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Immunosenescence refers to the age-related progressive decline of immune

function contributing to the increased susceptibility to infectious diseases in older

people. Neurocryptococcosis, an infectious disease of central nervous system (CNS)

caused by Cryptococcus neoformans (C. Neoformans) and C. gattii, has been

observed with increased frequency in aged people, as result of the reactivation of a

latent infection or community acquisition. These opportunistic microorganisms

belonging to kingdom of fungi are capable of surviving and replicating within

macrophages. Typically, cryptococcus is expelled by vomocytosis, a non-lytic

expulsive mechanism also promoted by interferon (IFN)-I, or by cell lysis. However,

whereas in a first phase cryptococcal vomocytosis leads to a latent asymptomatic

infection confined to the lung, an enhancement in vomocytosis, promoted by IFN-I

overproduction, can be deleterious, leading the fungus to reach the blood stream and

invade the CNS.Cryptococcusmay not be easy to diagnose in older individuals and, if

not timely treated, could be potentially lethal. Therefore, this review aims to elucidate

the putative causes of the increased incidence of cryptococcal CNS infection in older

people discussing in depth the mechanisms of immunosenscence potentially able to

predispose to neurocryptococcosis, laying the foundations for future research. A

deepest understanding of this relationship could provide new ways to improve the

prevention and recognition of neurocryptococcosis in aged frail people, in order to

quickly manage pharmacological interventions and to adopt further preventive

measures able to reduce the main risk factors.
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1 Introduction

Aging is a gradual and irreversible physiological process

characterized by declines in tissue and cell functions, thus

significantly increasing the risks for chronic diseases and

concomitant disabilities and comorbidities (1). Immune function also

decreases with age, due to a condition known as immunosenescence,

which affects both natural and acquired immunity and puts older

adults at increased risk of developing infections with a more severe and

protracted course (2, 3). With advancing age and especially beyond the

sixth decade of life, the human immune system undergoes aging-

related dysregulated processes, associated with persistent low-grade

inflammation, termed “inflammaging”, that involves multiple immune

and non-immune cell types (3–5).

This aging-associated basal inflammation is thought to be

induced by several factors, including the reactivation of latent

infections and the engagement of pathogen-associated molecular

patterns (PAMPs) and/or endogenous damage-associated

molecular patterns (DAMPs), together with a dysregulation of

specific host pattern recognition receptors (PRRs), among which

the Toll-like receptors (TLRs) play a major role (3).

The dysfunctional immune response associated with both

immunosenescence and inflammaging, responsible for a

dysregulation of cytokine production and a persistent low-grade

immune activation, may worsen the tissue damage caused by

recurrent infections often affecting older subjects (6). Moreover,

immunosenescence, frailty and comorbidities are conditions

frequently associated with increased susceptibility to opportunistic

infections, including fungal microorganisms, which usually become

virulent with immunocompromised and unhealthy individuals (7–14).

Among the opportunistic infections affecting the central

nervous system (CNS), meningitis and meningoencephalitis

caused by Cryptococcus neoformans and C. gattii, also indicated as

neurocryptococcosis, have been observed with increased frequency

in HIV-seronegative individuals > 65 years, as result of a

reactivation of latent infection, or community acquisition (15).

As documented by serological and epidemiological studies, the

natural exposure to Cryptococcus sp. is very common in humans,

despite overt clinical manifestations of disease are rare (16).

Protective immunity against cryptococcal yeasts is dependent on

recognition, control, and proper interaction by and with cells of the

innate and acquired immune response. In immunocompetent

humans, the yeast, entered by inhalation and reached the lung

alveoli, may be either completely cleared from the respiratory tract

or establish a latent asymptomatic infection in pulmonary granuloma

or thoracic lymph nodes. Depending on the host immune status and

fungal virulence, cryptococcal organisms may cause progressive

granulomatous inflammation, or form parenchyma granulomatous

masses, known as cryptococcomas, very common in the lungs and

brain of immunocompetent individuals (17, 18).

As with other organ systems, the CNS vulnerability to infectious

agents increases with aging, and circulating microorganisms can

invade the CNS, both by crossing the blood-brain barrier (BBB), or

through transneuronal routes, causing infections in the meningeal

or parenchymal compartments (15).
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From a general point of view, the cryptococcal disease is favored

by the presence of qualitative and/or quantitative alterations of

immune system (e.g. HIV disease-related or drug-induced immune

dysfunctions), even if CNS infection by cryptococcus may

sometimes occur also in immunocompetent individuals (19).

