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Hepatitis B-related
hepatocellular carcinoma:
classification and prognostic
model based on programmed
cell death genes
Jinyue Tian, Jiao Meng, Zhenkun Yang, Li Song, Xinyi Jiang*

and Jian Zou*

Department of Clinical Laboratory, Wuxi People’s Hospital Affiliated Nanjing Medical University, Wuxi, China
Instruction: Hepatitis B virus (HBV) infection is a major risk factor for

hepatocellular carcinoma (HCC). Programmed cell death (PCD) is a critical

process in suppressing tumor growth, and alterations in PCD-related genes

may contribute to the progression of HBV-HCC. This study aims to develop a

prognostic model that incorporates genomic and clinical information based on

PCD-related genes, providing novel insights into the molecular heterogeneity of

HBV-HCC through bioinformatics analysis and experimental validation.

Methods: In this study, we analyzed 139 HBV-HCC samples from The Cancer

Genome Atlas (TCGA) and validated them with 30 samples from the Gene

Expression Omnibus (GEO) database. Various bioinformatics tools, including

differential expression analysis, gene set variation analysis, and machine learning

algorithms were used for comprehensive analysis of RNA sequencing data from

HBV-HCC patients. Furthermore, among the PCD-related genes, we ultimately

chose DLAT for further research on tissue chips and patient cohorts. Besides,

immunohistochemistry, qRT-PCR and Western blot analysis were conducted.

Results: The cluster analysis identified three distinct subgroups of HBV-HCC

patients. Among them, Cluster 2 demonstrated significant activation in DNA

replication-related pathways and tumor-related processes. Analysis of copy

number variations (CNVs) of PCD-related genes also revealed distinct patterns in

the three subgroups, whichmay be associatedwith differences in pathway activation

and survival outcomes. DLAT in tumor tissues of HBV-HCC patients is upregulated.

Discussion: Based on the PCD-related genes, we developed a prognostic model

that incorporates genomic and clinical information and provided novel insights

into the molecular heterogeneity of HBV-HCC. In our study, we emphasized the

significance of PCD-related genes, particularly DLAT, which was examined in

vitro to explore its potential clinical implications.
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1 Introduction

Chronic hepatitis B virus (HBV) infection is a major risk factor

for the development of Hepatocellular carcinoma (HCC),

particularly in regions with high HBV prevalence (1, 2). Despite

advances in treatment, the prognosis of HBV-related HCC remains

poor, with a high rate of recurrence and metastasis (3, 4). Therefore,

there is an urgent need to identify novel prognostic biomarkers and

therapeutic targets for HBV-related HCC.

Programmed cell death (PCD) is a critical process in the

regulation of tissue homeostasis and the elimination of damaged

or abnormal cells (5). Several types of PCD have been identified,

including apoptosis, necroptosis, pyroptosis, and ferroptosis (6).

Recently, several studies have suggested that PCD plays a critical

role in the development and progression of HCC (7–9). However,

the role of different types of PCD in HBV-related HCC and their

clinical significance remains unclear.

In this study, we aimed to identify distinct subgroups of HBV-

HCC patients based on clinical characteristics and expression profiles

of PCD-related genes. Various bioinformatics tools, including

differential expression analysis, gene set variation analysis, and

machine learning algorithms were used for comprehensive analysis

of RNA sequencing data from HBV-HCC patients. The identification

of subgroups with distinct clinical characteristics, immune

microenvironments, metabolic states, and drug sensitivities may

facilitate the development of effective therapies for HBV-HCC.

