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Background: Breast cancer (BC) remains a significant contributor to female

mortality globally, with inflammation and the immune system implicated in its

pathogenesis. To elucidate potential causal relationships, we evaluated the

relationship among 731 immune cell phenotypes and BC be at risk by using

Mendelian randomization (MR), while also exploring inflammatory proteins as

mediators in this association.

Methods: We obtained immune cell genome-wide association study (GWAS)

summary data and 91 inflammatory factors from the GWAS Catalog. BC GWAS

data was obtained from the IEU Open GWAS project (ukb-b-16890 for discovery

and GCST004988 for validation). We investigated the causal link between

immune cells and BC risk by employing a two-sample MR method.

Furthermore, we use a two-step MR to quantify the percentage of mediation

of immune cell-BC causal effects mediated by inflammatory proteins. To make

sure the causal findings were robust, a sensitivity analysis was done.

Results: In both discovery and validation GWAS, a critical inverse correlation

between CD4+ T cells and BC risk was found using MR analysis (Discovery: OR,

0.996; P = 0.030. Validation: OR, 0.843; P = 4.09E-07) with Caspase 8 levels

mediating 18.9% of the reduced BC risk associated with immune cells(Mediation

proportion=a×b/c, Discovery:0.151×-0.005/-0.004 = 18.9%; Validation:0.151×-

0.214/-0.171 = 18.9%)

Conclusion: Our study establishes a causal connection linking CD4+ T cells and

BC, with Caspase 8 levels partially mediating this relationship. These findings

enhance our genetic and molecular comprehension of BC, suggesting potential

pathways for future BC immunotherapy drug development.
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GRAPHICAL ABSTRACT
Introduction

Breast cancer (BC) stands as a formidable health challenge globally,

now surpassing lung cancer as the most prevalent malignancy among

women (1). Despite its historical perception as having minimal

immune involvement, recent advancements in tumor immunology

underscore the vital function of immune cells in BC development (2).

Additionally, various immune cells and cytokines participate in the BC

immune microenvironment, exhibiting both anti-tumor and immune-

suppressive functions, and contributing to chronic inflammation

linked to BC progression. Recent research indicates that an increase

in tumor-infiltrating immune cells, particularly Cytotoxic T

Lymphocytes (CTLs), T cells, and B cells, is correlated with a more

favorable prognosis in triple-negative breast cancer (TNBC) and high-

grade ductal carcinoma in situ (DCIS) (3, 4). CTLs are particularly

important as they can trigger the death of cancer cells through the Fas/

FasL pathway, which leads to apoptosis, or programmed cell death (5).

In contrast, pro-inflammatory cytokines such as interleukin-6 (IL-6)

have been shown to drive breast cancer progression by creating a

tumor-promoting inflammatory environment and inhibiting apoptosis

(6, 7). Understanding the immune system’s functionality and

associated inflammatory factors is pivotal in designing therapeutic

strategies leveraging the immune microenvironment for BC treatment

(8). Given the complexity of the immune microenvironment in breast

cancer, harnessing the immune system for therapeutic benefit has

become a major focus in cancer research (9, 10). Although traditional

breast cancer treatments have not typically included immunotherapy

(11, 12), emerging evidence suggests that immunotherapeutic

approaches can be effective, particularly in subtypes like TNBC,

where the presence of immune infiltrates is associated with better

outcomes. To establish causality between immune-related factors and

breast cancer outcomes, Mendelian randomization (MR) offers a

powerful methodological approach (13). By using genetic variants as

instrumental variables (IVs), MR can help determine the causal effects

of immune-related exposures on breast cancer risk and progression,

minimizing the influence of confounding variables and reverse

causality that often plague observational studies (14, 15).
Frontiers in Immunology 02
Previous research using MR has demonstrated a causal connection

