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Developing an advanced
diagnostic model for
hepatocellular carcinoma
through multi-omics
integration leveraging diverse
cell-death patterns
Chengbang Wang †, Guanglin Yang †, Guanzheng Feng †,
Chengen Deng*, Qingyun Zhang* and Shaohua Chen*

Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, China
Introduction: Hepatocellular carcinoma (HCC), representing more than 80% of

primary liver cancer cases, lacks satisfactory etiology and diagnostic methods.

This study aimed to elucidate the role of programmed cell death-associated

genes (CDRGs) in HCC by constructing a diagnostic model using single-cell RNA

sequencing (scRNA-seq) and RNA sequencing (RNA-seq) data.

Methods: Six categories of CDRGs, including apoptosis, necroptosis, autophagy,

pyroptosis, ferroptosis, and cuproptosis, were collected. RNA-seq data from

blood-derived exosomes were sourced from the exoRBase database, RNA-seq

data from cancer tissues from the TCGA database, and scRNA-seq data from the

GEO database. Subsequently, we intersected the differentially expressed genes

(DEGs) of the HCC cohort from exoRBase and TCGA databases with CDRGs, as

well as DEGs obtained from single-cell datasets. Candidate biomarker genes

were then screened using clinical indicators and a machine learning approach,

resulting in the construction of a seven-gene diagnostic model for HCC.

Additionally, scRNA-seq and spatial transcriptome sequencing (stRNA-seq)

data of HCC from the Mendeley data portal were used to investigate the

underlying mechanisms of these seven key genes and their association with

immune checkpoint blockade (ICB) therapy. Finally, we validated the expression

of key molecules in tissues and blood-derived exosomes through quantitative

Polymerase Chain Reaction (qPCR) and immunohistochemistry experiments.

Results: Collectively, we obtained a total of 50 samples and 104,288 single cells.

Following the meticulous screening, we established a seven-gene diagnostic

model for HCC, demonstrating high diagnostic efficacy in both the exoRBase

HCC cohort (training set: AUC = 1; testing set: AUC = 0.847) and TCGA HCC

cohort (training set: AUC = 1; testing set: AUC = 0.976). Subsequent analysis

revealed that HCC cluster 3 exhibited a higher stemness index and could serve as

the starting point for the differentiation trajectory of HCC cells, also displaying

more abundant interactions with other cell types in the microenvironment.

Notably, key genes TRIB3 and NQO1 displayed elevated expression levels in

HCC cells. Experimental validation further confirmed their elevated expression in

both tumor tissues and blood-derived exosomes of cancer patients. Additionally,
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stRNA analysis not only substantiated these findings but also suggested that

patients with high TRIB3 and NQO1 expression might respond more favorably to

ICB therapy.

Conclusions: The seven-gene diagnostic model demonstrated remarkable

accuracy in HCC screening, with TRIB3 emerging as a promising diagnostic

tool and therapeutic target for HCC.
KEYWORDS

liver cancer, hepatocellular carcinoma, exosomes, single-cell RNA sequencing, spatial
transcriptome, prognosis, biomarkers
Introduction

Liver cancer is the third most common cause of cancer-related

mortality globally (1). Unlike many other major cancers, where the

disease burden and adverse effects are decreasing, the global

prevalence of liver cancer has worsened over time, with a 4.6%

annual increase in absolute years of lives lost observed (2, 3).

Regrettably, projections indicate that the incidence of this disease

will surpass an annual incidence of one million cases in the coming

years (4). Among the various subtypes of liver cancer,

hepatocellular carcinoma (HCC) predominantly accounts for over

80% of all primary liver cancer cases, leading to a substantial disease

burden (5). Undoubtedly, essential progress has been made in the

past decades in the research on the diagnosis and management of

HCC. Nevertheless, numerous inquiries regarding the etiology and

fundamental mechanisms of HCC remain unanswered. In light of

this, the identification of novel targets encompassing screening,

diagnosis, and treatment, along with the establishment of clinical

models, assumes pivotal significance within clinical practice. This

could offer fresh perspectives for guiding precise decision-making in

the context of precision medicine modalities.

Studies have shown that the body eliminates functionally

compromised, infected, or potentially cancerous cells through a

highly regulated form of cell death known as programmed cell

deaths (PCDs). PCDs play a pivotal role in maintaining intracellular

homeostasis, bolstering host defenses against pathogens, combating

cancer, and addressing various pathological conditions (6). At

present, a myriad of PCDs has been delineated, including

apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and

cuproptosis, each showcasing distinct molecular regulations and

cellular phenotypes, ultimately resulting in varied cellular

outcomes. It is essential to note that these individual PCDs

remain intrinsically interconnected, contributing to the intricate

cellular landscapes (6, 7). Recent genetic and basic investigations

have unveiled the remarkable adaptability and dynamic

modifiability of PCD processes across various cancer types.

Autophagy exhibits a complex relationship with cancer. Initially,

it can act as a survival mechanism, regulating cellular processes and
02
potentially hindering tumor progression. However, in advanced

stages, autophagy transforms into a dynamic system that promotes

tumor persistence and growth. This enhanced autophagic activity

can fuel cancer aggressiveness and ultimately facilitate the spread of

metastases (8). PCDs are intricately regulated by their

corresponding genes. In the context of apoptosis, the balance

between protein families such as the pro-apoptotic and anti-

apoptotic members within the BCL-2 family, dictates the release

of cytochrome c from mitochondria. This event triggers the

subsequent intracellular apoptotic signaling cascade, ultimately

leading to cellular death (9). Notably, pivotal factors such as BCL-

2, BCL-XL, and BCL-w have been indicated as overexpressed in

tumors, exerting an anti-apoptotic function in tumor cells (10).

Expanding upon this biological foundation, the development of

selective BCL-2 inhibitors (e.g., ABT-737) has shown promising

efficacy against lymphoma and small cell lung in vitro (11).

Additionally, researchers such as Zhang (12) and Wang (13) et al.

have demonstrated that models based on cuproptosis-related genes

can effectively predict survival outcomes and tailor therapeutic

regimens for HCC. In summary, investigations into PCDs present

promising clinical applications, and recent advancements in

associated domains have enhanced our understanding of

pathomechanisms across various cancer types, including HCC

(14–16). Unfortunately, these studies are often confined by their

focus on single PCD types or experimental methodologies,

potentially overshadowing the significance of intricate regulatory

mechanisms and key targets that play a small yet critical role.

Encouragingly, the emergence of extracellular vesicles (EVs) has

introduced a novel perspective for exploring the intricate dynamics

among multiple cellular entities within the tumor microenvironment

(TME), which might aid in identifying potential diagnostic

biomarkers for cancer. Notably, EVs are nanovesicles with

diameters ranging from 30 to 150 nm, capable of encapsulating a

diverse array of molecules, including proteins, RNA, DNA, and other

bioactive substances (17). Tumor-derived EVs have been

meticulously characterized as pivotal mediators of intercellular

communication between tumor cells and stromal cells, and play

critical roles in primary tumor growth, immune evasion, and
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metastasis within both local and distant microenvironments

(18). Studies by Zhang, and Hu et al. have illuminated the role of

EVs in HCC cells, revealing that HCC cells secrete EVs containing

circUHRF1 and circCCAR1. These EVs induce immunosuppression

impairing the function of NK cells and CD8+ T cells in the TME,

potentially leading to resistance against anti-PD1 immunotherapy

(14, 19). Additionally, compelling evidence has highlighted the

significance of exosome-associated factors in reshaping hepatic

metastasis, contributing to liver fibrosis, and facilitating immune

cell migration and differentiation. These factors also play a crucial

role in promoting hepatic metastasis in various tumors, including

pancreatic, gastric, and colon cancers, as well as in the metastasis of

HCC to other organs during advanced stages (20–24). Interestingly, a

substantial body of research has identified a close association between

PCDs and EVs. Shen et al. and colleagues reported that pancreatic

cancer cells release exosomes triggering p38 mitogen-activated

protein kinase (MAPK) activation in T lymphocytes, contributing

to the endoplasmic reticulum (ER) stress-induced apoptosis and

immunosuppression (25). In vivo experimentation using a mouse

model with a knockout of the apoptosis-related gene LSD1

demonstrated a reduction in programmed death ligand-1 (PD-L1)

accumulation within exosomes, leading to the restoration of T-cell
Frontiers in Immunology 03
responses in gastric cancer (26). However, it is important to note

that these studies were conducted in controlled laboratory

settings, lacking the complexity of the cellular microenvironment,

potentially yielding artificially simplified conclusions. Currently, the

relationship between PCD and exosomes in the HCC TME has

received limited attention, with unclear underlying regulatory

mechanisms. In recent years, the emergence of single-cell RNA

sequencing (scRNA-seq) technology has provided a higher-

resolution tool for addressing such issues. This technology

overcomes the limitations of traditional bulk RNA sequencing

(RNA-seq) by characterizing cellular identities at single-cell

resolutions, enabling the tracing of the cellular origin of mRNAs

within EVs. Moreover, the integration of scRNA-seq with spatial

transcriptomics sequencing (stRNA-seq) enables the identification of

the spatial distribution of key genes, thereby revealing in-depth

molecular mechanisms in the TME.