Furthermore, among the PCD-related genes, we ultimately chose

DLAT for further research on tissue chips and patient cohorts. Upon

analyzing the relationship between DLAT and patient survival

prognosis, it was discovered that patients with deep DLAT staining

had significantly shorter survival times than those with light DLAT

staining. Through our study, we can classify HBV-HCC subgroups

based on different PCD-related genes and construct prognostic

models. It suggests that PCD-related genes can serve as potential

biomarkers for patient stratification and personalized treatment.
2 Material and methods

2.1 NMF unsupervised clustering of HBV-
HCC samples

We analyzed 139 HBV-HCC samples from TCGA using non-

negative matrix factorization (NMF) to perform unsupervised

clustering. The cophenetic value and clustering heatmap were

used to determine the optimal number of clusters, and we found

that three clusters showed the greatest inter-group variability and

the least intra-group variability. We then compared the overall

survival (OS) rates of the three clusters using the “survival” and

“survminer” packages in R software. The expression of genes related

to programmed cell death (PCD) in the three clusters was visualized

using a heatmap generated with the “pheatmap” package. We also

analyzed the clinical characteristics of the three clusters using a

stacked bar plot generated with the “ggplot2” package.
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2.2 Immune cell infiltration analysis and
prediction of response to immunotherapy

Analysis of immune cell infiltration was performed using

TIMER2.0 (http://timer.cistrome.org), which utilizes gene

expression data to estimate the abundance of various immune cell

types in tumor tissues. Seven different methods were used to

evaluate immune cell infiltration. Heatmap visualization of

differentially expressed immune cells was generated using the

“pheatmap” package. The microenvironment of each cluster was

evaluated using the “estimate” package, and boxplots were

generated using the “ggpubr” package to compare the stromal

score, immune score, and ESTIMATE score between clusters. The

Tumor Immune Dysfunction and Exclusion (TIDE) algorithm

(http://tide.dfci.harvard.edu) was used to predict the response to

immune checkpoint blockade therapy, and the results were

visua l ized us ing viol in plots and boxplots with the

“ggpubr” package.
2.3 GSVA and CNV analysis of PCD-related
genes in HBV-HCC

Gene set variation analysis (GSVA) was performed using the

“GSVA” and “GSEABase” packages in R to calculate the pathway

activity of HALLMARK gene sets in the three HBV-HCC

subgroups. Heatmaps were generated to visualize the pathway

activity using the “pheatmap” package. The HALLMARK gene

sets were obtained from the Molecular Signatures Database

(MSigDB) (http : / /www.gsea-msigdb.org/gsea/msigdb) .

Additionally, Copy number variations (CNVs) of PCD-related

genes in HBV-HCC subgroups were analyzed using CNV data

obtained from the UCSC Xena browser. Lollipop charts were

generated to visual ize the CNV variat ions using the

“ggplot2” package.
2.4 Differential gene expression analysis
and enrichment analysis of HBV-
HCC subgroups

RNA sequencing data from three subgroups of HBV-HCC were

obtained and analyzed using R software. Differential expression

analysis was performed using the “limma” package to identify

differentially expressed genes (DEGs) between each subgroup.

DEGs with an adjusted p-value < 0.05 and a log2 fold change > 1

were considered significant. Gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

were performed on the DEGs for each subgroup using the

“clusterProfiler” package in R. The enriched GO terms and KEGG

pathways with a p-value < 0.05 were considered significant. To

visualize the GO enrichment results, GO circle plots were

generated using the “circlize” and “ComplexHeatmap” packages in R.
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2.5 Identification of survival-associated
genes and construction of a
prognostic model

The univariate cox regression analysis was performed to

identify genes significantly associated with OS with p-value<0.05.

Two methods, LASSO regression and random survival forest (RSF),

were used for further screening of survival-associated genes. The

optimal lambda value was used to select genes in the LASSO

regression, and the top 10 genes with the highest importance

score based on the Gini coefficient were selected in the RSF

analysis. The intersection of genes selected by the two methods

was used for further analysis. A stepwise multiple cox regression

was conducted to build a prognostic model using the selected genes,

and hub genes were identified. Risk scores were calculated based on

the expression levels and coefficients of the hub genes for

distinguishing patients into high- and low-risk groups. Kaplan-

Meier survival curves and receiver operating characteristic (ROC)

curves were used to evaluate the performance of the model.

