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Yuanzhou He1,2 and Xiansheng Liu1,2*

1Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China, 2Key Laboratory of Pulmonary
Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong
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Background: Chronic obstructive pulmonary disease (COPD) is one of the most

prevalent chronic respiratory diseases and the fourth cause of mortality globally.

Neutrophilic inflammation has a vital role in the occurrence and progression of

COPD. This study aimed to identify the novel hub genes involved in neutrophilic

i nflammat ion in COPD th rough b io in fo rmat i c p red ic t ion and

experimental validation.

Methods: Both the single-cell RNA sequencing (scRNA-seq) dataset

(GSE173896) and the RNA sequencing (RNA-seq) dataset (GSE57148) were

downloaded from the Gene Expression Omnibus (GEO) database. The Seurat

package was used for quality control, dimensions reduction, and cell

identification of scRNA-seq. The irGSEA package was used for scoring

individual cells. The Monocle2 package was used for the trajectory analysis of

neutrophils. The CIBERSORT algorithm was used for analysis of immune cell

infiltration in the lungs of COPD patients and controls in RNA-seq dataset, and

weighted gene co-expression network analysis (WGCNA) correlated gene

modules with neutrophil infiltration. The Mendelian randomization (MR)

analysis explored the causal relationship between feature DEGs and COPD.

The protein–protein interaction (PPI) network of novel hub genes was

constructed, and real-time quantitative polymerase chain reaction (qRT-PCR)

was used to validate novel hub genes in clinical specimens.

Results: In scRNA-seq, the gene sets upregulated in COPD samples were related

to the neutrophilic inflammatory response and TNF-a activation of the NF-kB
signaling pathway. In RNA-seq, immune infiltration analysis showed neutrophils

were upregulated in COPD lung tissue. We combined data from differential and

modular genes and identified 51 differential genes associated with neutrophilic

inflammation. Using MR analysis, 6 genes were explored to be causally associated

with COPD. Meanwhile, 11 hub genes were identified by PPI network analysis, and

all of them were upregulated. qRT-PCR experiments validated 9 out of 11 genes

in peripheral blood leukocytes of COPD patients. Furthermore, 5 genes

negatively correlated with lung function in COPD patients. Finally, a network of

transcription factors for NAMPT and PTGS2 was constructed.
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Conclusion: This study identified nine novel hub genes related to the

neutrophilic inflammation in COPD, and two genes were risk factors of COPD,

which may serve as potential biomarkers for the clinical severity of COPD.
KEYWORDS

bioinformatics, biomarker, chronic obstructive pulmonary disease, Mendelian
randomization, neutrophilic inflammation, single-cell RNA sequencing
1 Introduction

Chronic obstructive pulmonary disease (COPD) is the most

common chronic respiratory disease characterized by persistent

respiratory symptoms and airflow limitation accompanied by

neutrophil infiltration in the airways and overproduction of

mucus (1, 2). COPD is the fourth cause of mortality globally,

imposing a heavy economic and social burden on the world (3).

In China, a cross-sectional survey showed that the general

prevalence of COPD, as defined by spirometry, was 8.6% in

people aged 20 years and over and 13.7% in people aged 40 years

and over. In 2019, about 212.3 million cases of COPD were

recorded worldwide, with an age-standardized prevalence rate of

2,638.2 cases per 100,000 people. COPD led to 3.3 million deaths,

with an age-standardized mortality rate of 42.5 per 100,000

population (4).

In COPD patients, neutrophil populations are increased by

chemotactic mediators released from airway epithelial cells and

macrophages in the lungs (5). However, the cellular and molecular

variations within the systemic immune system of patients in COPD,

particularly neutrophils, the most abundant immune cells in the

circulation are poorly understood. Neutrophils are significant

contributors to the development of COPD due to their

production of cytokines, inflammatory mediators, oxygen-free

radicals, and elastase (6). These substances cause inflammation in

the airways, lung parenchyma, and pulmonary vasculature,

destroying lung tissue (7). Furthermore, the number of

neutrophils in COPD patients negatively correlates with lung

function (8). Although neutrophils play a crucial role in COPD,

the molecular mechanisms require further elucidation.

Recent applications of single-cell RNA sequencing (scRNA-seq)

technologies have uncovered previously unknown molecular and

functional diverse aspects of neutrophils, both in homeostasis and

inflammatory disease (9). Notably, scRNA-seq studies on COPD

have shown a significant underrepresentation of neutrophils.

Therefore, we hypothesized that this innovative technique would

allow us to delineate molecular and phenotypic variations in this

crucial cell type in COPD and identify hub genes involved in

neutrophil inflammation. These markers can act as proxies for

disease progression to develop new treatment interventions.
02
Mendelian randomization (MR) is an epidemiological analysis

method that utilizes genetic variation to identify causal associations

between exposure factors and outcomes (10). Compared to

traditional observational studies, MR is less susceptible to

confounding and reverse causation. In this study, we further

illustrated the causal role of hub genes in the risk of developing

COPD by a two-sample MR approach.
2 Methods

2.1 Data source

The scRNA dataset (GSE173896) and the RNA-sequencing

(RNA-seq) dataset (GSE57148) were obtained from GEO (http://

www.ncbi.nlm.nih.gov/geo). The samples in both datasets were

lung tissues from COPD and control subjects.
2.2 Analysis of single-cell sequencing data