In this study, we collected a set of PCD-related genes,

specifically known as cell death-related genes (CDRGs), and

investigated their association with HCC pathogenesis by

integrating scRNA data with an HCC cohort from The Cancer

Genome Atlas (TCGA) database. Furthermore, we utilized blood-

derived exosomal transcriptome data to identify key CDRGs
FIGURE 1

The dataset information and workflow of the study.
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regulating HCC, further constructing a diagnostic model for clinical

HCC diagnosis using machine learning methods. To further

elucidate the mechanisms by which these CDRGs contribute to

HCC progression, we explored their associations with three key

aspects: HCC cell differentiation, the spatial distribution of tissues

revealed by stRNA data, and the potential interplay between these

CDRGs and immunotherapy. Collectively, our study provides

significant support for clinical diagnosis and therapeutic decision-

making in HCC, contributing to a deeper understanding of the

mechanisms underlying HCC. Detailed dataset information and the

workflow of this study are illustrated in Figure 1.
Materials and methods

Gene collection and data acquisition

In this study, we investigated six categories of PCDs and

compiled their respective gene sets, referred to as CDRGs.

Specifically, genes associated with apoptosis and necroptosis were

obtained from Deathbase (http://deathbase.org/). Autophagy-

related genes were sourced from the Human Autophagy Database

(HADb; http://www.autophagy.lu). Ferroptosis-related genes were

obtained from the Ferroptosis Database (FerrDb; http://

www.zhounan.org/ferrdb) and published literature (27).

Pyroptosis-associated genes were retrieved from the GO database,

FerrDb database, and published literature (28), while cuproptosis-

associated genes were sourced from the GeneCards database and

published literature (29). Additionally, we used the Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

databases to identify genes linked to the aforementioned PCDs.

Our study utilized a total of five independent datasets. Two

single-cell datasets, comprising scRNA-seq data from cancer and

normal samples of HCC patients, were obtained from the Gene

Expression Omnibus (GEO) database under accession numbers

GSE149614 [n=31, tumor=10, para-carcinoma=8, portal vein

tumor thrombus (PVTTs) =2, metastatic lymph node (MLN) =1]

and GSE151530 (n=32, tumor=32). Additionally, a single-cell

dataset and a spatial transcriptome dataset for HCC were sourced

from Mendeley (30), accessible at (https://data.mendeley.com/

datasets/skrx2fz79n/1). This dataset served as a validation set for

assessing the expression of key genes in HCC cells and analyzing the

relationship between the expression levels of these key genes and

immune checkpoint blockade (ICB) therapy. Furthermore, we

integrated the TCGA-liver hepatocellular carcinoma (LIHC)

cohort, along with relevant clinical information (n=424, tumor

=374, para-carcinoma=50), obtained from the TCGA database.

Bulk RNA-seq data of blood-derived exosomes from HCC cases

and normal controls were downloaded from the exoRbase database

(http://www.exorbase.org/, n=230, tumor=112, healthy=118).
Single-cell data processing

The fastq files were processed using Cell Ranger (version 6.1.2,

10x Genomics) with default parameters and were mapped to the 10x
Frontiers in Immunology 04
human transcriptome GRCh38–2020 (https://support.10xgenomics.

com/single-cell-gene-expression/software/downloads/latest).

Subsequent analysis of single-cell data was performed using Seurat

(version 4.3.0) (31). Low-quality cells were excluded based on specific

criteria, namely, having less than 200 or more than 8000 total

detected genes or exceeding 15% mitochondrial RNA content (32,

33). Normalization and dimensionality reduction were performed

using SCTransform, RunPCA, and RunUMAP functions (34). For

the identifications of cellular identities, scHCL (version 0.1.1) and

SingleR (version 1.10.0) packages were used. Subsequently, the

FindAllMarkers function implemented in the Seurat package was

applied to identify marker genes specific to each cell subpopulation,

ultimately determining cell types using previously published cell

markers. In the identification of tumor cells, the unique molecular

identifier (UMI) count matrix served as input for inferring

chromosomal copy number alterations (CNAs) profiles using the

“CopyKAT” R package (version 1.0.6) (35).
Differential gene expression analysis

Differential gene expression analysis was performed on

single-cell datasets using the FindMarkers function within the

Seurat package. Criteria for significance were set at P-values

< 0.05 and |log2FC|>0.25. In the TCGA LIHC cohort,

differentially expressed genes (DEGs) were identified using

DESeq2 (version 1.36.0), limma (version 3.52.4), and edgeR

(version 3.38.4) packages, applying thresholds of a P-value < 0.05

and |log2FC|>1. DEGs in the bulk RNA-seq data of blood-derived

exosomes were identified based on |log2FC| >0.5 and a P-value < 0.05.

Intersection analysis of DEGs across different datasets was visualized

using the UpSetR (version 1.4.0) package.
GO and KEGG analysis

Functional enrichment analysis of DEGs was conducted using

the GO and KEGG databases through the clusterProfiler package

(version 4.4.4), with results filtered by a significance threshold

of P<0.05.
Clinical correlation and survival analysis

We employed GEPIA2.0 (http://gepia2.cancer-pku.cn/#index,

accessed on July 13, 2023), a data visualization platform for the

TCGA database, to assess the impact of candidate biomarker genes

on overall survival (OS) in LIHC. Kaplan-Meier survival curves

were generated, and correlations between candidate biomarker

genes and clinical indicators were examined.
Machine learning analysis

A stratified random sampling method was used to divide the

exoRBase HCC cohort into training and testing groups at a 3:2 ratio.
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This process utilized the “initial_split” function of the rsample

package (version 1.2.1) to conduct stratified sampling of the tumor

and healthy groups. Genes were screened using the “glm” function

and the “cv.glmnet” function of the glmnet package (version 4.1–2).

The training group was utilized to construct the random forest (RF)

classification model, while the testing group served for model

validation. Model performance was assessed by calculating the

area under the curve (AUC) values from the receiver operator

characteristic (ROC) curves. The same methodology was applied to

TCGA LIHC to observe the diagnostic efficacy of key genes in bulk

RNA-seq. This entire process was executed using the tidymodels

(version 1.0.0) and pROC (version 1.18.0) R packages.
Differentiation states prediction and
pseudotime analysis

The prediction of differentiation states or stemness status in

scRNA-seq data was estimated using the R package CytoTRACE

(version 0.3.3). This robust computational framework assigns scores

to single cells based on gene counts, indicating transcriptome

diversity and reflecting relative developmental potential (36).

CytoTRACE scores range from 0 to 1, with higher scores indicating

increased stemness or reduced differentiation, and vice versa (37).

Additionally, the pseudo-time of tumor cell subpopulations was

constructed using monocle3 (version 0.2.3) (38), and the results of

single-cell trajectories were visualized in two-dimensional uniform

manifold approximation and projection (UMAP) (39).
Cell-cell interaction network analysis

CellChat, an R package specifically designed for cell-cell

communication analysis (40), was utilized for the identification of

ligand-receptor interactions in scRNA-seq data. This package provides

a comprehensive toolkit for exploring cellular communication

networks. By examining the expression patterns of ligands within

one cell subtype and their corresponding receptors in others, we

unveiled potential signaling pathways. This analysis enhanced our

understanding of intercellular crosstalk in complex biological systems.
Processing of stRNA-seq data

The stRNA-seq data underwent analysis using Seurat (version

4.3.0). Raw counts were normalized and spatial parameters were

examined using the SCTransform function from Seurat.

Dimensionality reduction was achieved through the RunPCA and

RunUMAP functions, while the SpatialFeaturePlot function was

used to visualize the spatial expression distribution of key genes in

the samples.
Single-cell drug sensitivity assessment

In the assessment of drug sensitivity within HCC cell

subpopulations, we employed the R package Beyondcell (version
Frontiers in Immunology 05
2.1.0) (41). For this analysis, we employed the drug perturbation

signature collection (PSc) database, ensuring consideration of the

recommended correction for the number of detected genes per

cell (42).
Specimen collection of HCC patients

Blood specimens were collected from four confirmed

HCC patients and an equal number of healthy volunteers at

the Guangxi Medical University Cancer Affiliated Hospital

(Supplementary Table 1). Plasma was separated by centrifuging

the blood at 2390g for 10 min. Additionally, five pairs of HCC tissue

samples and corresponding paracancerous tissue samples were

obtained from HCC cases for subsequent validation experiments.