Principal component analysis (PCA) and t-distributed stochastic

neighbor embedding (t-SNE) were used to explore the expression

pattern of the hub genes and to visualize the clustering of patients in

the high- and low-risk groups.
2.6 Evaluation of prognostic value and
gene expression patterns in high- and low-
risk groups

We used the same risk score formula derived from the stepwise

multivariate Cox regression analysis in the training and validation

sets. Patients were ranked according to their risk scores, and the risk

score distribution and survival curves were plotted to evaluate the

prognostic value of the risk score. In addition, to compare the gene

expression patterns between the high- and low-risk groups, we

selected the top five genes from the multivariate Cox regression

analysis and compared their expression levels in the two groups.

The expression levels were presented as a heatmap using the

“pheatmap” package.
2.7 Immune cell and immune process
enrichment analysis and evaluation of
immune therapy and MSI score in
HBV-HCC

GSVA method was used to evaluate the relative enrichment

score of 29 immune cell types and immune processes in HBV-HCC

samples. The ssGSEA score of each immune cell type and immune

process was calculated using the “GSVA” and “GSEABase”

packages in R. The ImmunCellAI algorithm was used to evaluate

the sensitivity of immune therapy for HBV-HCC patients. The

immune cell score, immunotherapy exclusion score, and cytotoxic

score were obtained through the ImmunCellAI web tool (http://

bioinfo.life.hust.edu.cn/ImmuCellAI#!/analysis). The tumor
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immune dysfunction and exclusion (TIDE) algorithm was used to

evaluate the MSI (Microsatellite instability, MSI) score of HBV-

HCC samples. MSI is an important factor in the occurrence and

development of tumors. The results were visualized using violin

plots and boxplots with the “ggpubr” package.
2.8 Drug sensitivity analysis using IC50
data from the GDSC database

Drug IC50 data were obtained from the Genomics of Drug

Sensitivity in Cancer (GDSC) database. Drug sensitivity analysis

was conducted with “pRRophetic” and box plots were drawn by

“ggplot2” in R software. IC50 values between the high- and low-risk

groups were compared using the t-test. Drugs with significantly

lower IC50 values in the low-risk group were considered potentially

suitable for low-risk patients, while drugs with significantly lower

IC50 values in the high-risk group were considered potentially

suitable for high-risk patients.
2.9 Construction and evaluation of clinical
prediction model for HBV-HCC patients

Patients with complete clinical information and survival data

were included in this study. Univariate cox regression analysis was

performed to extract factors with p<0.05 with “graphics” package

and construct a multivariate cox regression model with “StepReg”

and “regplot” packages. The ROC curve was evaluated to assess the

discrimination ability of the model using “timeROC” package. The

calibration curve was plotted with “timeROC” package to evaluate

the calibration of the model. The clinical prediction model was

divided into high and low-risk groups based on the model with

“survival” package.
2.10 Western blot and qRT-PCR

Liver cancer cells were lysed using RIPA buffer (Cell Signal

Technology, MA), centrifuged for the supernatant. The protein

concentration was measured using bicinchoninic acid (BCA) assay

(Cwbio, Beijing, China). The lysates were then diluted in loading

buffer and denatured by heating at 100°C. Standard Western blot

assay were performed using DLAT antibody (Proteintech, 68303)

and GAPDH antibody (Abcam, ab77109) as the loading control.

Total RNA was extracted from the liver cancer cells using Trizol

reagent (Invitrogen, USA) and cDNA was synthesized using the M-

MLV Reverse Transcriptase Kit (Cwbio) following the

manufacturer’s instructions. RT-PCR was performed using Real

SYBR Mixture (Cwbio) on a Lightcycler 480 II instrument (Roche

Applied Science, USA). GAPDH severed as the internal control.
DLAT forward primer: 5′-CCGCCGCTATTACAGTCTTCC-
3′;
frontiersin.org
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Fron
DLAT reverse primer: 5′-CTCTGCAATTAGGTCACCTT
CAT-3′.