Four COPD (GSM5282538, GSM5282539, GSM5282540, and

GSM5282541) and three control nonsmokers (GSM5282546,

GSM5282547, and GSM5282548) scRNA-seq lung tissue samples

were obtained from GSE173896. The total number of cells in the

COPD and control groups was approximately the same. Afterward,

the Seurat package initially filtered scRNA-seq data to obtain

higher-quality cells (11). For further analysis, cells and genes

must fulfill the three quality control criteria: 1. The detected gene

in at least three cells. 2. Detected at least 200 genes per cell. 3. No

more than 15% of the genes are mitochondrial genes. With quality

control, the overall count of cells in the COPD and control groups

was 11,024 and 11,225, respectively. The canonical correlation

analysis (CCA) algorithm integrated the seven samples and

removed batch effects. Then, 3,000 highly variable genes were

chosen for analysis, and the number of principal components

(PCs) was programmed to 50 to get clusters of cells, which were

visualized as a “UMAP” plot (12). All cells were subsequently

labeled by the marker genes for each cell type. FindMarker was

used to identify differential genes.
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2.3 Trajectory analysis and gene set
enrichment analysis

The Monocle2 was applied to perform single-cell trajectory

analysis (13). All neutrophil objects were extracted, and the

DDRTree method was used to reduce the dimension of cells.

Then, the reduce Dimension function was implemented to

determine the type of cell differentiation state. Finally, the “plot

cell trajectory” function was employed to visualize the

differentiation trajectory of cells.

Bioinformatics (https://www.bioinformatics.com.cn/) website

was an open online platform for data processing and

visualization. Gene Set Enrichment Analysis (GSEA) was used to

identify enriched GO terms and KEGG associated with cell

differentiation state. Sorting all of the differential genes according

to logFC and GSEA was conducted on the website.
2.4 Identification of significantly related
pathways in all cells

The level of gene set enrichment in each cell was assessed using

the irGSEA package. This package was used to score individual cells

and to generate numerous gene set enrichment score matrices. The

half vlnplot and density scatterplot visualized some specific

enriched pathways.
2.5 Immune infiltration analysis

We calculated the extent of immune cell infiltration in COPD

and control lung tissue samples in GSE57148 by using the

CIBERSORT algorithm. This algorithm set the PERM to 1000

and set the cutoff to p < 0.05 (14). The Pheatmap package created

a heat map of different immune cells, and the Vioplot package

displayed the abundance. A correlation heat map was created to

visualize the correlation among infiltrating immune cells.

Furthermore, the correlation of critical genes with the differential

immunity cells was analyzed.
2.6 WGCNA in GSE57148

Weighted gene co-expression network analysis (WGCNA)

was performed to construct modules with similar expression

pattern genes on GSE57148 (15). Firstly, outlier samples and

low-expressed genes were eliminated. Secondly, the adjacency

matrix was built based on an optimal soft threshold and

converted into a topological overlap matrix. Then, a hierarchical

clustering tree was constructed to classify the highly co-expressed

genes into the same module. Finally, COPD and neutrophils were

identified as characteristics to compute the correlation between

gene modules and traits.
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2.7 DEGs detection in GSE57148

COPD samples (n = 96) and normal samples (n = 90) in the

GSE57148 dataset were analyzed using the limma package to screen

for differentially expressed genes (DEGs), with an adjusted p-value

of < 0.05 and | log2(fold change, FC) | > 0.4 as thresholds.
2.8 Functional enrichment

GO analysis was a popular approach for massive functional

enrichment, encompassing biological process (BP), cellular

component (CC), and molecular function (MF). KEGG was a

globally accessible database storing essential data on genomes,

biological pathways, diseases, and drugs. GO terms and KEGG

pathway analysis were annotated for gene function by the

clusterProfiler package, and the top-ranked results were visualized (16).
2.9 Mendelian randomization analysis
between genes and COPD

TheMR analysis was to investigate the causality betweenDEGs and

the risk of COPD, where the instrumental variables (IVs) were single

nucleotide polymorphisms (SNPs). The cis-eQTL data of DEGs were

obtained from eQTLGen, and GWAS statistics for COPD outcome

were obtained from integrated epidemiology unit (IEU) database (ukb-

b-20464) (17, 18). The cis-eQTL data were used as exposure factors and

SNPs with P-value < 5 × 10–8 were used for the MR analysis. If no

suitable SNPs were available at the stringent threshold, the threshold

was loosened to 5 × 10–6. There were still no relevant SNPs, so this cis-

eQTL data was not used for MR analysis. All SNPs were identified 100

kb upstream and downstream of the corresponding gene location, with

a threshold for Linkage disequilibrium (LD) of R2 < 0.2 and a physical

distance threshold of 250 kb.

The TwoSampleMR package performed MR analysis. MR

estimates were calculated for each SNP using the Wald ratio method.

If more than one SNP was available, MR estimates were weighted by

the inverse variance of the ratio estimates (inverse variance weighted,

IVW). Cochran’s Q statistic was used to test for heterogeneity (19).

