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Objective: Seronegative rheumatoid arthritis (RA) is defined as RA without

circulating autoantibodies such as rheumatoid factor and anti-citrullinated

protein antibodies; thus, early diagnosis of seronegative RA can be challenging.

Here, we aimed to identify diagnostic biomarkers for seronegative RA by

performing lipidomic analyses of sera and urine samples from patients with RA.

Methods:We performed untargeted lipidomic analysis of sera and urine samples

from 111 RA patients, 45 osteoarthritis (OA) patients, and 25 healthy controls (HC).

These samples were divided into a discovery cohort (n = 97) and a validation

cohort (n = 84). Serum samples from 20 patients with systemic lupus

erythematosus (SLE) were also used for validation.

Results: The serum lipidome profile of RA was distinguishable from that of OA

and HC. We identified a panel of ten serum lipids and three urine lipids in the

discovery cohort that showed the most significant differences. These were

deemed potential lipid biomarker candidates for RA. The serum lipid panel was

tested using a validation cohort; the results revealed an accuracy of 79%, a

sensitivity of 71%, and a specificity of 86%. Both seropositive and seronegative RA

patients were differentiated from patients with OA, SLE, and HC. Three urinary

lipids showing differential expression between RA from HC were identified with

an accuracy of 84%, but they failed to differentiate RA from OA. There were five

lipid pathways that differed between seronegative and seropositive RA.

Conclusion: Here, we identified a panel of ten serum lipids as potential

biomarkers that can differentiate RA from OA and SLE, regardless of

seropositivity. In addition, three urinary lipids had diagnostic utility for

differentiating RA from HC.
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Introduction

Rheumatoid arthritis (RA) is a systemic inflammatory disease

that affects mainly synovial joints. The autoimmune nature of the

disease is supported by the presence of RA-associated

autoantibodies such as anti-citrullinated peptide antibodies

(ACPA) and rheumatoid factor (RF). Usually, a diagnosis of RA

is based on clinical symptoms and serological positivity for these

autoantibodies (1). ACPA and RF are present in approximately

70%–80% of patients with RA (2, 3). However, an estimated

20%–25% of cases of RA do not present with RF and ACPA in

serum despite meeting the clinical classification criteria for RA (4);

these patients are referred to as “seronegative”. Patients with

seronegative RA experience delays in diagnosis and initiation

of treatment with disease-modifying antirheumatic drugs

(DMARDs) (5).

To facilitate diagnosis of seronegative RA, studies have explored

potential biomarkers. For example, serum antibodies against

disease-associated protein, including carbamylated proteins and

against peptidyl-arginine deiminase type 4, have been investigated

as potential markers; these biomarkers identified 23%–36% of

patients with seronegative RA (6, 7). Recently, several proteomics

or metabolomics studies identified biomarker candidates that can

differentiate patients with seronegative RA from healthy controls

(HC) (8, 9), patients with psoriatic arthritis (10), and patients with

polymyalgia rheumatica (11).

Differential diagnosis of seronegative RA and OA of the hand

also is challenging because inflammatory changes such as synovitis,

tenosynovitis, effusion, and erosion are often observed in patients

with OA (12); however, to the best of our knowledge, no study has

attempted to identify markers that distinguishing seronegative RA

from OA. The therapeutic strategies for the two diseases are

different; early initiation of DMARD therapy is essential if

patients with RA are to achieve remission and to limit joint

damage (13), whereas DMARD therapy is not recommended for

patients with OA (14).

Urine contains small hydrophilic molecules, including soluble

lipids. Urine contains unwanted or excess compounds that are to be

excreted from the body; therefore, it is a rich source of disease

biomarkers (15). Furthermore, collection of large amounts of urine

is noninvasive and convenient. Previously, we conducted a

proteomic study showing that urinary soluble CD14 has

diagnostic value as a strong predictor of RA disease activity (15);

however, as far as we know, no study has conducted lipidomic

analyses to identify biomarkers for RA.

Previously, we analyzed the integrative lipidome profile of

patients with RA from the pre-clinical to sustained remission

phase, and identified novel lipid biomarker candidates that

predict development of RA in “seropositive” individuals with

arthralgia (16). In the present study, we conducted a lipidome

analysis to investigate lipid biomarker candidates that differentiate

seropositive RA from seronegative RA and OA. We also conducted

lipidome analysis of urine to assess its diagnostic utility.

Subsequently, we validated biomarker candidates using an

internal validation cohort. Furthermore, we investigated
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pathogenic differences between seropositive RA and seronegative

RA by analyzing lipid metabolic pathways.
Patients and methods

Study participants

The study participants were enrolled in the Center for

Integrative Rheumatoid Transcriptomics and Dynamics (CIRAD)

cohort, a prospective cohort of RA patients at Seoul St. Mary’s

Hospital that was started in 2015. All participants with RA fulfilled

the 2010 American College of Rheumatology (ACR)/European

League Against Rheumatism (EULAR) RA classification criteria

(1). Blood samples were collected after an 8-h fast, after which sera

were separated and stored at -20°C prior to subsequent analysis.