between immune cells and ER+ BC (16). However, the expanded

genetic information of immune cells and improved MR evaluation

models may continually challenge these conclusions. Therefore, based

on the availability of a broader spectrum of genetic information on

plasma immune cell phenotypes and proteomes, an updated

assessment of the causal connection linking BC and immune cells

and the role played by inflammatory factors is necessary. Our goal is to

employ robust two-sample MR analysis to revisit the relationship of

causality among immune cell phenotypes and BC. Additionally, we

employ a two-step MR approach to explore the involvement of

inflammatory proteins as mediators in this relationship.
Method

Study design

MR analysis aims to employ variants in genes as IVs to elucidate

causal links between exposures and outcomes. It is based on three

primary premises: (1) IVs and exposures are associated, (2) IVs don’t

depend on confounders, and (3) IVs only have an impact on the

outcome by exposure pathways. Initially, to investigate the link of

causality among 731 immune cell types and BC risk, we performed

two-sample MR. Subsequently, we investigated whether inflammatory

factors mediate the link between immune cells and BC risk with a two-

stepMRmethodology. In addition, we used reverse MR analysis to rule

out the possible reverse causality between immune cells and BC.

Finally, to ensure the robustness of our findings, we employed

additional BC GWAS to validate the causal relationship between

immune cells and BC and inflammatory factors and BC. A

schematic summary of the study is shown in Figure 1.
GWAS summary data sources

Summary data on immune cells and BC were acquired from

recently published GWAS datasets.
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The immune GWAS data (Study ID: GCST0001391 to

GCST0002121) included information on 731 immune

phenotypes, categorized into morphological parameters (MP),

absolute cells (AC), relative cells (RC), and median fluorescence

intensity (MFI) (17). Detailed descriptions are provided in

Supplementary Table S1.

Additionally, 91 inflammatory factors GWAS were sourced

from genome-wide quantitative trait loci (QTL) studies cataloged

in HGRI-EBI. This dataset involved 14,824 European participants

(Access number: GCST90274758 to GCST90274848), with

comprehensive information available in Supplementary Table S2.

BC GWAS were obtained from the IEU Open GWAS project.

The first BC GWAS investigated 462,933 European individuals

(Ncase=10303, Ncontrol=452630) (Study ID: ukb-b-16890). The

second BC GWAS investigated 139,274 European individuals

(Ncase=76192, Ncontrol= 63082) (Study ID: GCST004988).
Genetic proxies for causal analysis

We included significantly associated SNPs from genome-wide

in our analysis (P < 5×10−8) to be IVs for exposure. Additionally,

we define the threshold for linkage disequilibrium (LD) based on

pairwise linkage disequilibrium to r2 < 0.001 for the purpose assure

IVs independence. When r² > 0.001 in a 10,000 kb span, SNPs that

are more associated with additional SNPs or have higher p-values

are removed. Furthermore, to confirm the strength of each SNP, we
Frontiers in Immunology 03
calculated the F-statistic, which assesses the correlation between IVs

and exposure. An F-statistic score greater than 10 suggests a strong

relationship between IVs and exposure (18). Comprehensive details

about SNPs that are used as exposure and outcome, exposure and

mediator, as well as mediator and outcome, can be found in

Supplementary Tables S3, S6.
Statistical analysis

We used R software version 4.3.2 along with the “Two-Sample

MR” package for data analysis. Furthermore, we applied various

methods including the Wald ratio, inverse variance weighting

(IVW), MR-Egger, weighted mode, and weighted median (WM)

to evaluate t the link of causality among 731 immune cells,

inflammatory proteins, and BC.
Primary analysis and Sensitivity analysis

Our MR study primarily employed IVW analysis, which relies

on outcome variance instead of the term for the intercept in

regression, providing robust estimates when directional pleiotropy

in the IVs is absent (19). Additionally, when the number of SNPs

equals 1, we utilized the Wald ratio as the primary analysis strategy

(Figure 1A). Furthermore, we performed sensitivity analyses on this

MR study using MR-Egger, WM, and weighted mode (20).
FIGURE 1

Diagrams illustrate a schematic summary of analysis (A). The overall effect of immune cells on breast cancer (BC) (B), c represents the total effect of
immune cells as exposure and BC as outcome. The overall effect is decomposed into (C): (I) indirect effects using the two-step method, a is the
total effect of immune cells on inflammatory proteins, b is the effect of inflammatory proteins on BC, and the product method (a × b), and (ii) direct
effect (c′=c-a×b). The mediated proportion is calculated as the indirect effect divided by the total effect. TSMR, Two-Sample MR; IVW, Inverse
variance weighting; WM, Weighted median.
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Mediation analysis