When the number of SNPs was no less than three, MR-Egger

regression evaluated potential horizontal pleiotropy (20).
2.10 PPI analysis

The protein-protein interaction (PPI) network was built on the

STRING online site (21). An interaction score greater than 0.4

(medium confidence score) was considered meaningful. Then, the

PPI network was further analyzed in Cytoscape. CytoHubba, a

Cytoscape plugin that discovered hub terms and sub-networks from

interaction groups, was used to analyze PPI network hub genes. The

top 10 genes were confirmed using the maximal clique centrality

(MCC) computing method with the Cytohubba plugin.
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2.11 Quantitative real-time polymerase
chain reaction in leukocytes

Peripheral blood samples in this study were obtained from

Tongji Hospital, Wuhan, China. All subjects signed an informed

consent form. The Ethics Committee of Tongji Hospital, Huazhong

University of Science and Technology had approved this research.

Peripheral blood was centrifuged to obtain blood cells, which were

treated with erythrocyte lysis buffer (TBD, China) to obtain leukocytes

for the assay. The total RNA of leukocytes was extracted with RNAiso

plus kit (Takara, Japan), followed by reverse transcription to cDNA

using cDNA RT-PCR kit (Takara, Japan). qRT-PCR was performed

using a CFX Connect Real-Time System (Bio-Rad, USA) with SYBR

Premix Ex Taq (Takara, Japan) and the specific primers. The primers

(Sangon Biotech, China) were shown in Table 1:
2.12 Regulatory network construction

The NetworkAnalyst online tool was used to construct a gene

regulation network of the hub gene–transcription factor interaction

network. The transcription factor data were obtained from the

JASPAR database to build the network (22, 23). Subsequently, the

results were visualized using Cytoscape.
2.13 Statistical analysis

All data was analyzed by R (version 4.1.3) and GraphPad Prism 8

Software. For normally and non-normally distributed data, we used

an unpaired t-test and a non-parametric test to compare differences

between groups, respectively. Pearson correlation analysis was used to

estimate the correlation. Unless explicitly stated, the p-value less than

0.05 was considered statistically significant.
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3 Results

3.1 Quality control and dimension
reduction in scRNA-seq GSE173896

The workflow of this study was presented in Figure 1. A quality

control procedure was performed on the scRNA-seq dataset. As

shown in Figure 2A, specific low-quality cells were excluded based on

their gene expression profile to avoid misinterpretation of the data.

The mitochondrial proportion was used as a threshold to filter out

low-quality cells. The CCA algorithm integrated the datasets from

four COPD patients and three controls (Figure 2B). According to the

expression level of marker genes (Figure 2C), all cells were classified

as 16 clusters and annotated into 14 cell types based on the marker

genes: T cells (marked with CD3D, CD2, and CD69), neutrophils

(FCN1 and S100A9), dendritic cells (TGFBI and HLA-DMB), mast

cells (KIT and TPSAB1), NK cells (CCL5, NKG7, GNLY, and

CD247), B cells (CD79A, CD79B, and IGHG3), macrophages

(MARCO, MSR1, and MRC1), alveolar type 1 cells (AGER, KRT7,

and TSPAN13), alveolar type 2 cells (SFTPD, SFTA2, SLC34A2, and

ABCA3), club epithelial cells (BIRC5, KRT19, and CXCL17), ciliated

epithelial cells (CAPS, RSPH1, PIFO, and TSPAN1), endothelial cells

(CALCRL and RAMP2), fibroblasts (COL1A2 and COL6A2), and

smooth muscle cells (CALD1, TAGLN, and NOTCH3)(Figure 2D).
3.2 Single-cell rank-based gene set
enrichment analysis

According to the hallmark gene sets collected from the MsigDB

database, we used the irGSEA package to calculate each cell’s gene

set enrichment score. Overall, there were two hallmark gene sets

upregulated in COPD samples: INFLAMMATORY-RESPONSE

and TNFA-SIGNALING-VIA-NFKB. At the same time, the two
TABLE 1 Primer sequences for validating genes.

Gene name Primer sequence (5’-3’)

Forward Reverse

ACTB AGAAAATCTGGCACCACACCT AGAAAATCTGGCACCACACCT

IL1B GCCCTAAACAGATGAAGTGCTC GAGATTCGTAGCTGGATGCC

MCL1 TAACAAACTGGGGCAGGATT TCCCGTTTTGTCCTTACGAG

PTGS2 CTGGCGCTCAGCCATACAG CGCACTTATACTGGTCAAATCCC

CXCL2 GGCAGAAAGCTTGTCTCAACCC CTCCTTCAGGAACAGCCACCAA

NAMPT ATCCTGTTCCAGGCTATTCTGT CCCCATATTTTCTCACACGCAT

CDKN1A CCCCATATTTTCTCACACGCAT GGTTCTGACGGACATCCCCA

EGR1 AGCAGCACCTTCAACCCTCAGG GAGTGGTTTGGCTGGGGTAACT

SOD2 CTGGACAAACCTCAGCCCTAAC AACCTGAGCCTTGGACACCAAC

CXCL3 TTCACCTCAAGAACATCCAAAGTG TTCTTCCCATTCTTGAGTGTGGC

TNFAIP3 CTCAACTGGTGTCGAGAAGTCC TTCCTTGAGCGTGCTGAACAGC

ZFP36 GACTGAGCTATGTCGGACCTT GAGTTCCGTCTTGTATTTGGGG
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gene sets were significantly downregulated for control samples

(Figure 3A). Next, the same operation was on different types of

cells. The two gene sets were both upregulated in neutrophils and

DCs (Figure 3B). INFLAMMATORY_RESPONSE gene set was

significantly enriched in neutrophils (Figure 3C and Figure 3D).
3.3 Enrichment analysis and pseudotime
analysis of neutrophils in the single-cell
dataset GSE173896

Neutrophilic inflammation predominates in the pathogenesis of

COPD. The FindMarkers method was employed to identify genes

differentially expressed in neutrophils from COPD patients and

controls, revealing many inflammatory and immune responses-

associated biological processes in COPD (Supplementary Figure 1).