Urine samples (midstream) were collected on the same day as blood

samples. After centrifugation, the clarified supernatants were

aliquoted and stored at −80°C until use. All patients had normal

renal function and did not have clinically evident nephropathy.

The CIRAD cohort included patients with OA characterized by

normal acute phase reactant levels without RF or ACPA. Serum and

urine samples were collected at the same time. Healthy participants

were recruited from the Wonju Severance Christian Hospital,

Wonju, Gangwon-do; all were aged ≥ 20 years and had no known

comorbidities or hand arthralgia.

Among the 136 RA patients enrolled from July 2019 to December

2020, 25 taking lipid-lowering agents were excluded from the analysis

due to the potential impact of these drugs on the lipidome profile.

Samples taken in 2019 (49 RA, 23 OA, 25 healthy individuals) were

selected for the discovery cohort, and those taken in 2020 (62 RA and

22 OA) were selected as the internal validation cohort. Patients with

RA in the validation cohort were classified as seropositive or

seronegative to determine the clinical relevance of lipid candidates

identified in the discovery cohort for differentiating seronegative RA

from OA. Patients with seropositive RA were defined as patients who

were positive for RF or ACPA, while patients with seronegative RA

were defined as patients who were negative for RF and ACPA,

although they met the 2010 ACR/EULAR RA classification criteria.

In addition, to assess whether the lipid biomarker candidates

identified in the discovery cohort were specific for RA, anonymized

serum samples from patients with systemic lupus erythematosus

(SLE) were included in the validation cohort (Figure 1); although the

SLE samples were initially obtained for use in an SLE-specific study,

all patients consented to the use of these samples for other studies.
Ethical approval

The study was approved by the institutional review board of

Seoul St. Mary’s Hospital, the Catholic University of Korea

(KC16SISI0632), and Wonju Severance Christian Hospital (19–

008). All participants provided written informed consent in

accordance with the Declaration of Helsinki. Informed consent

was obtained before participation in the study.
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Preparation of lipid standards

Lipid standard mixtures were prepared at a stock concentration

(5 mg/mL) and used as an internal standard comprising the

following lipids: LPE 14:0, LPC 13:0, LPG 14:0, PA 10:0/10:0, Cer

d18:1/12:0, PE 10:0/10:0, PG 10:0/10:0, Cer1P d18:1/12:0, PC 10:0/

10:0, PS 10:0/10:0, SM d18:0/12:0, and TG 11:1/11:1/11:1. All lipid

standards, with the exception of TG, were purchased from Avanti

Polar Lipids (Alabaster, AL, USA). TG was acquired from Larodan

Fine Chemicals AB (Malmö, Sweden).
Lipid extraction from serum and
urine samples

Lipids were extracted using the Folch method, with slight

modifications (17). Briefly, a 60 mL aliquot of each serum or urine

sample was mixed with 240 mL of ice-cold methanol, followed by

centrifugation (16,000 rcf, 4°C, 10 min). The supernatant was then

transferred into a 2.5 mL Eppendorf tube, to which 700 mL of

chloroform:methanol mixture solvent (6:1, v/v) and 10 mL of lipid

standard mixture were added, This was vortexed and incubated for

1 h at room temperature. Next, 180 mL of water was added to the

tube, vortexed for 1 min, and subjected to centrifugation (16,000 rcf,

4°C, 10 min). The lower phase was collected using a glass pipette

and transferred into a new tube for subsequent drying under

nitrogen gas. The aqueous layer was re-extracted using the same

procedure. Quality control samples were prepared by combining

equal volumes of each serum or urine sample, followed by
Frontiers in Immunology 03
extraction in the same manner. All dried samples were stored at

-20°C until analysis.
Untargeted lipidomics using UPLC-ESI-
MS/MS

The dried lipid extracts were reconstituted with 60 mL of

isopropanol/methanol (1:1, v/v) and then separated on a Waters

C18 column (Waters ACQUITY, 2.1 × 100 mm, 1.7 mm) connected

to a Vanquish UPLC solvent delivery system (Thermo Scientific,

San Jose, CA, USA). The binary solvent system included mobile

phase A (ACN/H2O, 60:40, v/v) and mobile phase B (IPA/ACN,

90:10, v/v), both containing 10 mM ammonium formate and 0.1%

formic acid. The flow rate for all separations was 0.33 mL/min, with

the following elution gradient: 30% B for 1 min, followed by a linear

increase from 30% to 98% B from 1 to 20 min. The UPLC column

was re-equilibrated with 30% mobile phase B for 3 min

between injections.