The protocol of the study has been approved by the Ethical Review

Committee of Guangxi Medical University Cancer Hospital

(Approval Number: LW2023176).
Exosome extraction

Plasma samples from HCC patients were transferred to a 15 ml

centrifuge tube, and phosphate buffer solution (PBS) was added to

achieve a total volume of 10 ml. The subsequent steps included

centrifugation at 300g for 10 min at 4°C, followed by transferring

the supernatant to a fresh 15 ml centrifuge tube. The collected

supernatant underwent secondary centrifugation at 2000g for 10

min at 4°C, and the resulting supernatant was transferred to a 10 ml

centrifuge tube suitable for ultracentrifugation. After proper

balancing, the supernatant underwent ultracentrifugation at

12,000g for 30 min at 4°C. The resulting supernatant was then

transferred to a new 10 ml centrifuge tube. Following an additional

balancing step, the supernatant was subjected to further

ultracentrifugation at 120,000g for 70 min at 4°C. The resulting

transparent precipitate was collected, and the obtained material was

resuspended in PBS, forming the exosome suspension. Finally, this

exosome suspension was transferred to a -80°C freezer for storage.
Observation of exosome morphology

Transmission electron microscopy (TEM, G2 spititi FEI,

Tecnai) was employed to observe the morphology of exosomes

extracted from plasma samples of both HCC patients and healthy

volunteers. The scale bar was set at 100 nm.
Nanoparticle tracking analysis (NTA)

Exosome characteristics, including concentration and size

distribution, were assessed using NTA on a NanoSight NS300

instrument (Malvern, Worcestershire, UK) with corresponding

software version NTA3.4. Exosomes were appropriately diluted

using 1x PBS buffer. Three 30-sec videos were recorded under the

following conditions: cell temperature at 22 °C, syringe speed set to
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20 µl/s, and camera level adjusted to 15. The mean size and exosome

concentration (particles/ml) were determined by analyzing the

integrated data from the three recordings, with a detecting

threshold set at 5.
Western Blot (WB)

After the extraction of blood-derived exosomes, they were lysed

separately. Following centrifugation, the supernatant underwent

electrophoresis on 12% sodium dodecyl sulfate (SDS)-

polyacrylamide gels. Subsequently, the proteins were transferred

to a polyvinylidene fluoride (PVDF) membrane, which was then

probed with specific primary and secondary antibodies. The

membranes were washed with tris-buffered saline with Tween

(TBST) and exposed to enhanced chemiluminescence agents.

Band intensities were quantified using ImageJ (43).
Preparation of frozen section and
immunohistochemistry (IHC)

To prepare frozen sections, after thorough cleaning and

trimming, fresh tissues were flash-frozen in liquid nitrogen for 15

seconds, then stored at -80°C and transported with dry ice.

Following this, tissues were embedded in OCT (G6059–110ML,

Servicebio) compound and sectioned. The embedding platform was

affixed to a microtome (CRYOSTAR NX50, Thermo), and after

gross trimming to ensure a flat tissue surface, sections were cut at a

thickness of 8–10mm. Clean glass slides were placed over the tissue

sections to adhere them, and labeled slides were stored at -20°C for

future use.

For immunohistochemistry, sections were sequentially immersed

in xylene and ethanol for deparaffinizing. Specifically, the sections

were successively put into xylene I for 10min, xylene II for 10min,

100% ethanol for 5min, and 75% alcohol for 5min. Subsequently,

they were immersed in boiling ethylenediaminetetraacetic acid

(EDTA, G1203, Servicebio) repair solution for 20 min and cooled

at room temperature naturally, followed by washing three times with

PBS. Endogenous peroxidase inhibitor was added and incubated at

room temperature for 10 min. Then, a normal goat serum working

solution was added for blocking, and the primary antibody was added

and incubated at 37°C for 60 min. Next, tissue sections were washed

with PBS and incubated with biotin-labeled goat anti-rabbit IgG

polymer at room temperature for 10 min. Horseradish peroxidase-

labeled streptavidin working solution was added and kept for 10 min.

Following this, a freshly prepared 3, 3′-diaminobenzidine (DAB,

G1212, Servicebio) chromogenic solution was added and incubated

at room temperature for five min. Subsequently, the sections were

thoroughly rinsed with water and counterstained with hematoxylin

for 60 sec. Next, the sections underwent differentiation with a

differentiation solution and returned to blue with a blue return

solution. Sequentially, the sections were dehydrated and blocked

with neutral gum. The primary antibodies used were TRIB3 (Cat#

DF7844, RRID, Affinity Biosciences) and NQO1 (Cat# DF6437,
Frontiers in Immunology 06
RRID, Affinity Biosciences). The secondary antibody was CY3-

labeled goat anti-rabbit IgG (GB21303, Servicebio) diluted at 1:300.
Quantitative Polymerase Chain
Reaction (qPCR)

Total RNA in exosomes was extracted using a commercial kit

(QIAGEN, 77023, China) following the manufacturer ’s

instructions. The extracted mRNA was reverse transcribed into

cDNA using the HiScript 1st Strand cDNA Synthesis Kit (AORT-

0060) with a 20-ul system. qPCR was performed on a quantitative

PCR machine. The following program was executed: 95°C for five

min, 95°C for ten sec, and 60°C for 30 sec, repeated for 40 cycles.

The primer sequences for TRIB3 were as follows: forward primer

TTTGTACCAGTGTCGGCCTC and reverse primer AGCCT

TTGGCACAGGGATAC. The primer sequences for NQO1 were:

forward primer AAACACTGCCCTCTTGTGGT and reverse

primer TTTCCAGCTCGGTCCAATCC. The primer sequences

for GAPDH were: forward primer TCGGAGTCAACGGATTTG

GT and reverse primer TTCCCGTTCTCAGCCTTGAC. Delta

CTlog2 (compared with the CT value of GAPDH) was calculated

and normalized to the means of the control group. The values of

delta CT log2 normalized to the means of the control group were

further subjected to log2 transformation.
Statistical analysis

All statistical analyses were conducted using the R language

(version 4.2.1), with a significance level set at P<0.05. Single-factor

logistic regression analysis was utilized to filter keygene for

constructing diagnostic models, retaining genes with P-values <

0.05 (based on the “glm” function from the R package stats, version

4.3.1). LASSO analysis, with 1000 repeated 5-fold cross-validations,

was further employed for the refinement of the diagnostic gene set

selection (based on the “cv.glmnet” function from the R package

glmnet, version 4.1–8). Additional information on statistical tools,

methods, and thresholds is provided in the Methods section for

comprehensive elucidation.
Results

Overview of HCC multi-omics atlas

To elucidate the molecular landscape of PCDs in HCC, we

performed expression profiling and assessed heterogeneity patterns

at the single-cell level. We integrated 50 single-cell samples,

comprising 42 HCC and 8 para-cancer tissues, from two

independent datasets, GSE149614 and GSE151530), retaining a

total of 104,288 single cells after rigorous quality control.

Following data processing using the Seurat package and the

removal of batch effects, we identified 40 distinct cell

subpopulations (Supplementary Figures 1A–C) and eight major
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cell types, including tumor cells, hepatocytes, endothelial cells,

fibroblasts, T cells, B cells, macrophages, and natural killer (NK)

cells (Figure 2A). Tumor cells were distinguished by predicting

chromosomal CNAs relative to hepatocytes on a per-cell basis using

copyKAT (35). Additionally, canonical markers for these eight

major cell types and their relative distribution were displayed in

Figure 2B, revealing that T cells were the most abundant in all major

cell compartments, followed by tumor cells. Moreover, a

comparison of the relative ratios of cell subpopulations between

cancer and control samples indicated an increased proportion of

fibroblasts in cancer samples, while the proportions of T cells,

macrophages, and NK cells were higher in healthy controls. The

distribution of each major cell type and its origin was visualized

using UMAP (Figure 2C).

Subsequently, we investigated differentially expressed genes

(DEGs) between cancer and control samples across various major

cell types based on their corresponding expression profiles. The bar

plots indicate the exact counts of up-and down-regulated DEGs,

while the pie charts illustrate their respective categories in the

KEGG pathway (Figure 2D), with the majority falling into the

category of “human disease”. Notably, the highest number of DEGs

was observed in endothelial cells between cancer and control

samples, followed by B cells (Figure 2D), whereas the lowest

number of DEGs was identified between cancer and control

samples in tumor cells and hepatocytes. These results suggested

significant transcriptional remodeling across all cell types within the
Frontiers in Immunology 07
local environments. Next, we conducted a thorough analysis of the

transcriptome profiles of HCC using the TCGA cohort (Figure 2E)

and identified a total of 3,776 upregulated and 1,548 downregulated

DEGs in cancer tissues (Figure 2F). Given the increasing focus on

the center stages of cancer cell-derived exosomes in the

development and metastasis of HCC (44, 45), their substantial

potential as diagnostic and prognostic markers for HCC has been

widely recognized. Consequently, we analyzed RNA-seq data of

blood-derived exosomes from healthy controls and HCC patients

provided by the exoRBase database, with UMAP demonstrating

complete separation between cancer and control cases (Figure 2E).