Thus, we performed a simulation analysis on the cell trajectory

differentiation of all neutrophils. It was shown that the darker the

blue color, the earlier the cells differentiated, indicating that the

neutrophils differentiate from the left to the right with the

differentiation of time, and the latest differentiated cell was

represented by the lightest blue (Figure 4A). Neutrophils labeled

with different colors had three differentiated states, with the red one

on the left being the earliest differentiated type (Figure 4B). The

differentiation process between COPD and control neutrophils was

then investigated, and the results showed that COPD neutrophils

differentiated later, whereas control neutrophils differentiated earlier
B

C D

A

FIGURE 2

Quality control and dimension reduction in scRNA-seq GSE173896. (A) The proportion of mitochondrial genes was adjusted to ensure the quality of
cell samples. The proportion of mitochondrial genes per cell was less than 15%. (B) UMAP dimensional plot after adjusting for batch effects. (C) Dot
plot of z-scores for marker gene expression values. Dot size reflected the percentage of cells with gene expression; color corresponded to the
magnitude of gene expression. (D) UMAP of 14 cell types in scRNA-seq GSE173896.
FIGURE 1

Flow chart of this study.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1410158
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1410158
(Figure 4C). All the cells analyzed were neutrophils (Figure 4D). The

GSEA was conducted in neutrophils of different differentiation states

to investigate the relationships between pseudotime and gene

functions and showed that the latest differentiated neutrophils were

mainly associated with the upregulation of inflammatory and

immune responses (Figures 4E–G, Supplementary Figure 2).
3.4 Immune cells infiltrating analysis
in GSE57148

The RNA sequencing dataset GSE57148 included 98 COPD and

91 normal samples. The cell type proportions in each sample were

calculated by the CIBERSORT algorithm, and different colors

represented different immune cells (Figure 5A). There were

differences in the proportions of four types of immune cells,

including neutrophils, M2-type macrophages, resting NK cells,

and T follicular helper cells, in COPD samples and normal

samples. Furthermore, the proportion of neutrophils was

significantly increased in COPD samples (Figure 5B). In

Figure 5C, the correlation heatmap indicated that neutrophils

correlated negatively with Dendritic cells resting (p<0.01,

r= -0.217), CD8 T cells (p<0.01, r= -0.216), T follicular helper

cells (p<0.01, r= -0.305), NK cells activated (p<0.01, r= -0.191), and

M2 type macrophages (p<0.01, r= -0.246). Conversely, a positive

correlation between neutrophils and three cells was demonstrated,
Frontiers in Immunology 06
including Dendritic cells active (p<0.01, r= 0.236), monocytes

(p< 0.01, r= 0.251), and Mast cells activated (p<0.01, r= 0.289).
3.5 Weighted gene co-expression network
analysis in GSE57148

As shown in Figure 6A, the clustering tree for samples screened

out three abnormal samples, and 186 samples (96 COPD and 90

normal samples) remained for further analysis. Sequentially, based

on the scale-free network, the best soft-threshold power of 14 was

chosen. (Figure 6B). These genes were clustered into 12 modules

based on their similar co-expression characteristics (Figure 6C).

The correlation analysis of modules and traits (neutrophils and

COPD) illustrated that the orangered4 module and lightssteelblue1

module were significantly associated with neutrophils (p<0.001,

r= 0.5; p<0.001, r= -0.48) and COPD (p<0.001, r= 0.31; p<0.001,

r= -0.46) (Figure 6D). Therefore, the genes in the orangered4

module and lightssteelblue1 module were selected as essential

genes relevant to neutrophils for further analysis.
3.6 Identification of DEGs

827 DEGs were identified between COPD and normal samples in

GSE57148, including 390 upregulated and 437 downregulated genes
B

C

D

A

FIGURE 3

Single-cell rank-based gene set enrichment analysis. (A) Heatmap plot of co-upregulated or co-downregulated gene sets per group in RRA.
“INFLAMMATORY-RESPONSE” and “TNFA-SIGNALING-VIA-NFKB” were upregulated in the COPD group. (B) Heatmap plot of co-upregulated or co-
downregulated gene sets per cell type in RRA. “INFLAMMATORY-RESPONSE” and “TNFA-SIGNALING-VIA-NFKB” were upregulated in neutrophils
and DCs. (C) Half vlnplot of “HALLMARK-INFLAMMATORY-RESPONSE” in Ucell among clusters. (D) Density scatterplot of “HALLMARK-
INFLAMMATORY-RESPONSE” in Ucell on UMAP plot. RRA, robust rank aggregation.
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(Supplementary Figure 3). Venn diagrams were performed to obtain