GAPDH forward primer: 5′-TGTTGCCATCAATGACCC
CTT-3′;

GAPDH reverse primer: 5′-CTCCACGACGTACTCAGCG-3′
2.11 Tissue microarray
and immunohistochemistry

Immunohistochemistry staining was performed using the

streptavidin-peroxidase method according to the manufacturer’s

instructions (Ultrasensitive; MaiXin, Fuzhou, China). The tissue

microarray HLivH180Su09 which was related to HBV infection

were incubated with an anti-DLAT antibody (mouse anti-human;

dilution, 1:2000; HPA040786) at 4°C overnight, followed by the

biotinylated anti-mouse IgG secondary antibody. The result of IHC

were independently scored by two investigators who were blinded to

the clinical data. The scores were obtained by evaluating the staining

intensity and percentage of positive cells in representative areas. We

used the following strategy to assess the results: intensity, 0 (no

signal), 1 (weak), 2 (moderate), or 3 (high); percentage of cells, 0%-
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100%. We multiplied the scores of the staining intensity and

percentage to obtain a final score (range 0–3). When the IHC

score≥1.5, they had a high DLAT expression. When the IHC

score<1.5, they were defined as low DLAT expression.
3 Results

3.1 Identification of three subgroups of
HBV-HCC samples with distinct clinical
characteristics and survival outcomes

We collected 139 HBC-HCC samples from TCGA-LIHC which

contained clinical information and survival outcomes. According to

NMF unsupervised clustering (Figure 1A), the samples were divided

into three subgroups, labeled Cluster 1, Cluster 2, and Cluster 3.

Among them, Cluster 2 showed the worst Overall Survival (OS)

probability (Figure 1B), and contained more overexpressed PCD-

related genes in the heatmap (Figure 1C). Moreover, exploration of

clinical characteristics revealed that Cluster 2 had the largest

proportion of high-risk groups: more samples were at stage of G3/

G4, III/IV and T3/T4 grade in histological grade, pathological stage,

and T stage, respectively (Figures 1D-F).
B

C

D E F

A

FIGURE 1

Clustering analysis of HBV-HCC samples based on gene expression profiles. (A) Clustering heatmap shows the identification of three distinct
subgroups of HBV-HCC samples, labeled as Cluster 1, Cluster 2, and Cluster 3. (B) Kaplan-Meier survival analysis shows the overall survival (OS) of
patients in each cluster. (C) Heatmap shows the expression levels of PCD-related genes in each cluster. (D-F) Stacked bar plot shows the distribution
of histological grade, pathological stage, and T stage in each cluster. OS, Overall survival; PCD, Programmed cell death.
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3.2 Microenvironment and immunotherapy
sensitivity evaluation

We perform 7 algorithms to evaluate the immune infiltration of

three clusters (Figure 2A). Cluster 2 displayed higher abundance of

immune cells compared to the other clusters. Consistent with the above

results, Cluster 2 had the highest stromal score, immune score and

estimate score (Figures 2B-D), indicating that more active

microenvironments existed in Cluster 2. The TIDE evaluation

revealed that the exclusion score of Cluster 2 was also the highest

(Figure 2E). Although Cluster 2 contained more immune cells, the cells

were undergoing immune rejection and were unable to infiltrate. In the

evaluation of dysfunctions, Cluster 1 received the lowest score

(Figure 2F). This indicates that Cluster 1 was supposed to have the

least immune rejection and dysfunction, which could be associated
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with better survival outcomes. Meanwhile, both Cluster 1 and Cluster 3

had a higher MSI score compared to Cluster 2, suggesting that

immunotherapy was least effective in Cluster 2 (Figure 2G).
3.3 Pathway and CNV analysis reveals
differences among HBV-HCC subgroups

We further explored the pathway activation in three distinct

clusters (Figure 3A). The heatmap revealed that metabolism-related

pathways, such as fatty acid and bile acid metabolism, were

significantly activated in Cluster 1. Cluster 2 exhibited activation of

DNA replication pathways, including the G2M checkpoint, and tumor-

related processes, such as p53 pathway, were significantly activated in
B C D

E F G

A

FIGURE 2

Microenvironment and immunotherapy sensitivity evaluation of three subgroups. (A) Heatmap represents immune cell infiltration in three subgroups
of HBV-HCC using seven algorithms. (B-G) Stromal score, Immune score, ESTIMATE score, Exclusion score, Dysfunction score and MSI in Cluster 1,
Cluster 2, and Cluster 3. MSI, Microsatellite instability. It signifies a lack of significant differences. *p≤0.05, **p≤0.01, ***p≤0.001. ns means p>0.05.
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Cluster 2, suggesting that Cluster 2 may have a closer relation to tumor