For MS data acquisition, a Q-Exactive Plus mass spectrometer

(Thermo Scientific, San Jose, CA, USA) was operated in ESI-

positive ion mode, performing a full MS mode from m/z 100-

1000. To identify lipids, ten serum and urine samples underwent

MS/MS data-dependent acquisition. The mass spectrometric

parameters for both MS and MS/MS scans included a spray

voltage at 3.5 kV, sheath gas at 40, auxiliary nitrogen pressures

set at 10, capillary temperature at 320°C, and an S-lens radio

frequency level at 50. Serum and urine samples were analyzed in

two independent batches and in a random sequence.
FIGURE 1

Clinical design and research flow of the comprehensive lipidome study in rheumatoid arthritis patients.
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To ensure consistency in large-scale lipidomic analysis, we

divided the samples into two independent batches for discovery

and validation cohorts. This approach mitigated inherent

instrument fluctuations over an extended period (18).

Additionally, we developed a randomized sequence analysis with

serval sequence rows, each containing different types of RA, HC,

and quality controls to prevent systematic errors that might occur

when samples are analyzed in a specific order (19, 20). To further

confirm the high quality and reliability of the data produced in each

batch, all quality controls were ensured to occupy the same position

in the multivariate analysis (19, 20).
Data processing and statistical analysis

Lipid annotation was conducted by LipidSearch 4.0 (Thermo

Scientific), based on the precursor ion and MS/MS fragmented ions

with mass accuracy error < 5.0 ppm and 8.0 ppm, respectively. Raw

data were imported into MZmine 2.53 for data preprocessing (21),

and encompassed detection of targeted lipid features and peal

alignment. Unreliable lipid signals were excluded if the relative

standard deviation of the quality control samples exceeded 30%.

Statistical analysis was performed using MetaboAnalyst 5.0

(www.metaboanalyst.ca). Every lipid feature was normalized

according to the median intensity of each sample, followed by log

transformation and auto-scaling prior to multiple statistical analyses.

Lipids showing differential expression between two groups were

identified by Orthogonal projections to latent structures-discriminate

analysis (OPLS-DA), and a non-parametric Wilcoxon rank-sum t-test.

The OPLS-DA model was validated using permutation tests (n=1000),

and Q2 value was used to access overfitting. Potential lipid candidates

were identified based on the following criteria: VIP > 1, P < 0.05, and

FDR < 0.25. The results were visualized using R package prior to

heatmap construction.

All lipids showing differential expression between RA and OA

or HC were analyzed by Pearson’s correlation analysis to identify

correlations with DAS28. Lipids with an absolute correlation

coefficient (|r|) > 0.35 were considered to have a significant

association with RA disease activity. Furthermore, receiver
Frontiers in Immunology 04
operating characteristic (ROC) curve analyses were performed to

assess whether these lipids could differentiate between moderate-to-

high disease activity and low disease activity or remission.

To prioritize lipid candidates, a multivariate exploratory ROC

analysis was performed using MetaboAnalyst with classification and

feature ranking of random forest. ROC curves based on prioritized

lipids were generated using the pROC and randomForest package,

and area under the curve (AUC) values were calculated using the

random forest algorithm within the package.

To investigate whether lipid expression differed according to the

serological status, the lipidome profiles of patients with seropositive

RA and seronegative RA were compared. To avoid the possibility of

bias caused by biological DMARDs, and to minimize the

nonspecific effect of disease activity, patients treated with such

drugs, as well as and those with high disease activity scores (i.e.,

DAS28 > 5.2) were excluded from analysis of the lipidome

differences between seropositive and seronegative RA,

respectively. Initially, lipids showing differential expression

between the seronegative RA and seropositive RA groups were

identified using a volcano plot prior to lipid ontology analysis. Lipid

ontology analysis based on these differentially-expressed lipids was

conducted using lipid ontology (LION) (22). Lipids showing

significant differences, along with normalized peak intensities,

were utilized to generate an enrichment table and a PCA

heatmap. Any lipids that did not match entries in the LION

database were excluded from further analysis.
Results

Baseline characteristics

In total, 111 patients with RA (mean age, 57 years; 84.7%

female), 45 patients with OA (mean age, 56 years; 88.9% female), 25

HCs (mean age, 48 years; 100% female), and 20 patients with SLE

(mean age, 42 years; 100% female) were included. The clinical

parameters of the patients with RA in the discovery and validation

cohorts were similar (Table 1); however, the HCs and patients with

SLE were younger than patients with RA and OA.
TABLE 1 Clinical and demographic characteristics of the study populations.

Discovery cohort Validation cohort

RA (n
= 49)

OA (n
= 23)

HC (n
= 25)

P-
value†

RA
(n =62)

OA (n
= 22)

SLE (n
= 20)

P-
value†

P-
value‡

Female, n (%) 40 (81.6) 21 (91.3) 25 (100) 0.090 54 (87.1) 18 (81.8) 20 (100) 0.162 0.597

Age, years 57.0 ± 12.3* 50.6 ± 10.5 47.5 ± 3.7* <0.001 56.2 ± 12.1* 61.3 ± 9.6*,§ 42.1 ± 7.9§ <0.001 0.658

BMI, kg/m2 22.9 ± 2.8 22.7 ± 2.9 23.9 ± 3.1 0.260 22.6 ± 2.5 22.9 ± 4.5 – 0.225 0.802

RA duration, years 7.9 ± 7.7 – – 6.7 ± 8.5 – – 0.176

RF-positive, n (%) 35 (71.4) – – 36 (58.1) – – 0.167

ACPA-positive,
n (%)

38 (77.6) – – 40 (64.5) – – 0.149

(Continued)
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Serum and urine lipidome profiles of RA,
OA, and HC

After data generation and processing, we identified a comprehensive

array of lipids: 311 in serum and 66 in urine. Representative LC-MS

chromatograms of serum and urine samples displayed marked

differences in lipid profiles between RA and OA/HC (Figures 2A, B).