To try to determine if inflammatory variables mediate the causal

pathway from immune cells to BC outcomes, we employed a two-step

MR methodology for mediation analysis (Figures 1B, C). This analysis

decomposes the overall effect into indirect effects (mediated through

the mediator) and direct effects (without mediation) (21). Specifically,

the total effect (c in Figure 1B) of immune cells on BC is dissected into

the direct effect of immune cells on BC (c’ in Figure 1C) and immune

cells’ indirect effect mediated by the mediator (a × b in Figure 1C). We

computed the indirect effect’s proportion of the total effect to quantify

the portion of the mediated effects.
Results

Association of immune cells with BC

Initially, we examined the connection between 731 immune cell

types and BC. Supplementary Table S4 provides detailed information

onMR estimations for immune cells and BC. The results indicated that

among the 731 immune cell types, 35 immune cell types were found to

have a causal relationship with BC (Figure 2A). Subsequently, we

conducted sensitivity analyses on these 35 immune cell phenotypes

potentially causally related to BC through MR-Egger, WM, and

weighted mode methods. Robust MR results supported a total of 26

immune cell phenotypes associated with the occurrence of BC

(Figure 2B, Supplementary Table S5). The MR analysis identified 26

immune cell phenotypes associated with BC occurrence. Of these, 18

were protective, including various T cell and B cell types, while 8 were

risk factors, primarily T cell groups. Among them, IgD+ B cells (OR,

0.996; P = 0.014), CD4+ T cells (OR, 0.996; P = 0.030), and HLADR+

CD4+ T cells (OR, 0.997; P = 0.006) indicated a negative association

with the occurrence of BC. Conversely, CD39+ CD8+ T cells (OR,

1.002; P = 0.027) and CCR7 on naive CD8+ T cells (OR, 1.003; P =

0.030) were positively linked to the occurrence of BC.
Association of inflammatory proteins
with BC

We investigated the possible causality link between 91

inflammatory proteins and BC. Detailed information on MR

estimates on 91 inflammatory proteins and BC are provided in

Supplementary Table S7. The results revealed that 8 out of the 91

inflammatory factors were found to have a causal relationship with BC

(Figure 3). Among these, 5 inflammatory factors were identified as

protective factors (Interleukin-7 levels: OR,0.994; P = 0.037;

Oncostatin-M levels: OR,0.994; P=0.002; Caspase 8 levels: OR, 0.995;

P = 0.026; C-X-Cmotif chemokine 10 levels: OR,0.995; P = 0.004; C-X-

Cmotif chemokine 5 levels: OR,0.999; P=0.047), while 3 were identified

as risk factors(Eotaxin levels: OR, 1.002; P = 0.043; C-X-C motif

chemokine 6 levels: OR, 1.002; P = 0.041; Stem cell factor levels: OR,

1.002; P = 0.041). Robust MR results for the aforementioned

inflammatory factor phenotypes showed that 2 inflammatory factors

Caspase 8 levels (OR, 0.995; P = 0.026, PFDR = 0.047) and Interleukin-
Frontiers in Immunology 04
7 levels (OR, 0.994; P = 0.037, PFDR = 0.047 causally related to BC

(Supplementary Table S8).
Mediated effect for inflammatory proteins

Using two-step MR, we examined the causal association

between 26 immune cell types significantly associated with BC

and Caspase 8 levels and Interleukin-7 levels. The results indicated

that 4 immune cell types have a causal relationship with the

inflammatory protein Caspase 8 levels (Figure 4). They are B cell

(OR, 0.874; P = 0.041),IgD+ CD24+ B cell (OR, 0.858; P = 0.023),

Central Memory CD4+ T cell Absolute Count (OR, 1.188; P =

0.036),CD4+ T cell Absolute Count (OR, 1.163; P = 0.036).
Reverse MR analysis

We conducted reverse MR analysis on the aforementioned four

immune cell phenotypes to investigate their reverse causal

relationships with BC. Detailed result information was provided

in Supplementary Table S9. The results indicated that none of the

four immune cells exhibit reverse causal relationships with BC.