progression. Analysis of CNVs in PCD-related genes revealed distinct

patterns in the three HBV-HCC subgroups. In Cluster 1 (Figure 3B), 32

genes had more samples with amplifications in gene copy number

compared to losses, while Cluster 2 and Cluster 3 had 22 and 24 genes,

respectively (Figures 3C, D). These CNV variations may be correlated

with the differences in pathway activation and survival outcomes

among the subgroups.
Frontiers in Immunology 06
3.4 Metabolic differences between HBV-
HCC subgroups

We conducted GO and KEGG enrichment analyses on the

differentially expressed genes within the three subgroups. The results

of the GO enrichment analysis indicated that both Cluster 1 and

Cluster 2 exhibited significant enrichment in GO terms related to

metabolism (Figures 4A-C). However, the biological processes and
B

C

D

A

FIGURE 3

Pathway activation and CNV analysis reveal differences among HBV-HCC subgroups. (A) GSVA analysis shows the differences in pathway activity among the
three HBV-HCC subgroups. The color red denotes DNA replication pathways, whereas purple signifies pathways related to metabolism. (B-D) Frequencies of
CNV gain, loss, and non-CNV among PCD-related genes in the three HBV-HCC subgroups. CNV, Copy number variation; GSVA, Gene set variation analysis.
B C

D E F

A

FIGURE 4

GO and KEGG analysis in HBV-HCC subgroups. GO enrichment analysis of Cluster 1 (A), Cluster 2 (B), and Cluster 3 (C). KEGG pathway analysis of
Cluster 1 (D), Cluster 2 (E), and Cluster 3 (F). GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.
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signaling pathways related to metabolism were activated (GO z-scores

> 0) in Cluster 1, while they were inhibited (GO z-scores < 0) in Cluster

2. KEGG pathway analysis showed that both Cluster 1 and Cluster 2

also shared significant enrichment in metabolic pathways

(Figures 4D-F). However, the enriched pathways were mainly

upregulated in Cluster 1, while they were downregulated in Cluster

2. These results suggest that the three subgroups have distinct

metabolic states, with Cluster 1 showing activated metabolism,

Cluster 2 showing inhibited metabolism, and Cluster 3 showing a

different metabolic state.
3.5 Identification and validation of
prognostic gene signature for HBV-HCC

We screened 20 PCD-related genes associated with OS using

univariate Cox regression analysis. Two screening methods were
Frontiers in Immunology 07
used to identify potential genes: (1) According to LASSO

regression, we selected 12 genes with the optimal lambda value

(Figures 5A, B); (2) RSF analysis ranked the genes based on their

importance, and we selected the top 10 genes (Figure 5C). The

intersection of these two methods resulted in nine genes, which

were further analyzed using multivariable Cox regression analysis.

From this analysis, five genes (CHMP4C, DLAT, MMP1, NLRP6,

and NOD2), were found to be associated with OS (Figure 5D). The

risk score was calculated based on these five genes, and patients

were divided into high-risk and low-risk groups. The KM survival

curves showed that the high-risk group had significantly poorer

OS than the low-risk group (p < 0.05) (Figure 5E). The ROC

curves showed that the risk score had good accuracy in predicting

1-year (AUC: 0.766), 3-year (AUC: 0.804) and 5-year (AUC:

0.782) survival (Figure 5F). Additionally, PCA and tSNE

analyses showed that the high-risk and low-risk groups were

well separated based on their risk scores, indicating that the risk
B C D

E F G H

I J K L

A

FIGURE 5

Identification of hub genes and construction of PCD-related prognostic model for HBV-HCC. (A) Univariate Cox regression analysis profiles 20
genes significantly associated with OS. (B) LASSO regression showed that when the error of the model was minimized, 12 variables were selected for
further logistic regression analysis. (C) Variable importance plot for the top 10 genes identified by RSF analysis. (D) Classification error rates of the
RSF analysis for different numbers of genes. (E) Kaplan-Meier survival curves for patients in the high- and low-risk groups defined by the five-gene
prognostic model. (F) ROC curve analysis of the five-gene prognostic model for 1-year, 3-year and 5-year OS. (G) PCA analysis of the high- and
low-risk groups based on the five-gene prognostic model. (H) tSNE analysis of the high- and low-risk groups based on the five-gene prognostic
model. (I-L) The prognostic value of the five-gene signature was validated in an independent cohort. The Kaplan-Meier survival curves (I), ROC curve
analysis (J), PCA analysis (K), and tSNE analysis (L) showed consistent results with those of the training cohort. OS, Overall survival; LASSO, Least
absolute shrinkage and selection operator; RSF, Random survival forest; ROC, Receiver operating characteristic curve; PCA, Principal components
analysis; tSNE, t-distributed stochastic neighbor embedding.
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score represented the major differences in the patient samples

(Figures 5G, H). These findings were consistent with those in the

independent validation cohort (Figures 5I-L).
3.6 Identification and validation of
prognostic gene signature for HBV-HCC

We ranked the patients according to the risk score of the

training set, and found that patients with higher risk scores had

significantly worse survival outcomes, indicating that the risk

score was a reliable prognostic indicator (Figures 6A, B).

Compared the expression levels of the five selected genes

between the high-risk and low-risk groups, we found NLRP6

exhibited higher expression levels in the low-risk group while the

other four genes expressed at higher levels in the high-risk group

(Figure 6C). The same results were observed in the validation set

(Figures 6D-F). These findings confirmed the prognostic value of

the risk score and the potential clinical significance of the selected

genes in HBV-HCC.
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3.7 Immune cell infiltration and
microenvironment in HBV-HCC

We evaluated the immune infiltration with ssGSEA analysis and

discovered eight immune cell types were positively correlated with

risk score, while two immune cell types were negatively correlated

with the risk score (Figures 7A-J). In the high-risk group, most

immune processes were significantly activated (Figure 7K),

indicating a higher abundance of immune cells in this group.

While low-risk group showed higher ImmunCellAI score, higher

MSI score and lower exclusion score (Figures 7L-O) compared to

high-risk group, indicating that the low-risk group was more likely

to benefit from immunotherapy.
3.8 Drug sensitivity analysis reveals
potential therapeutic options for high-risk
and low-risk HCC patients

The IC50 values of 12 drugs were collected from GDSC. Among

them, the IC50 of four drugs in the low-risk group was significantly
B

C

D

E

F

A

FIGURE 6

Prognostic value of the risk score and expression of hub genes in HBV-HCC. (A) Kaplan-Meier survival curves of the high- and low-risk groups
based on the risk score. (B) Time-dependent ROC curves of the risk score for predicting survival outcomes. (C) Heatmap showing the expression
levels of the five hub genes in the high- and low-risk groups. (D) Kaplan-Meier survival curves of the high- and low-risk groups in the validation set.
(E) Time-dependent ROC curves of the risk score in the validation set. (F) Heatmap showing the expression levels of the five hub genes in the high-
and low-risk groups in the validation set. ROC, Receiver operating characteristic curve.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1411161
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2024.1411161
lower than that in the high-risk group, indicating that these drugs

may be more suitable for low-risk patients. On the other hand, the

IC50 of 8 drugs was lower in the high-risk group, making them

more suitable for high-risk patients (Supplementary Figure S1).
3.9 Development of a clinical prediction
model based on T stage and risk score for
HBV-HCC patients