Intergroup differential gene expression analysis revealed a total of

3,035 DEGs (Figure 2F), with KEGG functional enrichment analysis

indicating that such DEGs were primarily enriched in apoptosis,

cancer, and immune-related signaling pathways (Supplementary

Figures 2A, B). Specific information on DEGs between varying

major cell types and blood-derived exosomes derived from cancer

and control samples is shown in Supplementary Table 2, with their

corresponding KEGG pathway enrichment terms displayed in

Supplementary Table 3.

Collectively, we comprehensively investigated transcriptomic

profiles from tissues and blood-derived exosomes of HCC patients

compared to adjacent non-tumor controls. This analysis identified

DEGs across various cell types based on scRNA data, laying the

groundwork for subsequent analyses aimed at identifying diagnostic

biomarkers and therapeutic targets for HCC.
A B

C

D

E

F

FIGURE 2

scRNA-seq and RNA-seq profiling of HCC. (A) UMAP showing the major cell clusters in scRNA-seq datasets. (B) Marker genes and proportions of
sample origins of the major cell clusters in scRNA-seq datasets. (C) UMAP characteristics of major cell clusters in the scRNA-seq datasets. (D) Bar
plots displaying the exact number of DEGs between cancer and control samples in each cell cluster of the scRNA-seq datasets. The red bar
indicates the number of DEGs up-regulated in the tumor samples compared to the control sample, while the blue bar indicates the corresponding
down-regulated DEGs, and the pie plots at the top of the bar depicts the KEGG pathway enriched by each group of DEGs. (E) UMAP characteristics
of TCGA HCC cohort (left) and exoRBase HCC cohort (right), with the latter containing RNA-seq data of blood-derived exosomes of HCC patients.
(F) Bar plots showing the number of up- and down-regulated DEGs between the HCC and controls cases in TCGA HCC and exoRBase HCC cohort.
The pie plots at the top of the bar indicate the KEGG pathway enriched by each group of DEGs.
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Distinct expression patterns of CDRGs
in HCC

Next, we conducted a comprehensive exploration of the

unique expression profiles of CDRGs in HCC. Building upon our

previous study (7), we investigated six classes of PCDs, including

apoptosis, necroptosis, autophagy, pyroptosis, ferroptosis, and
Frontiers in Immunology 08
cuproptosis, along with their associated genes, denoted as

CDRGs (Supplementary Table 4). Figure 3A provides an overview

of both commonalities and distinctions observed among

CDRGs. As illustrated in Figure 3B, the scRNA dataset exhibited

a higher percentage of downregulated differentially expressed

CDRGs, whereas the RNA-seq dataset demonstrated a relatively

smaller proportion of downregulated DEGs relative to the
A B

FIGURE 3

The distribution characteristics of PCDs in HCC. (A) Upset plot shows the intersection analysis of the six types of CDRGs. (B) The distribution
characteristics of the DEGs in scRNA-seq, TCGA HCC, and exoRBase HCC cohorts and their shared genes with six classes of CDRGs. The top bar
plot shows the number of DEGs shared by CDRGs, and the bottom bar plot illustrates the relative abundance of CDRGs in DEGs in each group.
A B C D

E

FIGURE 4

Screening of the candidate biomarker genes. (A) Upset plots showing the intersection analysis for the CDRGs, up-regulated DEGs in exoRBase HCC
cohort, DEGs in TCGA HCC cohort, and scRNA datasets. (B) Bubble plots showing the seven candidate biomarker genes and their expression
patterns in different datasets. Red circles indicate positive logFC values or up-regulated DEGs in corresponding datasets, while blue circles indicate
negative logFC values or down-regulated DEGs in corresponding datasets, and bubble size indicates negative log10(P-value). The column
annotations on the right side represent the PCDs classification of the candidate biomarker genes. (C) ROC curve analysis of seven-gene diagnostic
model based on exoRBase HCC cohort, with red curve denoting the training cohort and blue curve denoting the testing cohort. (D) ROC curve
analysis of seven-gene diagnostic model based on the TCGA HCC cohort, with red curve indicating the training cohort and blue curve indicating the
testing cohort. (E) Analysis of the association between the expression of seven key genes and the survival outcome of HCC patients based on the
GEPIA database (up panel). Correlation analysis of the clinical stage of HCC and expression level of the seven key genes (down panel).
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upregulated DEGs. Notably, these differentially expressed CDRGs

predominantly fall into the categories of autophagy, apoptosis, and

ferroptosis-related genes.

To investigate the correlation between alterations in CDRGs

within tissues and blood-derived exosomes in HCC patients, we

comprehensively screened candidate biomarker genes. Our

approach involved intersecting the upregulated DEGs from

exoRBase, all DEGs from the HCC cohort, and DEGs obtained

from the scRNA and TCGA cohort with CDRGs, resulting in a set

of 82 potential biomarker genes (Figure 4A). Subsequently, 41

candidate genes, demonstrating a close correlation with clinical

stage or survival outcomes, were retained for further analysis

(Supplementary Figures 3, 4, 5). Among these candidates, 13

genes were found to collectively correlate with both clinical stages

and prognosis, and an additional 6 genes exhibited differential

expression across exoRBase, TCGA, and scRNA datasets. These

19 genes were then employed in constructing a diagnostic model for

HCC. Further refinement of gene selection was achieved through

univariate Single-factor logistic regression analysis based on their

association with the binary variable in cancer and control samples

within the exoRBase HCC dataset, identifying 11 genes with a

significance level of P < 0.05 (Supplementary Table 5).

Subsequently, LASSO analysis, with 1000 repeated 10-fold cross-

validations on these 11 genes (Supplementary Table 6), led to the

identification of seven key genes: TRIB3, TF, RRM2, NT5DC2,
Frontiers in Immunology 09
NQO1, CISD1, and ALB (Figure 4B). Following this, we applied the

diagnostic model to the exoRBase HCC and TCGA HCC cohorts

using these seven genes. The diagnostic performance of the seven-

gene diagnostic model demonstrated outstanding accuracy in both

the exoRBase HCC cohort (training group: AUC=1; testing group:

AUC= 0.847, Figure 4C) and TCGA HCC cohort (training group:

AUC =1; testing group: AUC=0.976, Figure 4D). This underscores

the potential of the constructed diagnostic model as a predictive

analytic tool for HCC. Notably, patients with high expression of

TRIB3, RRM2, NT5DC2, NQO1, and CISD1 exhibited worse clinical

prognoses than those with low expression (Figure 4E). Similarly, the

expression levels of TRIB3, RRM2, NT5DC2, and CISD1 increased

with the clinical stages of HCC (Figure 4E), while TF and ALB

displayed the opposite trend. However, these notable changes in gene

expression prompt the question of the specific roles these genes play

in the TME and the development and metastasis of HCC.
Exploring the molecular mechanisms of
seven key CDRGs in HCC metastasis
and progression

To investigate the correlation between the seven key CDRGs

and HCC metastasis and progression, we employed a scRNA-seq

dataset, encompassing one sample of metastatic lymph node (MLN)
A B C

D

E

FIGURE 5

Expression landscape of seven key gene samples from HCC cases with MLN and PVTTs metastasis. (A) UMAP plot showing the distribution
characteristics of cell types in MLN and PVTTs samples. (B) UMAP plot indicating the sample origins of MLN and PVTTs. (C) Marker genes and
proportions of sample origins for the seven major cell clusters of scRNA-seq datasets. (D, E) UMAP plot illustrating the expression distribution of
seven key genes in samples from HCC cases with MLN and PVTTs metastasis.
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and two samples of portal vein tumor thrombus (PVTTs)

metastasis (Figure 5A). Following rigorous quality control, batch

effect removal, and hierarchical clustering, we analyzed a total of

8528 cells, identifying seven major cell types, including tumor cells,

hepatocytes, endothelial cells, fibroblasts, T cells, B cells, and

macrophages (Figure 5B). Figure 5C illustrates the expression

levels of marker genes and the relative proportions of cell

subpopulations originating from each cell type. Furthermore, a

two-dimensional distribution of the expression pattern of the

seven key CDRGs in the TME and metastatic HCC samples is

presented in Figure 5D, E, indicating that these key CDRGs were

predominantly highly expressed in tumor cells and hepatocytes.

These findings led us to consider two plausible hypotheses: (1) the

alterations in the seven key CDRGs primarily occurred within

tumor cells and could be intricately linked to tumor metastasis;

(2) exosomes might influence tumor progression by modulating the

expression of such genes.

To validate these hypotheses, we reanalyzed the cell

subpopulations of HCC cells and their functional states in the

TME using two independent datasets, GSE149614 and GSE151530.