the DEG profiles intersection of scRNA-seq DEGs, RNA-seq, and

WGCNA model genes, and 33 upregulated and 18 downregulated

feature genes in total were remarkably expressed differentially in all 3

groups (Figures 7A, D, Supplementary Table 1). KEGG pathway

analysis revealed that the upregulated DEGs were mainly enriched in
Frontiers in Immunology 07
the IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF

signaling pathway. Meanwhile, the downregulated DEGs were

primarily enriched in oxidative and collecting duct acid secretion

(Figures 7B, E). The GO analysis showed that the upregulated DEGs

were enriched in smooth muscle proliferation, secretory, and cytokine

activity (Figure 7C). The downregulated DEGs were enriched in
B

C D

E F

G

A

FIGURE 4

Pseudotime analysis and enrichment analysis of neutrophils in scRNA-seq GSE173896. (A) Timing differences in cell differentiation. Darker blue
represented an earlier stage of differentiation, while lighter blue indicated a later stage of differentiation. This served as a starting point for
subsequent analysis. (B) Three stages of neutrophil differentiation. State 1 was the earliest stage of differentiation, and state 2 was the latest.
(C) Differences in differentiation between COPD neutrophils and normal neutrophils. The turquoise represented control, and the red represented
COPD. (D) All cells analyzed were neutrophils. (E) GSEA of DEGs on KEGG in state.1. (F) GSEA of DEGs on KEGG in state.2. (G) GSEA of DEGs on
KEGG in state.3.
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B C

A

FIGURE 5

Immune cells infiltrating analysis. (A) The enrichment fraction of 22 types of immune infiltrating cells in the COPD and normal samples. (B) Box plot
of 22 types of immune infiltrating cells in the COPD and normal samples. Normal samples were denoted by red, whereas COPD samples were
denoted by green. (C) The heat map of the correlation among immune infiltrating cells. The color shade of the squares indicated the strength of the
connection; purple indicated a positive correlation, while green indicated a negative correlation. The darker the color, the stronger the correlation;
*P < 0.05, **P < 0.01.
B

C D

A

FIGURE 6

Weighted gene co-expression network analysis in GSE57148 dataset. (A) Sample clustering of GSE57148 to detect outliers. Three outliers were
excluded, and all remaining clusters were selected for further analysis. (B) The optimal soft-threshold power. The threshold was 14. (C) Clustering
dendrograms of genes based on a dissimilarity measure (1-TOM). Different modules were produced and shown in different colors by aggregating
genes with strong correlations into the same module. (D) Correlations between module eigengenes and sample traits evaluated module-trait
associations. The lightssteelblue1 module showed a significant negative correlation with neutrophils (COR = -0.48, P < 0.001) and a significant
negative correlation with COPD (COR = -0.46, P < 0.001). The orangered4 module was significantly positively correlated with neutrophils
(COR = 0.5, P < 0.001) and positively correlated with COPD (COR = 0.31, P < 0.001). Genes in the lightssteelblue1 and orangered4 modules were
labeled as WGCNA-hub genes.
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response to the metal ion, late endosome, and proton transmembrane

transporter activity. (Figure 7F).
3.7 MR analysis between feature DEGs
and COPD

The MR analysis was used to explore the relationship between

feature DEGs and COPD to verify whether the relationship was causal
Frontiers in Immunology 09
or correlative. Among these 51 feature DEGs, 9 genes were eliminated

without suitable SNPs, and 2 genes had SNPs with P-value < 5 × 10–6.

Table 2 and Supplementary Table 2 displayed the causal effect of each

feature DEG on COPD. IVW analysis reveals that NAMPT

(OR=1.0102, p=0.0064), PTGS2(OR=1.0139, p=0.0161), SLC2A3

(OR=1.0052, p=0.0014) and TRIB1(OR=1.0172, p=0.0405) levels

were associated with an increased risk of COPD, while CDKN1A

(OR=0.9962, p=0.0169), and CSRNP1(OR=0.9933, p=0.0384) were

related to a decreased risk of COPD. Information on SNPs and other
B

C

D

E

F

A

FIGURE 7

Identification of DEGs and enrichment analysis of DEGs. (A, D) The intersection of single cell DEGs, WGCNA, and bulk RNA sequencing DEGs in
Venn diagram. (B, C) GO and KEGG results of upregulated DEGs. The x-axis indicated the enrichment score associated with the terms, while the
y-axis indicated the pathway terms. (E, F) GO and KEGG analyses of downregulated DEGs.
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MR estimates for 6 genes was shown in Supplementary Table 3. The

Cochran’s Q test revealed no heterogeneity in these gene results.

MR-Egger regression analysis indicated no horizontal pleiotropy in

the results of these genes (Table 2).
3.8 PPI network analysis and identification
of hub genes

The protein–protein interaction (PPI) network of 51 feature

DEGs was constructed based on the STRING online database

(Figure 8A). The interaction networks were visualized in

Cytoscape and contained 25 nodes and 47 edges. Furthermore,

we implemented the cytoHubba plugin to search for the most

significant hub genes by the maximal clique centrality algorithm

(Figure 8B). The top 10 hub genes were identified, including IL1B,

CXCL2, PTGS2, MCL1, SOD2, EGR1, CDKN1A, CXCL3, NAMPT,

TNFAIP3, and ZFP36, and both NAMPT and MCL1 ranked 10th.