Combined with the risk score and clinical information (age,

sex, T stage, N stage, M stage, and histological stage), univariate

Cox regression analysis was performed yielding two factors T

stage and risk score (p<0.05). These factors were closely associated
Frontiers in Immunology 09
with poor survival (Figure 8A). They were further used to

construct a multivariate Cox regression model, visualized with a

survival nomogram (Figure 8B). The ROC curve was drawn to

assess the discrimination ability of the model (Figure 8C), with a

larger AUC indicating better discrimination. The calibration curve

was plotted to evaluate the calibration of the model, and the

deviation between the actual curve and the ideal curve was small

(Figure 8D). The clinical prediction model was further divided

into high-risk and low-risk groups based on the model and

significant survival differences were observed between the two

groups (Figure 8E). Based on the risk score calculated by the 5

PCD-related genes and T stage of HBV-HCC tumors, we

constructed a clinical model with good discrimination ability,

calibration, and survival prediction.
B C D
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L M N O

A

FIGURE 7

Immune cell infiltration and microenvironment in high- and low-risk groups of HBV-HCC patients. (A-J) Heatmap showing the ssGSEA scores of
immune cell types in the high- and low-risk groups. (K) Boxplot showing the distribution of ssGSEA scores of immune processes in the high-risk and
low-risk groups. (L-N) ImmunCellAI scores of the high-risk and low-risk groups for immunotherapy sensitivity, immunotherapy exclusion, and
cytotoxic activity, respectively. (O) Boxplot showing the MSI scores of the high-risk and low-risk groups. ssGSEA, single sample gene set enrichment
analysis; MSI, Microsatellite instability. *p≤0.05, **p≤0.01, ***p≤0.001. ns means p>0.05.
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3.9 Upregulation of DLAT in tumor tissues
of HBV-HCC patients

We compared the expression of DLAT at both the mRNA and

protein levels in Huh-7, and Huh-7 cells transfected with a plasmid

containing the whole HBV genome (Huh-7/HBV). The results

showed that DLAT levels increased after HBV transfection, both

in terms of RNA and protein levels. (Figures 9A, B).

Immunohistochemical staining was conducted on a tissue

microarray of 76 HBV-HCC patients’ tumors and adjacent

tissues. Three fields of view with high, medium, and low staining

were chosen, revealing that the tumor exhibited stronger staining

compared to the adjacent tissues. The immunohistochemical

staining score of DLAT in cancer tissue was also significantly

higher than in the adjacent tissues (p<0.001) (Figures 9C, D).

Further analysis of the relationship between DLAT and the

clinical characteristics of patients revealed that DLAT was

associated with abnormal ALT and GGT levels (Figures 9E, F). It

was speculated that DLAT is a gene associated with adverse effects

in patients with HBV-HCC.
4 Discussion

HBV-related HCC is a complex and heterogeneous disease with

pessimistic clinical outcomes (10–13). In this study, we focused on
Frontiers in Immunology 10
the role of three types of PCDs (cuproptosis, netotic cell death, and

pyroptosis) and investigated their values in the progression and

prognosis of HBV-HCC.

Several previous studies have identified subtypes in HCC (14, 15),

and classified HCC patients with distinct clinical outcomes. Our

study differed from those previous ones in the methods used to

identify subtypes, and found specific clinical characteristics and

immune features of each subtype. Through unsupervised clustering

analysis, we firstly discovered three distinct subgroups of HBV-HCC

patients with different clinical characteristics and survival outcomes.

Cluster 2 was associated with the worst OS, and it had the highest

abundance of immune cells, suggesting a more active

microenvironment. However, TIDE analysis showed that Cluster 2

had significantly higher exclusion scores, indicating an

immunosuppressive state and an inability for immune cells to

infiltrate into the tumors, which may be related to its poor survival

outcomes. MSI analysis also indicated that Cluster 2 was the least

likely to benefit from immune checkpoint blockade therapy, while

both Cluster 1 and Cluster 3 had higher MSI scores, suggesting that

these two subgroups may be more sensitive to immunotherapy.