Cluster analysis revealed three distinct subtypes of HCC cells. HCC

cluster 1, HCC cluster 2, and HCC cluster 3 (Figure 6A). Notably,

CytoTRACE analysis indicated that the stemness index of HCC

cluster 3 was significantly higher than that of the other two subtypes

(Figure 6B). Pseudotime analysis further suggested that HCC

cluster 3 could represent the starting point for the differentiation
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trajectory of HCC cells (Figure 6C). The high expression levels of

GAPDH in this cell population further indicated a robust capacity

for exosome assembly and aggregation (Supplementary Figure 6)

(46). Cellular interaction analysis revealed that HCC cluster 3

exhibited more abundant interactions with other cell types in the

TME, particularly with endothelial cells and fibroblasts (Figure 6D).

Enrichment analysis of highly expressed genes in different cell

subpopulations of HCC cells demonstrated that HCC cluster 3

was significantly enriched for functions related to secretory granule

lumen, cadherin binding, and ATP metabolic processes (Figure 6E,

Supplementary Table 7). These observations collectively manifested

that HCC cluster 3 was characterized by a higher stemness index,

strong cellular interaction capabilities, and enhanced secretion

functions. Interestingly, TRIB3, NQO1, and CISD1 presented

higher expression levels in HCC cluster 3 (Supplementary

Table 8). To gain further insights into the relationship between

the seven key genes, specific HCC cell subpopulations, and

therapeutic responses to immune checkpoint blockades (ICBs),

we utilized an external validation scRNA-seq dataset and spatial

transcriptome data for HCC downloaded from Mendeley.

Supplementary Figures 7A, B displays the ten major cell types

and sample origins in such a scRNA-seq dataset, with cellular

identities defined according to the published literature of the

source data (30). Violin plots in Figures 7A–G (left side) illustrate

the expression levels of the seven key genes in HCC cell subsets of

two independent datasets, GSE149614 and GSE151530, while the
A B C

D E

FIGURE 6

The differentiation landscape of cancer cells in HCC TME. (A) Unsupervised clustering showing the existence of three types of HCC cells in TME.
(B) CytoTRACE analysis of HCC cell subsets. (C) The differentiation trajectory analysis of HCC cell subsets using Monocle3. (D) Cellular interaction
analysis showing the aggregated cell-cell communication networks. The shades of color indicate the relative strength of the cellular communication.
(E) The heatmap showing the top 50 expressed genes of three HCC cell subsets, and the bubble map displaying the KEGG pathway enriched by
such characteristic genes.
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corresponding plots on the right side depict their expression

patterns in normal hepatocytes, HCC cells, and proliferative HCC

cells in the external validation scRNA-seq dataset. Moreover, their

spatial expression distribution in normal liver, ICB responders, and

ICB non-responders groups was visualized using stRNA-seq data

(Figures 7A–G, right panel; Supplementary Figures 7C–I). The

results indicate that TRIB3, RRM2, NT5DC3, NQO1, and CISD1

are predominantly expressed in HCC cells, as evident in both

scRNA-seq and stRNA-seq data, while the expression patterns of

TF and ALB exhibit varied expression profiles. Furthermore, the

significantly elevated expression levels of TRIB3, NQO1, RRM2,

and NT5DC2 in the immune checkpoint blockade (ICB) responsive

group, compared to the non-responsive and normal groups,

highlight their potential importance (Supplementary Figure 8,

Supplementary Table 9). In contrast, the TF gene exhibited an

opposite expression trend. Considering the expression patterns of

these genes across different HCC cell subpopulations, our findings

suggest that TRIB3 and NQO1 hold promise as potential indicators

for assessing the outcomes of ICB therapy.

Furthermore, we validated the expression levels of TRIB3 and

NQO1 in HCC tissues using IHC. The results confirmed their

enhanced protein levels in tissue samples of HCC patients relative

to the normal controls (Figure 7H), and expression tendencies of

such protein in HCC tissues were also validated in HPA datdabases
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(Figure 7H). Taken together, these findings highlight the potential

diagnostic and therapeutic significance of TRIB3 and NQO1 as

targets for HCC patients. Finally, we assessed the individual drug

sensitivity of the three tumor cell subpopulations using the

Beyondcell package, revealing that HCC Cluster3 exhibited

greater sensitivity to HYDRALAZINE and PRAVASTATIN

(Supplementary Figure 9).
Validating expression patterns of TRIB3 and
NQO1 in blood-derived exosomes of HCC
patient and healthy controls

To validate the expression profiles of key genes TRIB3 and

NQO1 in exosomes, we isolated blood-derived exosomes from four

HCC patients and the identical number of healthy individuals

through ultracentrifugation. Initially, we examined the

morphology of blood-derived exosomes by TEM, and data shown

in Figure 8A indicated that the extracted vesicles had a typical cup

and rounded shape within a scale bar of 100 nm. Subsequent NTA

revealed that the median particle size of exosomes in the HCC

group was 117.4 ± 1.7 nm, with a concentration of 3.21E+10

particles/ml. For healthy individuals, the median particle size was

107 ± 3.1 nm, and the concentration was 4.55E+10 particles/ml
A
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H

FIGURE 7

The expression pattern of seven key genes in the scRNA-seq and stRNA-seq data. (A-G) The violin plots on the left side illustrate the expression
levels of such seven key genes in the HCC cell subsets of two independent datasets of GSE149614 and GSE151530, while the violin plots on the right
side present their corresponding expression patterns in the normal hepatocytes, HCC cells, and proliferative HCC cells in the external validation
scRNA-seq dataset. Their spatial expression distribution in normal liver, ICB responders, and ICB non-responders is shown in the right panel. (H) IHC
analysis shows upregulated TRIB3 and NQO1 expression in tissue samples of HCC patients relative to the normal controls. * P<0.05.
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(Figure 8B). Furthermore, we detected the levels of exosome-

specific markers, CD9 and TSG101 by WB analyses (Figure 8C).

It was found the levels of these exosome-specific markers in blood-

derived exosomes from both HCC patients and healthy individuals

were elevated, collectively confirming the identities of the exosomes.

Next, we compared the expression levels of TRIB3 and NQO1

between two groups by qPCR. The results showed that TRIB3

expression in plasma-derived exosomes of HCC patients was higher

relative to the level in healthy individuals (Figure 8D). However,

there was no significant difference in the expression of NQO1

between the two groups (Figure 8D).
Discussion

PCDs have been shown to play an essential in the regulation of

interactions among diverse cell identities in the TME. For instance,

they regulate intercellular communication, tumor metastasis, and

drug resistance. Therefore, there is a need to investigate the

underlying regulatory mechanisms between CDRGs and

oncobiology. This study investigated gene expression profiles in

both tissue and blood-derived exosomes from hepatocellular

carcinoma (HCC) patients compared to healthy controls. We

identified significant changes in the expression patterns of genes

associated with apoptosis, autophagy, and ferroptosis across

different cell types within the TME of HCC. In addition, CDRGs

was upregulated in blood-derived exosomes of patients, and many

of the altered CDRGs were associated with clinical staging and

tumor prognosis of HCC. Next, we performed LASSO and

univariate Single-factor logistic regression analysis to screen out

the differentially expressed CDRGs. Our analysis identified seven

key genes with a strong link to ferroptosis, a form of programmed

cell death. Research suggests that resistance to ferroptosis

significantly contributes to the progression of hepatocellular
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carcinoma (HCC) and is a primary factor behind the increased

insensitivity of these tumors to anti-cancer therapies (47, 48). It has

also been reported that ferroptosis can inhibit tumor progression

and enhance immunotherapy efficacy (49–52). Evidence supports

an intricate interplay between ferroptosis and exosomes.

Researchers have attempted to explore the regulatory role of

exosomes in ferroptosis sensitivity of tumor cells, indicating that

exosomes can promote tumor progression and drug resistance (53–

55). A study led by Zhang et al. revealed that microsomal

triglyceride transfer protein (MTTP) was upregulated in plasma

exosomes of colorectal cancer patients with a high body fat ratio,

and this inhibited ferroptosis in tumor cells thereby decreasing

sensitivity to chemotherapy. Given the established significance of

blood-derived exosomes in relation to tumors and their ease of

accessibility, the application of mRNA from blood-derived

exosomes for early tumor screening has become a viable option.

In our study, we constructed a diagnostic models using bulk RNA-

seq data of TCGA HCC and exoRBase HCC cohorts, both of which

exhibited excellent diagnostic performance. Moreover, our data

revealed that the expression patterns of the seven key genes in

different cell subsets within the HCC TME, blood-derived

exosomes, MLN, and PVTT metastatic samples were similar. This

observation aligns with the findings of Fu et al., who identified that

HCC-derived exosomal miR-1247–3p has the potential to

transform fibroblasts into CAFs within the pre-metastatic niche

of lung metastasis. Additionally, the high expression of miR-1247–

3p in blood-derived exosomes showed a positive correlation with

liver cancer lung metastasis (56). This molecular crosstalk between

tumor cells, tumor-derived exosomes, and metastatic tumor sites

provides new insights into the mechanisms driving HCCmetastasis.