The 11 hub genes were all upregulated genes. Correlation analysis

revealed that these hub genes had a correlation with various

immune cells, and all of them were significantly positively

correlated with neutrophils (all P<0.05) (Figures 8C–M).
3.9 Validations of the hub genes

27 COPD patients and 27 healthy individuals provided

peripheral blood samples. Since neutrophils make up about 70%

of all leukocytes in peripheral blood, peripheral blood leukocytes

were isolated from blood samples. The qRT-PCR in leukocytes was

performed to verify hub genes. In Table 3, the clinical characteristics

of two group subjects were compared. Compared with normal

subjects, the mRNA levels of IL1B, CXCL2, PTGS2, MCL1,

SOD2, EGR1, NAMPT, CXCL3, and ZFP36 were markedly

higher in COPD patients (Figure 9). Moreover, correlation

analysis revealed that IL1B, CXCL2, SOD2, NAMPT, and CXCL3

were inversely correlated with lung function in COPD patients

(r = -0.4374, p<0.05; r = -0.5292, p<0.01; r = -0.4537, p<0.05;

r = -0.5617, p<0.01; r = -0.5709, p<0.01; respectively) (Figure 10).
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3.10 The regulatory network construction
of NAMPT and PTGS2

The intersection of 6 genes identified by Mendelian

randomization and 9 genes elevated in peripheral blood

leukocytes of COPD patients identified 2 more crucial genes,

NAMPT and PTGS2 (Figure 11A). Furthermore, NAMPT was

negatively correlated with lung function in COPD patients. Using

the JASPAR database, a network of transcription factors (TFs) for

two genes was constructed. TF network showed that 10 TFs were

obtained, of which 2 were GATA3 and FOXL1 with degree ≥

2. (Figure 11B).
4 Discussion

COPD remains a significant global health challenge. Despite the

best current therapies, patients with COPD have an alarmingly high

mortality rate and often have limited therapeutic options. In 2019,

the number of deaths and DALYs due to COPD globally was 3.28

million and 74.43 million, respectively (4). Therefore, it is critical to

identify key molecular targets of cellular mechanisms in COPD. As

demonstrated by numerous RCT trials (e.g., pivotal clinical trials of

roflumilast and dupilumab, etc.), identifying these targets can

greatly elucidate therapeutic regimens for individual patients,

thereby facilitating the development of precision medicine (24).

Neutrophil inflammation plays a central role in the

pathophysiology of COPD and persists in the entire disease

process, but targets for its action remain relatively scarce, making

the identification of new biomarkers of neutrophilic inflammation

critical to developing effective therapeutic options for COPD.

Neutrophils and their products are considered to be significant

contributors to the inflammatory changes in the airways of COPD

patients (25). During the development of COPD, neutrophils

become overstimulated, and their activation and inhibition

pathways are altered at the molecular level. This leads to

increased infiltration, prolonged lifespan, heightened activation,

and increased necrosis. These changes result in elevated levels of

neutrophil products in the lungs, which can cause lung injury (26).
TABLE 2 MR analysis between feature DEGs and COPD.

Gene Nsnp Method P.value OR (95% CI) Heterogeneity_P.val Pleiotropy_P.val

CDKN1A 10 Inverse variance weighted 0.0169 0.9962(0.9931 to 0.9993) 0.6403 0.9498

CSRNP1 5 Inverse variance weighted 0.0384 0.9933(0.987 to 0.9996) 0.7111 0.9379

NAMPT 5 Inverse variance weighted 0.0064 1.0102(1.0028 to 1.0175) 0.8456 0.4242

PTGS2 1 Wald ratio 0.0161 1.0139(1.0026 to 1.0254)

SLC2A3 8 Inverse variance weighted 0.0014 1.0052(1.002 to 1.0083) 0.8848 0.5695

TRIB1 1 Wald ratio 0.0405 1.0172(1.0007 to 1.0338)
P.value<0.05 was considered statistically significant
OR, odds ratio; CI, confidence interval.
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Furthermore, the quantity and product of neutrophils in the blood

and lung tissue correlate with the severity of the disease, as reflected

in lung function (e.g., degree of airway obstruction and decline in

FEV1) (26).

In this study, the scRNA-seq analysis of lung tissues from

COPD patients and normal controls revealed that the genes in

the inflammatory response pathway were significantly upregulated

and enriched in neutrophils in COPD. In trajectory and enrichment

analysis, COPD neutrophils differentiated later than from normal
Frontiers in Immunology 11
controls, implying a series of changes in the neutrophil state during

the development of COPD. The latest differentiated neutrophils

were mainly associated with the upregulation of inflammatory and

immune responses, suggesting the reciprocal relations among

neutrophils, inflammation, and COPD. It had been found that in

the development of COPD, neutrophils became over-infiltrated,

which led to the accumulation of large amounts of inflammatory

modulators, including proteases associated with tissue damage and

chemoattractants that recruit additional inflammatory cells (27). At
B

C D E F

G H I J

K L M

A

FIGURE 8

The PPI networks and hub genes were analyzed using the STRING database and Cytoscape software. (A) PPI network display. (B) Top 10 hub genes
explored by CytoHubba. (C–M) The correlation of 11 hub genes (IL1B, CXCL2, MCL1, SOD2, EGR1, PTGS2, CDKN1A, ZFP36, NAMPT, CXCL3,
TNFAIP3) with the immune cells. The dot size represented the degree of correlation between the gene and the immune cell. The dot color indicated
the P-value; the greener the color, the smaller the P-value.
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the same time, neutrophils in COPD responded differently to many

of the chemical signals regulating inflammation and immune

responses compared to healthy individuals (26). To identify the

underlying hub genes in the neutrophilic inflammation of COPD,

immune infiltration analysis, WGCNA, and differential expression

analysis were performed, and 51 neutrophil-related DEGs were

selected. Next, 6 genes causally associated with COPD were

identified by Mendelian randomization analysis, of which 4 genes

were risk factors for COPD and 2 genes were protective factors.