We classified these lipids into subclasses: 15 in serum and nine

in urine (Figure 2C). Of the 15 subclasses in the serum lipidome,

phosphatidylcholines (PC; 18%), ether-linked PCs (PC-Os; 15%),

triacylglycerol (TG; 15%), and sphingomyelin (SM; 14%) were the

most abundant. By contrast, TG (41%), carnitine (CAR; 20%), SM

(9%), and PC (7.5%) were the most abundant in the urine lipidome.

The OPLS-DA 2D score plots for the serum lipidome

demonstrated excellent separation of RA from HC, with a Q2

predictability of 0.61 (Figure 2D), as well as RA from OA, with a

Q2 of 0.10 (Figure 2E). While the urine lipidome was less distinct

than the serum lipidome, it still effectively differentiated RA from

HC (Q2 = 0.22) and OA (Q2 = 0.15) (Figures 2F, G). Permutation

tests (n = 1000) were performed to validate the OPLS-DA 2D

models (Supplementary Figure 1). These tests confirmed the

distinct serum and urine lipid profiles between RA patients and

OA or HC, suggesting that there was no overfitting of the models

when distinguishing RA from the two control groups.

Integrated analyses of OPLS-DA and Wilcoxon rank-sum tests

between RA and OA or HC identified 26 lipids differentially

expressed in serum and three in urine (Table 2). Among the

serum lipids, ether-linked phosphatidylethanolamines (PE-Ps),

PCs, lysophosphatidylcholines (LPCs), and ether-linked LPCs

(LPC-Os) were significantly lower in patients with RA, while

SMs, CARs, ceramide (Cer), and TG were higher, than in HC and
Frontiers in Immunology 05
OA (Figure 2H). The levels of these lipids, except SM t39:0, in OA

patients were intermediate between RA patients and HC. SM t39:0

was significantly upregulated in patients with OA compared with

HC, and LPC-O 18:0 was downregulated in OA (Table 2). Urine

CAR 12:0, CAR 14:2, and SM d42:2 were higher in patients with RA

than in OA and HC (Figure 2I).
Diagnostic potential of lipid biomarkers for
distinguishing RA

Multivariate analyses using ROC AUC curves were conducted

to pinpoint serum lipid biomarkers with the highest potential for

distinguishing between RA and OA (Supplementary Figure 2).

Feature ranking, conducted through the random forest algorithm,

identified ten primary lipids as significant markers: PC 42:9, PC-O

(38:7, 42:6), LPC (14:0, 22:0), LPC-O (16:0, 18:3), SM (d44:7, t39:0),

and Cer d18:2/24:1 (Figure 3A). These biomarker candidates

effectively differentiated RA patients from HC (AUC=0.897; 95%

confidence interval (CI), 0.814–0.981) and OA (AUC=0.817; 95%

CI, 0.708–0.927) in the discovery cohort (Figures 3B, C). Next, we

evaluated these 10 in the validation cohort (Figures 3D–I).

To ascertain whether these serum lipid biomarker candidates

could be also used to discriminate patients with seronegative RA

from those with OA or HC, we conducted a comparative analysis

(Figures 3F, G). The serum lipid biomarker candidates

demonstrated an AUC of 0.849, with a test sensitivity of 77% and

specificity of 92%, between seronegative RA and HC, and an AUC

of 0.812 (sensitivity, 86%; specificity, 73%) between seronegative RA

and OA. Additionally, these markers were effective at differentiating

RA from SLE, with an AUC of 0.797 (Figures 3H, I). Three
TABLE 1 Continued

Discovery cohort Validation cohort

RA (n
= 49)

OA (n
= 23)

HC (n
= 25)

P-
value†

RA
(n =62)

OA (n
= 22)

SLE (n
= 20)

P-
value†

P-
value‡

ESR, mm/hr 19.5 ± 18.5 – – 23.3 ± 18.9 – – 0.247

CRP, mg/dL 0.9 ± 1.3 – – 1.1 ± 1.5 – – 0.646

DAS28 3.7 ± 1.5 – – 3.6 ± 1.5 – – 0.644

Glucocorticoids,
n (%)

32 (65.3) – – 44 (71.0) – – 0.544

Methotrexate,
n (%)

31 (63.3) – – 32 (51.6) – – 0.152

HCQ, n (%) 20 (40.8) – – 27 (43.5) – – 0.848

Sulfasalazine,
n (%)

9 (18.4) – – 7 (11.3) – – 0.415

Leflunomide,
n (%)