Although often overlooked, neurocryptococcosis is extremely

risky in older people, due to a hardly diagnosis and its rapidly

fatal disease course without prompt treatment; moreover, the

incidence of neurocryptococcosis is expected to increase with the

growing trend of aged people. While progresses have been made in

understanding this disease in people living with HIV, data on older

populations are scarce. To the best of our knowledge, this is the first

review to examine the relationship between the senescence of innate

immune responses and the development of cryptococcal meningitis

in the elderly.

The connections among aging, immunosenescence, and

neurocryptococcosis may indeed contribute to explain the

increased risk of neurocryptococcosis in aged people (15, 20–22).

In light of this, the purpose of this review is to identify mechanisms of

susceptibility to cryptococcal meningitis and meningoencephalitis,

with emphasis on the potential role of immunosenescence in innate

immune cells. A deepest understanding of this relationship could lay

the foundation for future research and provide new ways to improve

the prevention and recognition of neurocryptococcosis in aged frail

people, in order to quickly manage pharmacological interventions

and to adopt further preventive measures able to reduce the main

risk factors.
2 Neurocryptococcosis and aging:
epidemiological evidence

Cryptococcal organisms are facultative intracellular

pathogens which may commonly cause an invasive mycosis in

immunocompromised individuals. Among the more of 30

Cryptococcus species, C. neoformans and C. gatti are closely related

strains that cause respiratory and neurological diseases in humans and

animals (23, 24). C. neoformans, which has a ubiquitous worldwide

distribution, represents a common cause of meningitis in

immunocompromised hosts (23). In contrast, C. gattii, which is

geographically restricted to tropical and subtropical regions and is

found less frequently in temperate regions, causes disease in both

immunocompetent and immunocompromised hosts (25).

The infection, initially occurring in the lungs, upon

inhalation of infective particles from the environmental source, is

characterized by a wide array of clinical presentations. The fungal

organisms can avoid the mucociliary clearance, and directly reach

the alveolar spaces, where they are phagocyted by the lung tissue-

resident immune cells. In healthy immunocompetent hosts, these

fungi generally can either be successfully cleared or establish long-

term, latent infections (26). In most cases, despite the exposure to

cryptococcal cells is common, the development of symptomatic

disease is rare and usually requires immunosuppression (24, 27),

since the innate immune system is generally sufficient to limit the

cryptococcal infection. However, in some subjects and often
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months or years after the exposure, the inhaled fungus can escape

the host’s defense mechanisms and disseminate from the lungs

to the blood and invade the CNS, inducing likely fatal

meningoencephalitis (28).

While there are several studies on cryptococcosis in

immunocompromised hosts as people living with HIV, there are

little data available to understand the presentation and the

management of the cryptococcal infection in HIV-negative people

(29–31). Generally, among patients with cryptococcosis, HIV-

negative people are older than people living with HIV (32, 33). For

instance, in a recent study, the median age of cryptococcal disease is

40 years in HIV people, 53 in non HIV transplanted people, and 61 in

non-HIV people without history of transplantation (32). Different

studies reported an higher mortality rate on HIV negative cohort

compared to HIV-infected group (32, 34–37). Specifically, in a study

by George et al. focused on the different epidemiology and outcomes

between HIV and non-HIV patients with cryptococcosis, the authors

found a lower median age (43.8 vs 58 years, p<0.001) and a lower

overall mortality rate (25 vs 33.2%, p <0.001) in HIV compared to

non- HIV subjects. These data support the importance of improving

both diagnosis of cryptococcosis and therapeutic approach in HIV-

negative patients.

This is a very relevant issue, also considering that incidence of

neurocryptococcosis is increasing in HIV-negative people and in

particular in the older adults (38). A recent population-based

retrospective study comparing people living with HIV and HIV-

negative people affected by meningoencephalitis have shown that

up to 66.7% of HIV-negative patients were older than 50 years old.

Furthermore, age >50 years and multiple chronic conditions were

associated with higher mortality (30, 39). Another population-based

study reported an increased rate of cryptococcal meningitis in the

age group of 60-69 years, with a peak between 70 and 79 years (40).

Epidemiological evidence suggests that older patients

(≥ 65 years), and especially those with underlying medical

conditions, are more vulnerable to neurocryptococcosis than adults

aged < 65 years (15, 22, 34, 36) and statistical analyses highlighted

that age>60 years is a predictor of mortality (34, 41–43). In addition

to older age, also impaired consciousness, hemodialysis, and previous

corticosteroid usage have been associated with poor prognosis in

HIV-negative patients with cryptococcal meningitis and could

predict the higher mortality observed in this population compared

with HIV patients (44). Furthermore, the not always overt

presentation of CNS infection commonly displayed by elderly

individuals makes it difficult to obtain an early diagnosis and to

allow a timely therapy, thus potentially affecting the prognosis in a

negative way (8, 45, 46).