Meanwhile, 11 hub genes were identified by PPI analysis, 9 of which

were markedly upregulated in COPD patients. Moreover, 5 genes

were inversely correlated with lung function in patients with COPD.

Finally, establishing a regulatory network of transcription factors
TABLE 3 Overall subjects characteristics.

Normal COPD P-value

Subjects 27 27

Age, y 61.70 (± 5.876) 64.26 (± 8.596) 0.2079

Male, % 27 (100%) 27 (100%)

BMI 23.23 (± 3.916) 21.74 (± 3.698) 0.0952

FEV1/FVC 41.13 (± 11.13)

FEV1% pred 46.18 (± 17.38)
Data are shown as percentages and means ± SD.
BMI, Body mass index; FEV1, Forced expiratory volume in the first second.
FVC, Forced vital capacity.
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FIGURE 9

Experimental verification of the hub genes. The relative mRNA expressions of 11 genes in the COPD subjects and normal subjects were shown,
including (A) IL1B, (B) CXCL2, (C) MCL1 (D) SOD2, (E) EGR1, (F) PTGS2, (G) CDKN1A, (H) ZFP36 (I) NAMPT, (J) CXCL3, (K) TNFAIP3. Results were
expressed as mean ± SD; n=27 for normal and n=27 for COPD; **P < 0.01, ***P < 0.001 ns, no significance.
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related to NAMPT and PTGS2 could help explore important

mechanisms of neutrophilic inflammation in COPD.

MCL-1 and EGR1 can further exacerbate airway inflammation in

COPD. MCL-1 is an anti-apoptotic protein of the BCL-2 family (28).It

is believed to prevent neutrophil apoptosis by binding to pro-apoptotic

BCL-2 proteins, resulting in prolonged inflammation in the lung and

airway (29).EGR-1 is an instant early responsive gene encoding a zinc

finger transcription factor upregulated in mature neutrophils (30). It
Frontiers in Immunology 13
has been found to be consistently upregulated in advanced

emphysema, exacerbating cigarette smoke-induced lung

inflammation (31).IL1B and CXCL2 may also have an association

with lung function in COPD. IL-1B, a member of the interleukin-1

family involved in neutrophil recruitment, may serve as a biomarker of

persistent neutrophilic airway inflammation and potentially persistent

exacerbations of COPD (32). It also has a significant negative

correlation with lung function, such as predicted FEV1 percent and
B C
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A

FIGURE 10

The correlation analysis between hub genes and lung function in COPD patients. The lung function was negatively associated with (A) IL1B
expression and (B) CXCL2 expression, (C) SOD2 expression and (D) NAMPT expression, (E) CXCL3 expression, whereas no significant associations
with the expressions of (F) PTGS2, (G) EGR1, (H) MCL1 and (I) ZFP36.
BA

FIGURE 11

The regulatory network construction of NAMPT and PTGS2. (A) The intersection of MR-genes and validation-genes. Two hub genes (NAMPT and
PTGS2) were identified. (B) Interaction network of TFs and genes for the two hub genes.
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FEV1/FVC ratio (33). CXCL2 is a member of the chemokine CXC

family, which can bind to CXCR2 on the surface of neutrophils to

promote neutrophil migration (34). Up-regulation of CXCL2

expression promotes lung inflammation and increases airflow

obstruction in COPD (35, 36). SOD2, also known as manganese

superoxide dismutase, is a mitochondrial antioxidant enzyme that

plays a bidirectional role in COPD (37). One study found that sputum

SOD activity is a marker of COPD exacerbation, while another study

concluded that SOD2 ameliorates mitochondrial oxidative stress and

cellular damage in COPD (38, 39).ZFP36 encodes triple trehalose

(TTP), which transcriptionally inhibits many pro-inflammatory factors

associated with COPD and may regulate neutrophil homeostasis

(40).The up-regulation of ZFP36 expression was associated with a

reduction in lung inflammation, airway remodeling, and emphysema-

like alveolar enlargement, which may suggest a protective role for

ZFP36 in the development of COPD (41). Similar to CXCL2, CXCL3 is

also an inflammatory factor of the CXC chemokine family and can

bind to CXCR2 on the surface of neutrophils (42, 43). A previous

scRNA-seq study on lung tissue in septic lung injury revealed that the

Neutrophil-CXCL3-High subpopulation was closely related to the

hyperinflammatory response (44). So far, the function of CXCL3 in

COPD is poorly understood. This study may offer a new insight into

the role of CXCL3 in the neutrophilic inflammation of COPD.