15 (30.6) – – 20 (32.3) – – 0.857

Biologics, n (%) 13 (26.5) – – 14 (22.6) – – 0.749
fro
ACPA, anti-citrullinated peptide antibody; BMI, body mass index; CRP, C-reaction protein; ESR, erythrocyte sedimentation rate; DAS28, disease activity score in 28 joints; HCQ,
hydroxychloroquine; RF, rheumatoid factor; OA, osteoarthritis; RA, rheumatoid arthritis, HC, healthy control.
*,§Significant difference between two values after post-hoc analysis (Dunn’s multiple comparison test).
†P value in each development and validation cohort calculated by one-way ANOVA.
‡P value between RA patients in development and validation cohort calculated by a t-test.
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upregulated urine lipids showed excellent performance for

discriminating RA from HC (Figures 4A–C); however, they were

suboptimal for discriminating RA from OA (Figures 4D–F).
Association of lipidome profiles with
disease activity

Pearson correlation analysis of 26 differentially-expressed lipids

from 113 RA patients was conducted to examine correlations with

the DAS28 scores. Among these, nine lipids showed a significant

correlation with DAS28 (|r| > 0.35). LPC 22:0, LPC-O 16:0, PC (38:6

and 42:9), and PE-P (16:0/20:4, 18:1/18:2, and 18:1/20:4) showed a

negative correlation, whereas SM (d40:3 and d44:5) showed a

positive correlation (Figure 5A). ROC curves based on these nine

lipids differentiated patients with low disease activity or remission

from patients with moderate-to-high disease activity (AUC, 0.730;

95% CI, 0.635−0.825) (Figure 5B).
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Comparison of the serum and urine lipid
profiles of patients with seropositive RA
with those of patients with
seronegative RA

Next, we focused on elucidating lipidomic disparities between

RA patients with seropositive or seronegative disease. There was no

difference in the baseline characteristics, including age, sex, and

disease activity, between the groups (Supplementary Table 1).

Volcano plot analysis identified 12 serum and six urine lipids

showing significant differences between patients with seronegative

and seropositive RA (criteria of p<0.05 and FC>1.2 or < 0.8). In

serum, eight lipids (including PCs and LPCs) were upregulated, and

four (including TG and SM) were downregulated, in patients with

seropositive RA (Figure 6A). In urine, three PCs (34:2, 36:2, 36:3)

and two CARs (12:3, 12:4) were upregulated, and TG (16:0/18:1/

18:2) was downregulated, in patients with seropositive

RA (Figure 6B).
A

B

D E

F G

I

H

C

FIGURE 2

Comprehensive serum and urine lipidome profiles, and screening of differentially-expressed lipids between patients with rheumatoid arthritis (RA),
healthy controls (HC), and patients with hand osteoarthritis (OA). (A) Representative LC-MS chromatograms showing the normalized intensity of
lipids identified in serum and (B) urine lipid extracts from the RA, OA, and HC groups. (C) Distribution of lipid species in serum and urine samples. A
total of 311 annotated serum and 61 urine lipids was categorized into 17 subclasses. (D) OPLS-DA 2D score plots based on the serum lipidome
profiles between the RA and HC groups, and (E) between the RA and OA groups. (F) OPLS-DA 2D score plots based on the urine lipidome profiles
between the RA and HC groups, and (G) between the RA and OA groups. The Q2 values indicate predictive ability derived from random permutation
tests (n=1000). (H) Heatmap of normalized peak intensity shows significant differential expression of serum and (I) urine lipids in RA samples
compared with OA and HC samples.
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LION enrichment analysis of these 12 serum lipids

(Figure 6C) revealed that among five significantly enriched

pathways, the TG lipid pathway was the only upregulated

pathway in patients with seronegative RA. Four lipid
Frontiers in Immunology 07
pathways, glycerophospholipids, glycerophosphocholines,

endoplasmic reticulum, and a headgroup with a positive

charge/Zwitterion, were upregulated in patients with

seropositive RA.
TABLE 2 Differential lipid profiles in serum and urine from RA patients.

Lipids
RA/HC RA/OA OA/HC

VIP Log2 P-value FDR VIP Log2 P-value FDR VIP Log2 P-value FDR

Serum

CAR 14:1 1.59 0.70 1.09 e-2 8.04 e-2 1.37 0.73 1.96 e-2 1.71 e-1 0.61 -0.04 4.49 e-1 9.12 e-1

CAR 16:1 2.16 0.71 5.44 e-4 1.06 e-2 1.64 0.52 8.72 e-3 1.18 e-1 1.00 0.19 2.77 e-1 8.35 e-1

Cer d18:2/24:1 2.68 0.42 8.73 e-6 3.39 e-4 2.27 0.26 2.76 e-3 6.61 e-2 1.38 0.16 1.44 e-1 6.88 e-1

LPC 14:0 1.84 -0.39 5.74 e-3 5.76 e-2 1.75 -0.33 9.39 e-3 1.21 e-1 0.12 -0.05 7.90 e-1 9.84 e-1

