-cell

related toxicity is significantly reduced, as the lack of proliferation

means a reduction in both CRS and ICANS (214). Third, CAR T-cell

derived EVs have a relative low immunogenicity in heterologous

infusions, and may easily cross the tumor barrier, as observed by

tumor-derived EVs in both body fluids (215, 216) and tumors that are

characterized by strong fibrotic reaction (217). Preclinical studies using

anti-EGFR and HER-2 CAR T-cell-derived EVs demonstrated no

toxicity combined with a high efficacy in HER+ and EGFR+

xenograft mouse models. Moreover, CAR T-cell-derived EVs were

insensitive to PD-L1 immunosuppression, suggesting an interesting

approach to avoid immune suppression induced by immune

checkpoints (214). A similar study conducted with mesothelin-

targeted CAR-T derived EVs showed comparable results with no

signs of CRS combined with high efficacy (218). However, despite
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their favorable safety profile, the potency of CAR T-cell-derived EVs

has yet to be assessed properly in the clinical setting, as well as their

clinical-grade manufacturability.

Following the brilliant results obtained by anti CD19 CAR T-cells

in autoimmune diseases (39, 42, 219), the immune cell therapy field is

rapidly expanding to non-oncological indications. This welcome

advancement, however, brings forward outstanding safety

considerations. Indeed, if the current rate of CAR T-cell-derived

secondary malignancies may still be within a favorable risk-to-benefit

ratio for oncological patients, it would be unacceptable for individuals

that have alternative treatments and do not suffer from life-threatening

diseases. In this light, manufacturing and engineering technologies that

showed limitations in cancer therapy could represent a valid, equally

effective but safer alternative in other indications. The low persistence

of current allogeneic CART-cell therapies does not ensure proper long-

term tumor management but may turn into a favorable characteristic

to minimize the risk of secondary lymphomas in autoimmune patients.

Likewise, manufacturing strategies based on transient CAR expression

and in vivo-generated CAR T-cells may express all their potential in

indications other than oncology. A longer follow-up on a wider cohort

of patients will indicate whether an acute treatment with shortly

persisting CAR T-cells will be sufficient to lead to durable responses

against autoimmune diseases.

For the next future, it is therefore conceivable that different

indications will benefit of different CAR T-cell designs,

manufacturing, and engineering strategies. Autologous, allogeneic,

and in vivo-generated CAR T-cells will likely coexist in the immune

cell therapy toolbox and their employment against different diseases

will be tailored on their characteristics and strengths.
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78. Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating gene therapy
vectors. Hematol Oncol Clin North Am. (2017) 31:753–70. doi: 10.1016/
j.hoc.2017.06.007

79. Yew CHT, Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Tan
JJ, et al. Integrase deficient lentiviral vector: prospects for safe clinical applications.
PeerJ. (2022) 10:e13704. doi: 10.7717/peerj.13704

80. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS, Park MY, et al. Adoptive
immunotherapy using human peripheral blood lymphocytes transferred with RNA
encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft
model. Cancer Gene Ther. (2009) 16:489–97. doi: 10.1038/cgt.2008.98

81. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, et al. High-
efficiency transfection of primary human and mouse T lymphocytes using RNA
electroporation. Mol Ther. (2006) 13:151–9. doi: 10.1016/j.ymthe.2005.07.688

82. Beatty GL, Haas AR, Maus MV, Torigian DA, Soulen MC, Plesa G, et al.
Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce
antitumor activity in solid Malignancies. Cancer Immunol Res. (2014) 2:112–20.
doi: 10.1158/2326-6066.CIR-13-0170

83. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, et al. Multiple
injections of electroporated autologous T cells expressing a chimeric antigen receptor
mediate regression of human disseminated tumor. Cancer Res. (2010) 70:9053–61. doi:
10.1158/0008-5472.CAN-10-2880

84. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy
comes of age. Science. (2018) 359:eaan4672. doi: 10.1126/science.aan4672

85. Michels A, Ho N, Buchholz CJ. Precision medicine: In vivo CAR therapy as a
showcase for receptor-targeted vector platforms. Mol Ther. (2022) 30:2401–15.
doi: 10.1016/j.ymthe.2022.05.018

86. Anastasov N, Höfig I, Mall S, Krackhardt AM, Thirion C. Optimized Lentiviral
Transduction Protocols by Use of a Poloxamer Enhancer, Spinoculation, and scFv-
Antibody Fusions to VSV-G. In: Federico M, editor. Lentiviral Vectors and Exosomes as
Gene and Protein Delivery Tools. Springer New York, New York, NY (2016). p. 49–61.
doi: 10.1007/978–1-4939–3753-0_4

87. Yu B, Shi Q, Belk JA, Yost KE, Parker KR, Li R, et al. Engineered cell entry links
receptor biology with single-cell genomics. Cell. (2022) 185:4904–4920.e22.
doi: 10.1016/j.cell.2022.11.016

88. Buchholz CJ, Mühlebach MD, Cichutek K. Lentiviral vectors with measles virus
glycoproteins – dream team for gene transfer? Trends Biotechnol. (2009) 27:259–65.
doi: 10.1016/j.tibtech.2009.02.002

89. Nakamura T, Peng KW, Harvey M, Greiner S, Lorimer IAJ, James CD, et al.
Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol.
(2005) 23:209–14. doi: 10.1038/nbt1060

90. Charitidis FT, Adabi E, Thalheimer FB, Clarke C, Buchholz CJ. Monitoring CAR
T cell generation with a CD8-targeted lentiviral vector by single-cell transcriptomics.
Mol Ther - Methods Clin Dev. (2021) 23:359–69. doi: 10.1016/j.omtm.2021.09.019

91. Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and
therapeutic purposes. Annu Rev Virol. (2014) 1:427–51. doi: 10.1146/annurev-
virology-031413-085355

92. Michels A, Frank AM, Günther DM, Mataei M, Börner K, Grimm D, et al.
Lentiviral and adeno-associated vectors efficiently transduce mouse T lymphocytes
when targeted to murine CD8. Mol Ther - Methods Clin Dev. (2021) 23:334–47.
doi: 10.1016/j.omtm.2021.09.014
frontiersin.org

https://doi.org/10.1016/S0092-8674(00)80436-5
https://doi.org/10.1128/jvi.47.2.287-300.1983
https://doi.org/10.1093/nar/gks643
https://doi.org/10.1172/JCI138473
https://doi.org/10.1089/hum.2017.207
https://doi.org/10.1007/PL00008641
https://doi.org/10.1006/jmbi.2000.4047
https://doi.org/10.1084/jem.20211530
https://doi.org/10.1038/s41586-018-0326-5
https://doi.org/10.1016/j.iotech.2023.100375
https://doi.org/10.1038/leu.2016.180
https://doi.org/10.1038/s41587-019-0291-z
https://doi.org/10.1038/ng.343
https://doi.org/10.1038/gt.2011.40
https://doi.org/10.1038/gt.2011.40
https://doi.org/10.1038/ncomms11126
https://doi.org/10.1073/pnas.1008322108
https://doi.org/10.1002/bies.202000136
https://doi.org/10.1002/bies.202000136
https://doi.org/10.3389/fimmu.2022.867013/full
https://doi.org/10.1182/blood.2021010813
https://doi.org/10.1182/blood.2021010813
https://doi.org/10.1182/blood.2021010858
https://doi.org/10.1182/blood.2021010858
https://doi.org/10.1182/blood.2020009655
https://doi.org/10.1182/blood.2021012641
https://doi.org/10.1038/mt.2016.11
https://doi.org/10.3390/ijms22105084
https://doi.org/10.1371/journal.pgen.1004250
https://doi.org/10.1016/S0022-2836(02)00991-9
https://doi.org/10.1016/S0022-2836(02)00991-9
https://doi.org/10.7554/eLife.10565
https://doi.org/10.1016/j.jmb.2021.166839
https://doi.org/10.1038/ng.3866
https://doi.org/10.1093/nar/gkab578
https://doi.org/10.1126/sciadv.abf1333
https://doi.org/10.1126/sciadv.abf1333
https://doi.org/10.1016/j.hoc.2017.06.007
https://doi.org/10.1016/j.hoc.2017.06.007
https://doi.org/10.7717/peerj.13704
https://doi.org/10.1038/cgt.2008.98
https://doi.org/10.1016/j.ymthe.2005.07.688
https://doi.org/10.1158/2326-6066.CIR-13-0170
https://doi.org/10.1158/0008-5472.CAN-10-2880
https://doi.org/10.1126/science.aan4672
https://doi.org/10.1016/j.ymthe.2022.05.018
https://doi.org/10.1007/978&ndash;1-4939&ndash;3753-0_4
https://doi.org/10.1016/j.cell.2022.11.016
https://doi.org/10.1016/j.tibtech.2009.02.002
https://doi.org/10.1038/nbt1060
https://doi.org/10.1016/j.omtm.2021.09.019
https://doi.org/10.1146/annurev-virology-031413-085355
https://doi.org/10.1146/annurev-virology-031413-085355
https://doi.org/10.1016/j.omtm.2021.09.014
https://doi.org/10.3389/fimmu.2024.1411393
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rossi and Breman 10.3389/fimmu.2024.1411393
93. Nawaz W, Huang B, Xu S, Li Y, Zhu L, Yiqiao H, et al. AAV-mediated in vivo
CAR gene therapy for targeting human T-cell leukemia. Blood Cancer J. (2021) 11:119.
doi: 10.1038/s41408-021-00508-1

94. Kitte R, Rabel M, Geczy R, Park S, Fricke S, Koehl U, et al. Lipid nanoparticles
outperform electroporation in mRNA-based CAR T cell engineering. Mol Ther -
Methods Clin Dev. (2023) 31:101139. doi: 10.1016/j.omtm.2023.101139

95. Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, et al. In situ
programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat
Nanotechnol. (2017) 12:813–20. doi: 10.1038/nnano.2017.57
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99. Tombácz I, Laczkó D, Shahnawaz H, Muramatsu H, Natesan A, Yadegari A,
et al. Highly efficient CD4+ T cell targeting and genetic recombination using
engineered CD4+ cell-homing mRNA-LNPs. Mol Ther. (2021) 29:3293–304.
doi: 10.1016/j.ymthe.2021.06.004

100. Munis AM, Mattiuzzo G, Bentley EM, Collins MK, Eyles JE, Takeuchi Y. Use of
heterologous vesiculovirus G proteins circumvents the humoral anti-envelope
immunity in lentivector-based in vivo gene delivery. Mol Ther - Nucleic Acids. (2019)
17:126–37. doi: 10.1016/j.omtn.2019.05.010

101. Weber T. Anti-AAV antibodies in AAV gene therapy: current challenges and possible
solutions. Front Immunol. (2021) 12:658399/full. doi: 10.3389/fimmu.2021.658399/full

102. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N
Engl J Med. (2018) 378:439–48. doi: 10.1056/NEJMoa1709866

103. Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med.
(2021) 384:705–16. doi: 10.1056/NEJMoa2024850

104. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term
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