Specifically, for CD4+ T cells and BC, the P-value is 0.641.
Validation analysis

We used another BCGWAS (Study ID: GCST004988) to validate

the relationship between the aforementioned four immune cells and

BC. Detailed result information is shown in Supplementary Table

S10. The results showed that CD4+ T cells were causally associated

with BC (OR=0.843; P=4.09×10-7), whereas B cells were not causally

associated with BC (OR=0.987; P=0.846). Additionally, we used this

BC GWAS to validate the causal relationships between the

aforementioned two inflammatory proteins and BC. Detailed

information is provided in Supplementary Table S11. The results

indicate that Caspase 8 levels are causally associated with BC

(OR=0.807; P=4.88×10-6), while Interleukin-7 levels do not exhibit

a causal relationship with BC (OR=1.074; P=0.245).

Therefore, we have identified Caspase 8 levels serve as a

potential mediator within the pathway that connects immune

cells to BC. Specially, we found that an increase in CD4+ T cells

has a relationship with a higher degree of Caspase 8, and higher

Caspase 8 levels are associated with a reduced risk of BC (Figure 5).

Our study indicates that Caspase 8 levels account for 18.9% of the

reduction in BC risk associated with immune cells (mediation

proportion=a×b/c, Discovery:0.151×-0.005/-0.004 = 18.9%;

Validation:0.151×-0.214/-0.171 = 18.9%).
Discussion

We examined the causal links among 731 immune cell

characteristics, inflammatory proteomes, and BC using extensive

publicly accessible genetic datasets. Additionally, we investigated
frontiersin.org
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the potential mediation role of inflammatory factors to better

understand the underlying mechanisms governing the interplay

between immune cells and BC. According to our study, 26 immune

cell types and 2 inflammatory proteins were discovered to have

essential causal interactions with BC. Notably, CD4+ T cells

exhibited a negative correlation with BC through their association

with Caspase 8 levels.

Our study revealed a positive association between CCR7

expression on naive CD8+ T cells and the occurrence of BC.

CCR7, a chemokine receptor predominantly found on immune

cells which includes T cells, B cells, and dendritic cells, is essential to

regulate cell migration and positioning within lymphoid tissues.

Additionally, increased expression of HLA-DR on both HLA-DR+

T cells and HLA-DR+ CD4+ T cells was observed in BC cases.
Frontiers in Immunology 05
Professional antigen-presenting cells have a class II major

histocompatibility complex (MHC) molecule called HLA-DR.

This molecule is essential for presenting antigenic peptides to

CD4+ helper T cells, which in turn indicates T cell activation.

The upregulation of HLA-DR typically occurs within 24-48 hours

post-activation, accompanied by heightened IFN-g production (22–

26). Recent studies have shown elevated levels of HLA-DR on CD8+

T cells in various types of cancer (27, 28). These activated CD8+ T

cells execute target cell apoptosis through cytolytic (cell-mediated

cytotoxicity) and non-cytolytic (cytokine production) mechanisms.

The former involves the release of cytotoxic molecules like perforin

and granzyme B, while the latter entails the secretion of key

cytokines like IL-2, TNF-a, and IFN-g, crucial for antiviral and

inflammatory responses (29)- (30). Interestingly, our findings of an
FIGURE 2

Immune cells causally linked to breast cancer. (A) Forest plot depicted 35 types of immune cells causally linked to breast cancer. (B) Robust MR
result exhibited 26 immune cell types associated with breast cancer.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1410994
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1410994
association between elevated CCR7 and HLA-DR expression levels

on T cells and BC occurrence contrast with previous studies. This

inconsistency underscores the need for further research to unravel

the underlying mechanisms driving BC development.

Lymphocytes, which include CD19+ B cells, CD3+ T cells, CD4+ T

cells, CD8+ T cells, CD3+CD4−CD8− T cells, and Nature Killer cells

(NK cells), are essential for the immunological response in the human
Frontiers in Immunology 06
body. CD3+ T cells encompass the total T lymphocyte population,

including CD4+ and CD8+ T cells, pivotal in cellular immunity. CD4+

T cells, central to immune function, release anti-tumor cytokines and

stimulate more immune effectors (31). Subsets such as Th1, Th2, and

regulatory T cells (Treg) are formed by further differentiation of CD4+

T cells. Th2 and Treg cells have an immunosuppression impact, which

promotes tumor growth, whereas Th1 cells drive responses against
FIGURE 4

Relationship between 26 immune cells associated with breast cancer and the inflammatory proteins Caspase 8 levels and Interleukin-7 levels. '*' also
indicates that P. value <0.05.
FIGURE 3