Recent systematic studies focused on the identification of the risk

factors mainly related to C. neoformans and/or C. gattii infections (47).

According to these investigations, in addition to HIV-infected patients,

the main groups of HIV-negative subjects at risk of a cryptococcal

colonization and/or infection were aged people affected by immune

dysregulation, lung dysfunction, kidney disease, cirrhosis, arthritis,

diabetes, tuberculosis, connective tissue disorders, and patients

receiving immunosuppressive therapies (47, 48). Other less

commonly reported comorbidities associated to cryptococcosis are

autoimmune disorders and sarcoidosis (47, 49–51).
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Therefore, older age and the presence of chronic diseases are

consistently associated with an increased risk of neurocryptococcosis.

Nevertheless, a comparative analysis of healthy older people versus

frail older people is lacking and should be further investigated.

Moreover, the condition of frailty is never taken into account in

any study.
3 Neurocryptococcosis and
mechanisms of immune escape:
the role of innate immunity

It is hypothesized that humans encounter the organism early in

life, as shown by the gradual increase of cryptococcal-specific

antibody response detected in humans with age (52). As most

immunocompetent humans are asymptomatic and resolve

the infection, there are limited observations concerning the

mechanisms leading to cryptococcal clearance. However, the

asymptomatic cryptococcal antigenemia, detected in the serum of

HIV-infected people without signs or symptoms of meningitis or

sepsis, indicates a relevant incidence of disseminated cryptococcal

infection, at least in these subjects (53–55).

The natural history of human infection follows three steps:

primary infection, followed by a silent phase of latency, that can

last for years, and a last step consisting in the reactivation of dormant/

latent fungal infection, associated with development of symptomatic

disease, usually occurring in immune dysregulation conditions.

Primary cryptococcosis, that initiates with lung involvement, can

occur both in immunocompetent and immunocompromised hosts,

as shown in Figure 1, and is triggered by inhalation of dehydrated

spores, with subsequent phagocytosis of Cryptococcus by alveolar

macrophages (56). The silent phase of latency can be characterized by

the complete clearance of the fungus, or a latency of the disease, with

the presence of the fungus in subpleural nodules and draining lymph

nodes (57, 58). In any case, the survival inside macrophages and

granuloma formation appears to be the predominant in latency stages

(59). The reactivation, that may occur after the latency stage, is

mainly dependent from two conditions: dormancy/survival of the

fungi and immune dysregulation of the host, with subsequent

development of secondary cryptococcosis.

Cryptococci can escape immune system mechanisms at several

stages. One of the most important innate immune cells involved in

fungal clearance are represented by dendritic cells and neutrophils;

the binding of cryptococcal antigens to innate immune receptors

expressed by lung dendritic cells induces the synthesis of specific

cytokines able to stimulate macrophage polarization into M1 or M2

phenotypes, which guide the clinical outcome of lung infection (60);

indeed, M1 cells are able to produce proinflammatory cytokines in

large amount and are responsible of fungal clearance, in contrast to

anti-inflammatory M2 cells which allow intracellular fungal

replication; activated eosinophils contribute to macrophage

polarization into M1 and cryptococcal clearance. However,

multiple virulence factors, including polysaccharide capsule,

melanin, and fungal proteins, allow the fungus to evade M1-

mediated phagocytosis and further replicate within M2 cells (61).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1410090
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Soraci et al. 10.3389/fimmu.2024.1410090
Neutrophils are also important in the immune host response

against the pathogen; Rocha et al. showed that neutrophils can form

the neutrophil extracellular trap (NET) consisting of chromatin,

cytosolic and granular proteins, in order to retain and kill the fungus

(62); however, the glucuronoxylomannan capsule of C. neoformans

may help the pathogen block the NET production and neutrophil

migration. Indeed, in people with immune system dysfunctions,

Cryptococcus may use escape mechanisms that favor its latent

persistence in the lungs thanks to cell masking, N-glucan structures,

and production of several enzymes and transcription factors (56).