Previous studies have reported that dysregulated metabolism is

a hallmark of cancer, especially in HCC (16–18), for example,

glycolytic pathway (9) and lipid metabolism pathway (19) were

found to be upregulated in HCC, and targeting these pathways may

have therapeutic potential. In our study, we performed more

detailed research and found that metabolic pathways were
B

C D E

A

FIGURE 8

Development of a clinical prediction model based on T stage and risk score for HBV-HCC patients. (A) Univariate cox regression analysis of T stage
and risk score for OS. (B) The distribution of risk scores in the training set. The dotted line represents the cut-off point for dividing patients into high-
and low-risk groups. (C) The ROC curve of the multivariate Cox regression model based on T stage and risk score. (D) Calibration curves for 1-year,
3-year, and 5-year OS of HBV-HCC patients in the training cohort for the multivariate Cox regression model. (E) Kaplan-Meier curves for OS of
patients in the high-risk and low-risk groups. OS, Overall survival; ROC, Receiver operating characteristic curve.
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activated or inhibited in different immune subtypes of HBV-HCC.

Small molecules, carboxylic acid, organic acid and other catabolic

process related pathways were upregulated in Cluster 1 and

downregulated in Cluster 2. The subgroups with distinct

characteristics and activated pathways found in our study may

bring implications for the development of personalized therapies

for HBV-HCC patients.

Using a combination of univariate Cox regression analysis, LASSO

regression, and random forest analysis, we identified five genes

(CHMP4C, DLAT, MMP1, NLRP6, and NOD2) associated with OS.

Among them, MMP1 is a biomarker related to netotic cell death,

NOD2 and NLRP6 associates with both autophagy and pyroptosis.

Furthermore, CHMP4C and DLAT are related to pyroptosis and

cuproptosis, respectively. We then developed a risk score formula

based on their expression levels. The risk score had good predictive

accuracy in differentiating high-risk and low-risk patients, and patients

in the high-risk group had significantly poorer OS than those in the

low-risk group. Furthermore, we evaluated the potential for drug
Frontiers in Immunology 11
sensitivity analysis based on the risk score. We found that four drugs

had significantly lower IC50 values in the low-risk group, indicating

that these drugs may be more effective in low-risk patients, while eight

drugs had significantly lower IC50 values in the high-risk group. These

genes may serve as potential prognostic biomarkers and therapeutic

targets for HBV-HCC. As part of the pyruvate dehydrogenase complex,

DLAT plays an important role in glucose metabolism and the TCA

cycle. However, the relevance and function ofDLAT in cancers such as

HCC, are unclear (20, 21). It has been found that DLAT is a gene

related to cuproptosis and glucose metabolism (22, 23). Therefore,

DLAT was selected for further research.

Our study has several limitations. First, the sample size is

relatively small, and external validation with a larger sample size

is needed to confirm our findings. Second, the molecular

mechanisms underlying the identified pathways and PCD-related

genes need further investigation. Genes from different types of PCD

that influence HBV-HCC progression independently or

synergistically remains to be explored. Third, our study is based
B C
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FIGURE 9

Upregulation of DLAT in tumor tissues of HBV-HCC patients. (A, B) Verify the expression of DLAT protein and mRNA levels in cells through in vitro
experiments. (C, D) IHC staining of a tissue microarray was used to verify the expression of DLAT in HBV-HCC patients. (E, F) The relationship
between DLAT IHC scores and levels of ALT and GGT. ** means p≤0.01, *** means p≤0.001, they all indicate significant differences.
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on transcriptomic data of HBV-HCC liver tissues, and further

validation of the prediction model using other omics data from

different HBV-HCC samples (such as blood samples, urine

specimen and stool samples with better access) is warranted.

Fourth, we selected DLAT in vitro experiments to verify its

correlation with the poor prognosis of HBV-HCC. Subsequent

functional experiments are needed to further explore how

upstream HBV regulates DLAT and the effect of the increase in

downstream DLAT on cuproptosis and metabolism.

In conclusion, our study identified distinct subgroups of HBV-

HCC patients with different clinical characteristics, survival

outcomes, and metabolic states, providing new insights into the

heterogeneity of HBV-HCC. A prognostic model based on five

PCD-related genes (specifically DLAT) and tumor stage that may

serve as potential biomarkers for patient stratification and

personalized therapy. Finally, our study highlights the potential

for drug sensitivity analysis based on the risk score, which may

facilitate the development of targeted therapies for HBV-HCC.
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