Inflammation proteins causally linked to breast cancer. '*' indicates that P. value <0.05, while the symbol '**' indicates that P. value <0.01.
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tumors. Numerous immune cell subpopulations, such as B cells, T cells,

eosinophils, neutrophils, dendritic cells, basophils, monocytes, mast

cells, macrophages, and NK cells, are found in the normal breast ductal

layer. These cells confer continuous protection to mammary

epithelium against pathogens and eliminate transformed cells during

breast development (32, 33). However, tumor cells employ immune

evasion strategies by secreting suppressive factors that hinder immune

cell differentiation and proliferation. Reduced immune cell levels and

altered CD4+/CD8+ ratios have been observed in various cancers,

indicating immune evasion (34, 35). Our study uncovered a negative

association between CD4+ T cells and BC incidence, suggesting a

potential role of decreased CD4+ T cell numbers in BC development.

This finding highlights the intricate interplay between immune cells

and BC pathogenesis, warranting further investigation into immune-

mediated mechanisms in BC.

Importantly, we identified Caspase 8 as a potential mediator in

the CD4+ T cells-BC causal pathway. The family of cysteine

proteases known as Caspases regulates the beginning and

completion of apoptosis by activating proteins via intricate direct

and feedback mechanisms (36). In the absence of apoptotic signals,

caspase proteins remain inactive as pro-caspases. To date, there are

14 known mammalian caspases, that are categorized based on their

functions into initiator (e.g., caspase-2, -8, -9, and -10), effector (e.g.,

caspase-3, -6, and -7), and cytokine maturation and inflammation-

related caspases (e.g., caspase-1, -4, and -5) (36, 37). Caspase-8, a

pivotal member, is instrumental in inducing cell apoptosis triggered

by death receptor activation. It is drawn to the death-inducing

signaling complex (DISC) mediated by CD95 (Fas/APO-1) and

ultimately causes cell apoptosis. Previous research, including that by

YANG et al., has suggested that caspase downregulation or

deficiency could contribute to BC development (38). Our study

corroborated these findings by revealing an association between

Caspase 8 levels and a reduced risk of BC occurrence.

Previous studies have shown that before the clinical diagnosis of

BC, circulatory leukocyte composition has changed (39). Also,

differences in blood leukocyte composition between diagnosed but
Frontiers in Immunology 07
untreated BC patients and women without BC have been observed

(40, 41). Identifying changes that may occur in the immune system

of patients with BC will help us understand which immune cells can

serve as effective targets for immunotherapies. Our study suggests

an association between CD4+ T cells and reduced risk of BC via

Caspase 8, and that activation of CD4+ T cells is critical in

coordinating and maintaining initial immune response and

generating anti-tumor responses such as immune memory (42),

which may be an effective potential target for BC immunotherapy.

Although we applied the latest available large-scale genetic data

for the phenotypes of interest, our study has certain limitations.

Primarily, the fact that our results are based on a European database

may constrain their applicability to non-European ethnic groups.

To address this limitation, establishing databases representing

diverse populations will be crucial for comprehensive insights

into immune-related phenotypes across different ethnicities.

Additionally, future research endeavors should aim to elucidate

the dynamic alterations in host immune status and inflammation

throughout the disease continuum. Stratifying patients according to

their immune profiles may emerge as a requisite step in tailoring

personalized treatment regimens. Moreover, there is a pressing need

for investigations focusing on refining immune subtypes and

characterizing the body’s inflammatory responses within the

immune microenvironment. Such endeavors hold promise for

facilitating more targeted and precise therapeutic interventions in

the management of various diseases.
Conclusion

We observed a significant link between immune cells and BC,

notably a reduced BC risk associated with CD4+ T cells potentially

via Caspase 8. These findings have implications for future research,

particularly in BC vaccine and immunotherapy drug development.

However, further investigation is warranted to fully understand

this association.
FIGURE 5

Schematic diagram of the Caspase 8 levels mediation effect.
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