Among the 9 hub genes, NAMPT and PTGS2 were further

confirmed by MR analysis as risk factors for COPD. NAMPT is a

specific enzyme with cytokine-like characteristics that have been

shown to play a substantial role in inflammation, cellular

metabolism, and immune regulation (45, 46). Intracellularly, it

catalyzes the conversion of nicotinamide into NAD. However,

extracellularly, it acts as a cytokine to convey various signals,

including promoting myeloid cell differentiation/polarization,

activating inflammatory vesicles, and secretion of pro- or anti-

inflammatory cytokines (47). During G-CSF-stimulated

granulopoiesis, NAMPT was essential for regulating neutrophil

development and functionality (48, 49). In tumors, breast tumor

derived NAMP activated SIRT1 in neutrophils, which polarized

neutrophils into tumor-associated aged neutrophils, thus

promoting tumor metastasis (50). In addition, NAMPT

functioned as a novel inflammatory cytokine in LPS-stimulated

sepsis and exerted inhibitory effects on the apoptosis of neutrophils

by decreasing the activity of caspase-3 and caspase-8 (51). NAMPT

has also been reported to regulate CXCL2 to recruit neutrophils to

exacerbate neutrophil-induced tissue injury in myocardial

infarction (52). Meanwhile, intracellular NAMPT exerts its

function in LPS-induced neutrophil extracellular traps-related

diseases (53). In this study, NAMPT was significantly upregulated

in COPD neutrophils and may be involved in neutrophil

inflammation in the development of COPD through the related

mechanisms, which may be helpful in the diagnosis and treatment

of COPD.

PTGS2, also known as cycloxygenase-2 (COX-2), is a key

enzyme in promoting the rate-limiting step of prostaglandin

synthesis (54). PTGS2 and its derivative prostaglandin E2 (PGE2)

have been found to play an essential pro-inflammatory role in

various diseases (55). In COPD, PGE2, the derivative of PTGS2,
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promotes the aggregation of neutrophils in the lungs, which can

further increase the ability of neutrophils to adhere to human

airway epithelial cells, thus exerting a pro-inflammatory effect

(56). Meanwhile, activated neutrophils in COPD patients produce

large amounts of reactive oxygen species (ROS), leading to the

oxidation of arachidonic acid, which can be converted to

prostaglandins through the action of COX2 and participate in the

inflammatory response in COPD (57). In obese women, vascular

inflammation is strongly associated with neutrophil infiltration, and

COX-2 staining is highly correlated with the neutrophil marker

CD66b staining, suggesting that COX2 may be associated with

neutrophil inflammation (58). During acute inflammation, when

neutrophils are exposed to bacterial endotoxins, cytokines, and

hormones, they evoke activation of mitogen-activated protein

kinase (MAPK) and nuclear factor-kB (NF-kB), which in turn

promotes the expression of COX-2 and production of PGE2 (59),

which also has a vital role in the regulation of inflammatory

nociceptive hypersensitivity (60). Meanwhile, it has been found

that bioactive implants can recruit neutrophils and trigger

neutrophil extracellular traps during osseointegration, which are

effective in promoting PGE2 production (61). All these facts suggest

that PTGS2 is closely related to neutrophil inflammation, and the

mechanism of PTGS2-induced neutrophil inflammation in COPD

needs further exploration.

Although this study reveals significant findings, there are

limitations. First, the number of cases we studied was relatively

insufficient. This needs to be validated in a larger clinical sample.

Secondly, we only studied the mRNA expression levels of the hub

genes in peripheral blood leukocytes, and further validation is

needed in vivo and in vitro, including the protein levels of the

hub genes and their mechanisms in neutrophils in COPD

development. Nevertheless, our study may provide new marker

genes for neutrophilic inflammation in COPD. It may also provide a

theoretical basis for further research.
5 Conclusion

In this research, 9 hub genes associated with neutrophil

inflammation were identified by analyzing scRNA-seq and RNA-

seq data in COPD and control lung tissue samples, of which 5 genes

were negatively correlated with lung function in COPD patients.

NAMPT and PTGS2 were further confirmed as risk factors for

COPD by MR analysis, providing a novel way to detect neutrophilic

inflammation and lung function in COPD. Therefore, the present

study offers an idea for further research into the mechanisms of

neutrophilic inflammation in COPD, which could lead to the

development of new therapeutic targets.
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SUPPLEMENTARY FIGURE 1

(A) KEGG results of upregulated DEGs in neutrophils. The size of the bubble
represented the number of enriched genes. The enriched pathways were

connected to their corresponding genes with the same colored lines. Each
gene’s fold change was colored according to the legend. (B) GO results of

upregulated DEGs in neutrophils. The x-axis indicated the enrichment score
associated with the terms, while the y-axis indicated the pathway terms. (C)
KEGG results of downregulated DEGs in neutrophils. (D) GO results of

downregulated DEGs in neutrophils.

SUPPLEMENTARY FIGURE 2

Enrichment analysis of DEGs of three stages of neutrophil differentiation in

scRNA-seq GSE173896. (A) GSEA of DEGs on GO in state.1. (B) GSEA of DEGs
on GO in state.2. (C) GSEA of DEGs on GO in state.3.

SUPPLEMENTARY FIGURE 3

Volcano plot showing DEGs in GSE57148. Blue represented low-expressed

genes in COPD lung tissues, red represented high-expressed genes in COPD
lung tissues, and black represented genes with no significant difference.
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