The traceability of blood-derived exosomes has always been a

major clinical challenge, and previous studies have reported that

cancer cells exhibit aberrant production of EVs, which in turn

promote tumor progression (57). Prior studies found that tumor
A B

C
D

FIGURE 8

Validation of the expression patterns of TRIB3 and NQO1 in blood-derived exosomes of HCC patient and healthy controls. (A) TEM micrographs of
the morphology of blood-derived exosomes. (B) NTA displaying the median particle size and concentration of blood-derived exosomes. (C) WB
analyses of the exosome-specific markers in extracted exosomes. (D) qPCR indicating the expression levels of TRIB3 and NQO1 between HCC and
control groups. * P<0.05.
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cells with stronger stemness tend to have higher exosome secretion

activity (7). In this study, analysis of tumor cell stemness showed

that a subset of tumor cells with higher stemness scores also

exhibited upregulated expression levels of GAPDH, indirectly

indicating increased exosome secretion activity (46). Furthermore,

our data showed that the key genes, TRIB3 and NQO1, were not

only correlated with the survival outcome and clinical stage of HCC

but were also highly expressed within a subpopulation of tumor

cells characterized by enhanced stemness (Supplementary Table 8).

This phenomenon suggests that the highly expressed TRIB3 and

NQO1 in blood-derived exosomes may originate from this

particular subpopulation of highly stem-like HCC tumor cells.

Hua et al. found that TRIB3, a stress protein, is upregulated in

response to various stressors, directly interacted with the adaptor

receptor SQSTM1/p62, disrupted its binding to MAP1LC3/LC3 and

ubiquitinated substrate proteins, finally inhibiting autophagic flux.

Through this mechanism, it protected several tumor-promoting

factors from autophagic degradation in cancer cells (58). Other

studies have demonstrated that inhibition of TRIB3 expression by

metformin can induce autophagy, thereby preventing melanoma

progression (59). NQO1, a target of NRF2, is upregulated in

response to oxidative stress and plays a role in the maintenance

of cellular oxidative homeostasis. Several reports have indicated that

NQO1 can reduce cellular damage induced by ferroptosis (60, 61).

In addition, a study by Wang et al. showed that NQO1/p53

increased the transcriptional activity of SREBP1, which in turn

promoted the progression of HCC by modulating lipid anabolism

(62). The aforementioned findings underscore the significance of

TRIB3 and NQO1 in the pathomechanisms of HCC. In addition,

the results demonstrated the crucial role of such genes in the

context of TME remodeling, cancer metastasis, and therapeutic

responses. On this basis, we conducted a detailed analysis of the

spatial expression distribution of TRIB3 and NQO1 in HCC tissues

and explored their association with drug sensitivity.

Our analysis predicted increased drug sensitivity in stem-like

HCC cells, particularly for HYDRALAZINE and PRAVASTATIN.

Hydralazine is an FDA-approved medication traditionally used for

treating high blood pressure. Recently, it has emerged as a

promising agent for modulating TME. Hydralazine demonstrates

favorable biocompatibility and a notable absence of risks associated

with tumor invasion or metastasis (63). In the context of antitumor

therapy, Hydralazine has shown the ability to enlarge tumor blood

vessels, reduce tumor stroma, and enhance the penetration of

nanoparticles into the tumor interior. For HCC cluster 3, which is

characterized by high stemness and strong cellular interaction

capabilities, Hydralazine’s ability to enhance tumor penetration

might be particularly beneficial. It could facilitate the delivery of

anti-cancer drugs directly to the more resilient and interactive

tumor cells within this cluster, potentially improving treatment

outcomes and reducing metastasis. Likewise, pravastatin is a statin

medication primarily used to lower cholesterol levels. Previous

studies suggested that pravastatin not only helps in reducing the

risk of HCC recurrence but also improves overall survival,

particularly in high-risk patient subgroups (64). For HCC cluster

3, pravastatin’s anti-proliferative and pro-apoptotic effects could be

particularly relevant given the cluster’s high stemness index and
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potential for differentiation into aggressive cancer cell types. By

targeting the metabolic pathways and cellular processes that

support the growth and survival of HCC cells, pravastatin could

contribute to the reduction of tumor burden and potentially

enhance the efficacy of other therapeutic interventions. This could

unlock new avenues for HCC prevention and therapy. Therefore,

there is an urgent need to develop TRIB3/NQO1-targeting drugs for

HCC. Future investigations should explore the efficacy of

HYDRALAZINE and PRAVASTATIN’s in HCC treatment.

In this study, we determined the crucial role of ferroptosis and

autophagy-related genes in HCC. We developed a diagnostic model

for HCC based on mRNA expression exhibited which showed good

diagnostic performance. Our study highlight the intricate interplay

among tumor cells, blood-derived exosomes, and cancer metastases.

Notably, elevated levels of TRIB3 and NQO1 in blood-derived

exosomes may not only serve as promising diagnostic markers for

HCC but also hold promise for predicting the efficacy of

immunotherapy in HCC patients. In future, further investigations

into the expression profiles of TRIB3 and NQO1 in patients’ blood-

derived exosomes should be performed to provide novel insights

into early diagnosis, prognostic prediction, and the development of

tailored drug treatment regimens for HCC.
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SUPPLEMENTARY FIGURE 1

scRNA-seq profiling of HCC. (A) UMAP plot showing the cell clusters in the
scRNA-seq. (B) UMAP plots showing the source of samples in scRNA-seq. (C)
UMAP plots showing the seven cell clusters in scRNA-seq. (D) UMAP shows

the cell distribution of tumor and healthy samples.

SUPPLEMENTARY FIGURE 2

KEGG pathway analysis of the DEGs in different datasets. (A) KEGG pathway

analysis for up-regulated DEGs. (B) KEGG pathway analysis of the down-
regulated DEGs. Visualization of the top 30 intersectional enriched terms of

the pathways between the datasets. The red bubble shows the enrichment

terms for the up-regulated DEGs (left), and the blue bubble indicates the
enrichment terms for the down-regulated DEGs (right). Shades of color in the

bubble indicate negative log10(P-value), and bubble sizes indicate the
number of DEGs enriched in a specific pathway.

SUPPLEMENTARY FIGURE 3

Screening of candidate biomarker genes. Bubble plots showing 41 candidate

biomarker genes that were differentially up-regulated in the exoRBase HCC
cohort and their expression pattern in other datasets. Red circles indicate

positive logFC values or up-regulated DEGs in corresponding datasets, while
blue circles indicate positive logFC values or down-regulated DEGs in

corresponding datasets, and bubble size indicates negative log10 (P-value).

SUPPLEMENTARY FIGURE 4

The association between the expression of 41 candidate biomarker genes and
the overall survival of HCC patients in the GEPIA database. Only genes with P-

value < 0.05 (n = 25) were included for the analysis.

SUPPLEMENTARY FIGURE 5

Correlation analysis of the clinical stage of HCC patients with 41 candidate

biomarker genes. Only genes with P-value < 0.05 (n = 18) were included in

the analysis.

SUPPLEMENTARY FIGURE 6

Violin plot showing the expression level of GAPDH in the three HCC

cell subsets.

SUPPLEMENTARY FIGURE 7

The expression pattern of seven key genes in the external validation dataset.
(A) UMAP illustrates the ten major cell types identified in the external

validation scRNA-seq dataset. (B) UMAP illustrating the sample origins in
the external validation scRNA-seq dataset. (C-I) The spatial expression

distribution of the seven key genes in normal liver, ICB responders, and ICB
non-responders in the external validation stRNA-seq dataset.

SUPPLEMENTARY FIGURE 8

Comparison of the key gene expression levels among the ICB responsive

group, the non-responsive group, and the normal group.

SUPPLEMENTARY FIGURE 9

Prediction of candidate drugs for each HCC cell subset using R

package Beyondcell.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. (2021) 71(3):209–49. doi: 10.3322/
caac.21660
2. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma.