LPC 22:0 1.50 -0.27 1.67 e-2 1.04 e-1 2.07 -0.30 1.01 e-2 1.21 e-1 0.29 0.03 8.06 e-1 9.84 e-1

LPC O-16:0 2.41 -0.63 1.60 e-6 9.96 e-5 1.84 -0.26 1.88 e-3 6.49 e-2 1.45 -0.37 6.91 e-2 5.97 e-1

LPC O-18:0 2.76 -0.76 1.15 e-8 3.58 e-6 1.45 -0.27 3.49 e-2 2.26 e-1 2.18 -0.49 3.24 e-3* 1.44 e-1

LPC O-18:3 2.06 -0.70 1.46 e-4 3.79 e-3 2.05 -0.35 4.71 e-3 8.62 e-2 0.82 -0.35 2.42 e-1 8.25 e-1

PC 38:6 1.01 -0.20 3.29 e-2 1.46 e-1 1.82 -0.36 6.45 e-3 1.00 e-1 1.10 0.16 3.35 e-1 8.47 e-1

PC 42:9 1.65 -0.28 1.86 e-2 1.08 e-1 1.79 -0.24 3.35 e-2 2.22 e-1 0.11 -0.04 9.84 e-1 9.93 e-1

PC O-38:7 1.80 0.24 1.20 e-2 8.13 e-2 1.17 0.19 4.44 e-2 2.50 e-1 0.08 0.05 9.51 e-1 9.93 e-1

PC O-42:6 1.79 0.26 5.14 e-3 5.51 e-2 1.51 0.22 3.28 e-2 2.22 e-1 0.11 0.04 6.09 e-1 9.65 e-1

PC O-42:8 1.96 0.36 4.26 e-3 4.90 e-2 1.35 0.23 1.49 e-2 1.41 e-1 0.11 0.13 7.90 e-1 9.84 e-1

PC O-44:6 1.79 0.26 1.16 e-2 8.04 e-2 1.72 0.22 1.77 e-2 1.62 e-1 0.23 0.04 6.23 e-1 9.65 e-1

PE P-16:0/18:1 1.10 -0.28 4.50 e-2 1.77 e-1 1.35 -0.28 2.47 e-2 1.92 e-1 0.00 -0.01 8.38 e-1 9.84 e-1

PE P-16:0/20:4 1.64 -0.56 3.40 e-4 8.13 e-3 1.15 -0.25 2.99 e-2 2.11 e-1 1.60 -0.31 5.18 e-2 5.92 e-1

PE P-18:1/18:2 1.02 -0.51 2.51 e-2 1.22 e-1 1.96 -0.46 6.51 e-4 4.25 e-2 0.24 -0.05 6.68 e-1 9.65 e-1

PE P-18:1/20:4 1.00 -0.39 2.40 e-2 1.22 e-1 1.25 -0.33 2.10 e-2 1.72 e-1 0.21 -0.06 8.22 e-1 9.84 e-1

SM d40:3 1.88 0.30 3.51 e-3 4.37 e-2 2.08 0.34 6.83 e-4 4.25 e-2 0.47 -0.04 4.99 e-1 9.56 e-1

SM d42:3 2.17 0.26 9.35 e-4 1.71 e-2 2.18 0.24 1.72 e-3 6.49 e-2 0.17 0.02 8.70 e-1 9.84 e-1

SM d42:4 1.40 0.27 1.16 e-2 8.04 e-2 2.71 0.46 1.46 e-5 4.54 e-3 1.68 -0.19 5.99 e-2 5.92 e-1

SM d44:5 1.43 0.15 4.62 e-2 1.80 e-1 2.20 0.21 1.72 e-3 6.49 e-2 0.68 -0.05 2.96 e-1 8.35 e-1

SM d44:6 1.54 0.24 7.14 e-3 6.94 e-2 2.58 0.36 4.71 e-5 7.33 e-3 1.05 -0.13 1.50 e-1 6.88 e-1

SM d44:7 1.14 0.21 3.29 e-2 1.46 e-1 1.42 0.20 2.03 e-2 1.71 e-1 0.05 0.00 9.02 e-1 9.92 e-1

SM t39:0 1.49 0.29 1.90 e-2 1.08 e-1 1.56 -0.21 4.19 e-2 2.50 e-1 3.10 0.49 2.58 e-4* 2.68 e-2

TG 18:1/18:2/22:6 1.37 0.36 2.59 e-2 1.22 e-1 1.37 0.38 2.90 e-2 2.11 e-1 0.93 -0.02 9.35 e-1 9.92 e-1

Urine

CAR 12:0 1.18 1.07 3.05 e-5 6.70 e-4 1.21 0.66 7.51 e-3 9.91 e-2 1.16 0.42 1.13 e-1 2.01 e-1

CAR 14:2 1.44 1.64 3.01 e-8 1.99 e-6 1.50 1.08 3.97 e-4 2.62 e-2 1.62 0.57 4.31 e-3 2.84 e-2