Gastroenterology. (2012) 142:1264–1273 e1. doi: 10.1053/j.gastro.2011.12.061
3. Tang A, Hallouch O, Chernyak V, Kamaya A, Sirlin CB. Epidemiology of

hepatocellular carcinoma: target population for surveillance and diagnosis. Abdom
Radiol (NY). (2018) 43:13–25. doi: 10.1007/s00261-017-1209-1
4. Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine

for hepatocellular carcinoma. Nat Rev Clin Oncol. (2018) 15:599–616. doi: 10.1038/
s41571-018-0073-4
5. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and

molecular carcinogenesis. Gastroenterology. (2007) 132:2557–76. doi: 10.1053/
j.gastro.2007.04.061
6. Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death
pathways and its physiological implications. Nat Rev Mol Cell Biol. (2020) 21:678–95.
doi: 10.1038/s41580-020-0270-8

7. Wang C, He Y, Zheng J, Wang X, Chen S. Dissecting order amidst chaos of
programmed cell deaths: construction of a diagnostic model for KIRC using
transcriptomic information in blood-derived exosomes and single-cell multi-omics
data in tumor microenvironment. Front Immunol. (2023) 14:1130513. doi: 10.3389/
fimmu.2023.1130513

8. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol
Cancer. (2020) 19:12. doi: 10.1186/s12943-020-1138-4

9. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and
mitochondrial dynamics. Dev Cell. (2011) 21:92–101. doi: 10.1016/j.devcel.2011.06.017

10. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin
Oncol. (2020) 17:395–417. doi: 10.1038/s41571-020-0341-y
frontiersin.org

http://www.home-for-researchers.com
http://www.home-for-researchers.com
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1410603/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1410603/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1053/j.gastro.2011.12.061
https://doi.org/10.1007/s00261-017-1209-1
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.1053/j.gastro.2007.04.061
https://doi.org/10.1053/j.gastro.2007.04.061
https://doi.org/10.1038/s41580-020-0270-8
https://doi.org/10.3389/fimmu.2023.1130513
https://doi.org/10.3389/fimmu.2023.1130513
https://doi.org/10.1186/s12943-020-1138-4
https://doi.org/10.1016/j.devcel.2011.06.017
https://doi.org/10.1038/s41571-020-0341-y
https://doi.org/10.3389/fimmu.2024.1410603
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1410603
11. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA,
et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature.
(2005) 435:677–81. doi: 10.1038/nature03579

12. Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-related risk score
predicts prognosis and characterizes the tumor microenvironment in hepatocellular
carcinoma. Front Immunol. (2022) 13:925618. doi: 10.3389/fimmu.2022.925618

13. Wang Y, Zhang Y, Wang L, Zhang N, Xu W, Zhou J, et al. Development and
experimental verification of a prognosis model for cuproptosis-related subtypes in
HCC. Hepatol Int. (2022) 16:1435–47. doi: 10.1007/s12072-022-10381-0

14. Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, et al. Cancer cell-derived
exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to
anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. (2020) 19:110.
doi: 10.1186/s12943-020-01222-5

15. Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, et al. A novel peptide
encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in
hepatocellular carcinoma. Mol Cancer. (2022) 21:93. doi: 10.1186/s12943-022-01537-5

16. Chen H, Li Z, Qiu L, Dong X, Chen G, Shi Y, et al. Personalized neoantigen
vaccine combined with PD-1 blockade increases CD8(+) tissue-resident memory T-cell
infiltration in preclinical hepatocellular carcinoma models. J Immunother Cancer.
(2022) 10(9):e004389. doi: 10.1136/jitc-2021-004389

17. Yan W, Jiang S. Immune cell-derived exosomes in the cancer-immunity cycle.
Trends Cancer. (2020) 6:506–17. doi: 10.1016/j.trecan.2020.02.013

18. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular
vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. (2016) 30:836–48.
doi: 10.1016/j.ccell.2016.10.009

19. Hu Z, Chen G, Zhao Y, Gao H, Li L, Yin Y, et al. Exosome-derived circCCAR1
promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular
carcinoma. Mol Cancer. (2023) 22:55. doi: 10.1186/s12943-023-01759-1

20. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al.
Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat
Cell Biol. (2015) 17:816–26. doi: 10.1038/ncb3169

21. Zhang H, Deng T, Liu R, Bai M, Zhou L, Wang X, et al. Author Correction:
Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer
liver metastasis. Nat Commun. (2023) 14:1700. doi: 10.1038/s41467-023-37320-3

22. Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, et al. Tumor-derived exosomal
miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal
cancer. J Hematol Oncol. (2020) 13:156. doi: 10.1186/s13045-020-00991-2

23. Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, et al. CAFs secreted
exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness
and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. (2019) 18:91.
doi: 10.1186/s12943-019-1019-x

24. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, et al. Tumor-derived exosomal miR-
1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver
cancer. Nat Commun. (2018) 9:191. doi: 10.1038/s41467-017-02583-0

25. Shen T, Huang Z, Shi C, Pu X, Xu X, Wu Z, et al. Pancreatic cancer-derived
exosomes induce apoptosis of T lymphocytes through the p38 MAPK-mediated
endoplasmic reticulum stress. FASEB J. (2020) 34:8442–58. doi: 10.1096/fj.201902186R

26. Shen DD, Pang JR, Bi YP, Zhao LF, Li YR, Zhao LJ, et al. LSD1 deletion decreases
exosomal PD-L1 and restores T-cell response in gastric cancer. Mol Cancer. (2022)
21:75. doi: 10.1186/s12943-022-01557-1

27. Hong Y, Lin M, Ou D, Huang Z, Shen P. A novel ferroptosis-related 12-gene
signature predicts clinical prognosis and reveals immune relevancy in clear cell renal
cell carcinoma. BMC Cancer. (2021) 21:831. doi: 10.1186/s12885-021-08559-0

28. Song W, Ren J, Xiang R, Kong C, Fu T. Identification of pyroptosis-related
subtypes, the development of a prognosis model, and characterization of tumor
microenvironment infiltration in colorectal cancer. Oncoimmunology. (2021)
10:1987636. doi: 10.1080/2162402X.2021.1987636

29. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al.
Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. (2022)
375:1254–61. doi: 10.1126/science.abf0529

30. Liu Y, Xun Z, Ma K, Liang S, Li X, Zhou S, et al. Identification of a tumour
immune barrier in the HCC microenvironment that determines the efficacy of
immunotherapy. J Hepatol. (2023) 78:770–82. doi: 10.1016/j.jhep.2023.01.011

31. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al.
Satija: Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573–3587
e29. doi: 10.1016/j.cell.2021.04.048

32. Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell
biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell.
(2019) 36:418–430 e6. doi: 10.1016/j.ccell.2019.08.007

33. Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the
multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat
Commun. (2022) 13:4594. doi: 10.1038/s41467-022-32283-3

34. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol. (2018) 36:411–20. doi: 10.1038/nbt.4096

35. Gao R, Bai S, Henderson YC, Lin Y, Schalck A, Yan Y, et al. Delineating copy
number and clonal substructure in human tumors from single-cell transcriptomes.
Nat Biotechnol. (2021) 39:599–608. doi: 10.1038/s41587-020-00795-2
Frontiers in Immunology 15
36. Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, et al.
Single-cell transcriptional diversity is a hallmark of developmental potential. Science.
(2020) 367:405–11. doi: 10.1126/science.aax0249

37. Li Z, Zhang H, Li Q, Feng W, Jia X, Zhou R, et al. GepLiver: an integrative liver
expression atlas spanning developmental stages and liver disease phases. Sci Data.
(2023) 10:376. doi: 10.1038/s41597-023-02257-1

38. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, et al. The single-cell
transcriptional landscape of mammalian organogenesis. Nature. (2019) 566:496–502.
doi: 10.1038/s41586-019-0969-x

39. Ye Z, Zhang Y, Huang N, Chen S, Wu X, Li L. Immune repertoire and
evolutionary trajectory analysis in the development of diabetic nephropathy. Front
Immunol. (2022) 13:1006137. doi: 10.3389/fimmu.2022.1006137

40. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

41. Fustero-Torre C, Jimenez-Santos MJ, Garcia-Martin S, Carretero-Puche C,
Garcia-Jimeno L, Ivanchuk V, et al. Beyondcell: targeting cancer therapeutic
heterogeneity in single-cell RNA-seq data. Genome Med. (2021) 13:187. doi: 10.1186/
s13073-021-01001-x

42. Yang J, Zhou X, Dong J, Wang W, Lu Y, Gao Y, et al. Single-cell profiling reveals
molecular basis of Malignant phenotypes and tumor microenvironments in small
bowel adenocarcinomas. Cell Discovery. (2022) 8:92. doi: 10.1038/s41421-022-00434-x

43. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of
image analysis. Nat Methods. (2012) 9:671–5. doi: 10.1038/nmeth.2089

44. Tey SK, Wong SWK, Chan JYT, Mao X, Ng TH, Yeung CLS, et al. Patient pIgR-
enriched extracellular vesicles drive cancer stemness, tumorigenesis and metastasis in
hepatocellular carcinoma. J Hepatol. (2022) 76:883–95. doi: 10.1016/j.jhep.2021.12.005

45. Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the
tumor microenvironment contributes to hepatocellular carcinoma development and
progression. J Hematol Oncol. (2019) 12:53. doi: 10.1186/s13045-019-0739-0