SM d42:2 1.32 0.72 8.23 e-3 1.51 e-2 1.27 0.90 6.70 e-3 9.91 e-2 0.87 -0.18 6.23 e-1 7.22 e-1
fronti
This table lists 26 differentially-expressed serum lipid candidates and three urine lipid candidates identified in RA patients but not in HC and OA patients.
Serum and urine lipids with a VIP >1, a p value < 0.05, and an FDR < 0.25 were considered to be biomarker candidates that discriminate RA from HC and OA. The p and FDR values were
calculated using a non-parametric Wilcoxon rank-sum test.
CAR, acylcarnitine; Cer, ceramide; FDR, false discovery rate; LPC, lysophosphatidylcholine; LPC-O, ether-linked lysophosphatidylcholine; PC, phosphatidylcholine; PC O, ether-linked
phosphatidylcholine; PS, phosphatidylserine; PE P, ether-linked phosphatidylethanolamine; SM, sphingomyelin; TG, triacylglycerol; VIP, variable importance in projection;
*Significantly different between patients with OA and HC.
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Discussion

There are far fewer studies of seronegative RA than seropositive

RA; one of the reasons for this is the fear of misclassification (23).

Here, we investigated the lipidome in patients with RA, OA, and

HC, and identified candidate lipid biomarkers that can aid diagnosis

of seronegative RA. Additionally, urinary lipids exhibited diagnostic

potential for distinguishing RA from HC, suggesting a promising

non-invasive diagnostic approach.

The downregulated lipid subclasses identified herein, which

included LPCs, LPC-Os, and PC, in patients with RA were

consistent with those identified in our previous study (16), which

showed that the CAR and SM subclasses were elevated in

inflammatory synovial fluid from RA patients (16). In line with
Frontiers in Immunology 08
these previous results, we found notable increases in CAR and SM

subclasses in sera from RA patients. CAR is a biomarker associated

with mitochondrial function (24). Mitochondrial dysfunction in RA

fibroblast-like synoviocytes activates downstream proinflammatory

pathways (25). Moreover, a recent study showed that disruption of

SM is associated with progression and activity of RA (26). The

results presented herein suggest that increased expression of CAR

and SM in serum reflects their involvement in RA pathogenesis

within the joint microenvironment.

We identified and validated three urine lipid biomarker

candidates that distinguish patients with RA from HC. These

lipids were CAR 12:0, CAR 14:2, and SM d42:2, and all were

upregulated in patients with RA. Although serum and urine

samples were collected on the same day and under the same
A B

D E F

G IH

C

FIGURE 3

Diagnostic performance of serum lipid biomarker candidates based on ROC analysis. (A) Top ten serum lipids predicted by a random forest
multivariate algorithm to distinguish between the RA and OA groups. Random forest analysis was performed using the 26 differentially-expressed
serum lipids, including SM t39:0, LPC 22:0, SM d44:7, and PC O-38.7, listed in Table 1. (B) ROC analysis to identify differences between RA and HC,
and (C) between RA and OA, in the discovery cohort. (D) ROC analysis to identify differences between seropositive RA (SPRA) and OA, (E) between
SPRA and HC, (F) between seronegative RA (SNRA) and OA, and (G) between SNRA and HC in the validation cohort. (H) ROC analysis to identify
differences between SPRA and SLE, and (I) between SNRA and SLE in the validation cohort.
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FIGURE 4

Diagnostic performance of urine biomarker candidates based on ROC analysis. The three differentially-expressed urine lipids CAR 12:0, CAR 14:2, and SM
d42:2 listed in Table 1 were used for ROC analysis of group classifications. (A) ROC analysis to identify differences between RA and HC in the discovery
cohort, (B) between seropositive RA (SPRA) and HC, and (C) between seronegative RA (SNRA) and HC in the validation cohort. (D) ROC analysis to identify
differences between RA and OA in the validation cohort, (E) between seronegative RA (SNRA) and HC and (F) between SNRA and OA in the validation cohort.
A

B

FIGURE 5

Lipids correlated with RA disease activity. (A) Nine representative lipids reflecting disease activity, and (B) model evaluation of RA groups by ROC
analysis of moderate-to high disease activity (MDA/HDA) versus low disease activity or remission (LDA/REM).
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conditions, lipids differentially expressed between RA and OA or

HC were not the same in both samples. This suggests that many

lipids present in serum are not excreted in urine. The CAR and SM

subclasses were abundant in both urine and serum from RA

patients; thus, we assume that CAR and SM are so abundant in

RA patients that a proportion is secreted in the urine. The number

of urine lipids was relatively low, reflecting the lower total lipid

concentration in urine samples compared to plasma samples (27).

Interestingly, LPC-O 18:0 and SM t39:0 showed significant

differential expression not only between patients with RA and OA,

but also between patients with OA and HC. Overall, lipids

differentially expressed between patients with RA and OA showed

greater disparity than those differentially expressed between patients

with OA and HC. OA is a prototype degenerative condition, and yet,

it is accompanied by synovial inflammation, which itself is associated

with radiographic progression (28). CRP levels in OA patients

included in this study were all within the normal range; however,

lipid profiles, which may reflect inflammation, showed different

expression levels in OA patients and HC, although these differences

were not as pronounced as RA. Moreover, the differences in lipid

profiles between OA and HC suggest the potential for detecting OA-

related inflammation using lipid biomarkers.

The levels of nine serum lipids correlated with RA disease

activity: LPC, LPC-O, PC, and PE-P correlated negatively with

DAS28, whereas SM correlated positively. Although this result did

not completely reproduce our previous research findings (16), it

showed a consistent tendency between lipid subclasses and RA

disease activity.

The lipid profiles of patients with seronegative and seropositive RA

were similar, although some lipids showed differential expression. This
Frontiers in Immunology 10
result suggests that lipid metabolism varies according to the presence of

serological markers such as RF or ACPA, not just with the degree of

inflammation. The development of seronegative RA seems to be related

to lower genetic susceptibility and, more critically, to environmental

factors (29). Moreover, monocytes and macrophages are predominant

in seronegative synovitis, whereas lymphoplasmacytic infiltrates are

more pronounced in seropositive synovitis (29). The different lipid

pathways may reflect a different pathogenesis underlying seronegative

RA. TGs were the only upregulated lipid in seronegative RA compared

with seropositive RA. TGs are used for energy storage in adipose tissue

(30). Dyslipidemia, which is considered to be an environmental factor,

increases articular damage by activating the synovial mononuclear

phagocyte system (31). Moreover, dysregulated adipose tissue secretes

adipokines that promote systemic inflammation (32). Thus,

upregulation of TGs in seronegative RA may be associated with

histopathologic characteristics.

Among distinct lipid pathways observed between seropositive

and seronegative RA, upregulation of the ER lipid pathway in

seropositive RA suggests a possible link between lipids and the

serological status of RA. ER is the intracellular organelle responsible

for lipid synthesis and protein folding (33). GRP78/BiP, a

representative ER-resident chaperone, is overexpressed in the

synovial lining and sub-lining layer (34). As an extracellular

protein, GRP78/BiP acts as putative autoantigen in RA (35). The

citrullinated BiP protein is mostly expressed on the surface of

synovium and provides a target for ACPA to activate the NF-ĸB

proinflammatory pathway and TNF secretion (33–36). Thus,

upregulation of ER-related lipids in patients with seropositive RA

compared with seronegative RA may reflect this mode

of pathogenesis.
A B

C

FIGURE 6

Lipid ontology enrichment analysis based on differential expression of serum lipids separating seropositive and seronegative RA. A volcano plot
identified 12 and six lipids differentially expressed between seropositive and seronegative RA in serum (A) and urine (B), respectively. Expression of
five serum lipid-related pathways, shown as a heatmap (C); data were obtained from lipid ontology enrichment analysis of all 12 serum lipids
identified in the seropositive and seronegative RA groups.
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This study has some limitations. First, samples were obtained

from patients attending a real-world outpatient clinic; thus, most

patients were receiving treatment. Lipid profiles are affected by

medications, although we found no statistical difference in

medication use between seronegative and positive RA patients.

Therefore, we cannot exclude potential effects of medications. In

our previous study, we found that the lipid profiles of each group

(classified according to disease activity), was significantly different,

even though they were taking similar medications (16). Therefore,

we believe that DMARDs, glucocorticoids, and NSAIDs have minor

effects on lipid profiles. Second, we recognized the significant

heterogeneity of lipid constituents among individuals within the

same group. It can affect the power of accuracy of lipid biomarker

candidates in the validation cohort. As insoluble lipids are

transported in association with proteins, protein-lipid

connectivity networks provide further insights into lipid and

protein constituents unique to metabolic characteristics (37, 38).

There is a lack of prospective proteomics and lipidomics studies in

RA. Thus, integrated lipidomics and proteomics can enhance the

overall sensitivity and diagnostic accuracy of biomarker candidates

by capturing a broader spectrum of biomolecular changes

associated with seronegative RA.

This study has several strengths. First, the most significant

finding of this study is identification of serum lipid biomarker

candidates that can distinguish seronegative RA from OA. Second,

to the best of our knowledge, this is the first parallel investigation of

the urine and serum lipid lipidomes in patients with RA, enabling

investigation of the relationship between the two different types of

biofluid. Urine is the most noninvasive and readily obtainable

biofluid for diagnosis; therefore, discovery of three lipid

biomarker candidates for diagnosing RA is of some importance.

Third, the lipid biomarker candidates were verified in the validation

cohort comprising patients with seropositive and seronegative RA

or OA, with SLE as an autoimmune disease control. If the lipid

biomarker candidates are further validated in an external validation

cohort, they can be applied in the real-world clinics.

In conclusion, we identified a serum lipidome signature that can

distinguish patients with RA from HC and those with OA,

irrespective of the serological status of RA. Some serum lipid

profiles and pathways differed between patients with seropositive

and seronegative RA, suggesting variations in lipid metabolism

according to serological status. Three urinary lipids had diagnostic

value for differentiating RA from HC.
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