46. Dar GH, Mendes CC, Kuan WL, Speciale AA, Conceicao M, Gorgens A, et al.
GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic
potential of EV mediated siRNA delivery to the brain. Nat Commun. (2021) 12:6666.
doi: 10.1038/s41467-021-27056-3

47. Huang Y, Wang S, Ke A, Guo K. Ferroptosis and its interaction with tumor
immune microenvironment in liver cancer. Biochim Biophys Acta Rev Cancer. (2023)
1878:188848. doi: 10.1016/j.bbcan.2022.188848

48. Ajoolabady A, Tang D, Kroemer G, Ren J. Ferroptosis in hepatocellular
carcinoma: mechanisms and targeted therapy. Br J Cancer. (2023) 128:190–205.
doi: 10.1038/s41416-022-01998-x

49. Yao F, Deng Y, Zhao Y, Mei Y, Zhang Y, Liu X, et al. A targetable LIFR-NF-
kappaB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat
Commun. (2021) 12:7333. doi: 10.1038/s41467-021-27452-9

50. Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, et al. Activation of the p62-Keap1-
NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells.
Hepatology. (2016) 63:173–84. doi: 10.1002/hep.28251

51. Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, et al. SOCS2-enhanced
ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in
hepatocellular carcinoma. Cell Death Differ. (2023) 30:137–51. doi: 10.1038/s41418-
022-01051-7

52. Tang B, Zhu J, Wang Y, Chen W, Fang S, Mao W, et al. Targeted xCT-mediated
Ferroptosis and Protumoral Polarization of Macrophages Is Effective against HCC and
Enhances the Efficacy of the Anti-PD-1/L1 Response. Adv Sci (Weinh). (2023) 10:
e2203973. doi: 10.1002/advs.202203973

53. Zhang Q, Deng T, Zhang H, Zuo D, Zhu Q, Bai M, et al. Adipocyte-derived
exosomal MTTP suppresses ferroptosis and promotes chemoresistance in colorectal
cancer. Adv Sci (Weinh). (2022) 9:e2203357. doi: 10.1002/advs.202203357

54. Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X, et al. Essential roles of exosome and
circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer
Commun (Lond). (2022) 42:287–313. doi: 10.1002/cac2.12275

55. Li F, Xu T, Chen P, Sun R, Li C, Zhao X, et al. Platelet-derived extracellular
vesicles inhibit ferroptosis and promote distant metastasis of nasopharyngeal
carcinoma by upregulating ITGB3. Int J Biol Sci. (2022) 18:5858–72. doi: 10.7150/
ijbs.76162

56. Fu W, Lei C, Liu S, Cui Y, Wang C, Qian K, et al. CAR exosomes derived from
effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun.
(2019) 10:4355. doi: 10.1038/s41467-019-12321-3

57. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. (2016)
126:1208–15. doi: 10.1172/JCI81135

58. Hua F, Li K, Yu JJ, Lv XX, Yan J, Zhang XW, et al. TRB3 links insulin/IGF to
tumour promotion by interacting with p62 and impeding autophagic/proteasomal
degradations. Nat Commun. (2015) 6:7951. doi: 10.1038/ncomms8951

59. Li K, Zhang TT, Hua F, Hu ZW. Metformin reduces TRIB3 expression and
restores autophagy flux: an alternative antitumor action. Autophagy. (2018) 14:1278–9.
doi: 10.1080/15548627.2018.1460022

60. Song X, Long D. Nrf2 and ferroptosis: A new research direction for
neurodegenerative diseases. Front Neurosci. (2020) 14:267. doi: 10.3389/
fnins.2020.00267
frontiersin.org

https://doi.org/10.1038/nature03579
https://doi.org/10.3389/fimmu.2022.925618
https://doi.org/10.1007/s12072-022-10381-0
https://doi.org/10.1186/s12943-020-01222-5
https://doi.org/10.1186/s12943-022-01537-5
https://doi.org/10.1136/jitc-2021-004389
https://doi.org/10.1016/j.trecan.2020.02.013
https://doi.org/10.1016/j.ccell.2016.10.009
https://doi.org/10.1186/s12943-023-01759-1
https://doi.org/10.1038/ncb3169
https://doi.org/10.1038/s41467-023-37320-3
https://doi.org/10.1186/s13045-020-00991-2
https://doi.org/10.1186/s12943-019-1019-x
https://doi.org/10.1038/s41467-017-02583-0
https://doi.org/10.1096/fj.201902186R
https://doi.org/10.1186/s12943-022-01557-1
https://doi.org/10.1186/s12885-021-08559-0
https://doi.org/10.1080/2162402X.2021.1987636
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1016/j.jhep.2023.01.011
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.ccell.2019.08.007
https://doi.org/10.1038/s41467-022-32283-3
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/s41587-020-00795-2
https://doi.org/10.1126/science.aax0249
https://doi.org/10.1038/s41597-023-02257-1
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.3389/fimmu.2022.1006137
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1186/s13073-021-01001-x
https://doi.org/10.1186/s13073-021-01001-x
https://doi.org/10.1038/s41421-022-00434-x
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1016/j.jhep.2021.12.005
https://doi.org/10.1186/s13045-019-0739-0
https://doi.org/10.1038/s41467-021-27056-3
https://doi.org/10.1016/j.bbcan.2022.188848
https://doi.org/10.1038/s41416-022-01998-x
https://doi.org/10.1038/s41467-021-27452-9
https://doi.org/10.1002/hep.28251
https://doi.org/10.1038/s41418-022-01051-7
https://doi.org/10.1038/s41418-022-01051-7
https://doi.org/10.1002/advs.202203973
https://doi.org/10.1002/advs.202203357
https://doi.org/10.1002/cac2.12275
https://doi.org/10.7150/ijbs.76162
https://doi.org/10.7150/ijbs.76162
https://doi.org/10.1038/s41467-019-12321-3
https://doi.org/10.1172/JCI81135
https://doi.org/10.1038/ncomms8951
https://doi.org/10.1080/15548627.2018.1460022
https://doi.org/10.3389/fnins.2020.00267
https://doi.org/10.3389/fnins.2020.00267
https://doi.org/10.3389/fimmu.2024.1410603
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1410603
61. Wang TX, Duan KL, Huang ZX, Xue ZA, Liang JY, Dang Y, et al. Tanshinone
functions as a coenzyme that confers gain of function of NQO1 to suppress ferroptosis.
Life Sci Alliance. (2023) 6. doi: 10.26508/lsa.202201667

62. Wang X, Liu Y, Han A, Tang C, Xu R, Feng L, et al. The NQO1/p53/
SREBP1 axis promotes hepatocellular carcinoma progression and metastasis by
regulating Snail stability. Oncogene. (2022) 41:5107–20. doi: 10.1038/s41388-
022-02477-6
Frontiers in Immunology 16
63. Chen S, Li B, Yue Y, Li Z, Qiao L, Qi G, et al. Smart nanoassembly enabling
activatable NIR fluorescence and ROS generation with enhanced tumor penetration for
imaging-guided photodynamic therapy. Adv Mater. (2024):e2404296. doi: 10.1002/
adma.202404296

64. Jeon D, Cha HR, Chung SW, Choi J, Lee D, Shim JH, et al. Association between
statin use and the prognosis of hepatocellular carcinoma after resection: a nationwide
cohort study. EClinicalMedicine. (2023) 65:102300. doi: 10.1016/j.eclinm.2023.102300
frontiersin.org

https://doi.org/10.26508/lsa.202201667
https://doi.org/10.1038/s41388-022-02477-6
https://doi.org/10.1038/s41388-022-02477-6
https://doi.org/10.1002/adma.202404296
https://doi.org/10.1002/adma.202404296
https://doi.org/10.1016/j.eclinm.2023.102300
https://doi.org/10.3389/fimmu.2024.1410603
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Developing an advanced diagnostic model for hepatocellular carcinoma through multi-omics integration leveraging diverse cell-death patterns
	Introduction
	Materials and methods
	Gene collection and data acquisition
	Single-cell data processing
	Differential gene expression analysis
	GO and KEGG analysis
	Clinical correlation and survival analysis
	Machine learning analysis
	Differentiation states prediction and pseudotime analysis
	Cell-cell interaction network analysis
	Processing of stRNA-seq data
	Single-cell drug sensitivity assessment
	Specimen collection of HCC patients
	Exosome extraction
	Observation of exosome morphology
	Nanoparticle tracking analysis (NTA)
	Western Blot (WB)
	Preparation of frozen section and immunohistochemistry (IHC)
	Quantitative Polymerase Chain Reaction (qPCR)
	Statistical analysis

	Results
	Overview of HCC multi-omics atlas
	Distinct expression patterns of CDRGs in HCC
	Exploring the molecular mechanisms of seven key CDRGs in HCC metastasis and progression
	Validating expression patterns of TRIB3 and NQO1 in blood-derived exosomes of HCC patient and healthy controls

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