In any case, prolonged persistence and replication of

Cryptococcus within immune cells may further promote its

dissemination outside of the respiratory system; indeed, the fungus

uses phagocytes as reservoirs to replicate within and then be

transported in the bloodstream, through a process of dissemination

known as the “Trojan horse” (63). The phagocyted microorganisms,

following intracellular replication, can be expelled by immune cells by

both vomocytosis, that represents a mechanism of non-lytic

exocytosis, and cell lysis (or rupture), due to excessive intracellular

proliferation (27, 64). Vomocytosis can be also followed by

phagocytosis by nearby immune cells, through a process considered

a new escape mechanism and called dragotcytosis, characterized by
Frontiers in Immunology 04
the interaction between the donor and acceptor macrophages prior to

and shortly after the pathogen transfer event (65).

Cryptococcal cells can also leave the lungs as free fungi via a

number of extracellular routes, mainly including vesicular-

mediated transcellular crossing, also known as transcytosis, and

paracellular crossing, or paracytosis, which involves the mechanical

or biochemical disruption of the tight junctions (63). Once outside

of the lungs, cryptococcal cells enter the bloodstream and spread,

leading to a blood infection known as cryptococcaemia, whose

magnitude shows a direct correlation with severity of the infection

(63). In any case, the fungi, following migration across the BBB via

“Trojan horse” mechanism, transcytosis, paracytosis, and/or free

entry through damaged endothelial barriers, migrate to the brain

parenchyma and begin to proliferate, frequently causing fatal

meningoencephalitis (66, 67).

Although C. neoformans and C. gattii enter the body through the

lungs, both pathogens have indeed a strong affinity for the CNS (68).

Since C. neoformans is able to survive within phagosome after being

phagocytized by innate immune cells, the phagocytic cells play an

essential role in the diffusion of the pathogen in the brain. Following

CNS invasion, the fungal pathogens activate microglia, the brain-

resident macrophages, which represent the largest population of
FIGURE 1

Current model of the immune response to Cryptococcus in older and young health host. (1) Primary cryptococcosis stars when dehydrated spores are
inhaled into the lungs of both immunocompetent and immunocompromised older hosts. This is followed by the phagocytosis of the spores by the
alveolar macrophages. (2)This activation triggers three different immune-responses of macrophage: (3a) successful killing and clearance, resulting in no
disease; (3b) evasion of phagocytosis, leading to either an asymptomatic state or localized infection, such as pneumonia; and (3c) survival within the
macrophages through evasion mechanisms, often likened to “Trojan horses” (3d). During the latency stages, survival within macrophages and granuloma
formation tends to be the predominant response. (4) In older hosts, reactivation occurs more frequently due to immune dysregulation. The spread of
the pathogen beyond the respiratory system via vomocytosis leads to secondary cryptococcosis. (5) Cryptococcal cells, ejected through vomocytosis,
enter the bloodstream and disseminate, resulting in a blood infection called cryptococcaemia. (6) After crossing the blood brain barrier, Cryptococcus
migrates to the brain parenchyma and starts to proliferate, leading to fatal meningoencephalitis.
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myeloid cells in the CNS. Microglial activation induces the

production of proinflammatory cytokines and chemokines, which

in turn lead to neuroinflammation and promote the recruitment and

accumulation of both innate and adaptive immune cells. The

immune cells, along with the cytokines secreted by them, are

critically involved in fighting the fungal cells.

A recent preclinical study highlighted the presence of monocytes,

neutrophils, and proinflammatory cytokines in brain perivascular

spaces (PVS), thus supporting the hypothesis that circulating

monocytes and neutrophils can strongly contribute to the

widespread dissemination of yeast cells into the CNS via a

phagocyte-dependent mechanism (69). Therefore, the perivascular

spaces may represent another possible entry way of C. neoformans; in

particular, mice infected with this pathogen showed an increase in

number of monocytes and neutrophils as well as in the number and

size of cryptococcomas, with subsequent enhanced destruction of

brain tissues; the proteolytic enzymes released by activated

neutrophils contribute to damage the BBB, and this further

facilitates neutrophil entry into PVS through a process of non-lytic

exocytosis, allowing the yeast cells to disseminate within the CNS

(56). In a subsequent stage of the infection, cerebral oedema and the

enlargement of the PVS causes florid meningitis and cryptococcosis

in the subarachnoid space (69); in contrast, the mice infected with

C. gattii showed a different immunological host response with mild

changes. This supports the vision according to which C. gattii has less

marked neurotropism compared to C. neoformans.

Natural killer (NK) lymphocytes play also an important role in

the innate immune defenses, as perforin secretion by these cells has

demonstrated to enhance antifungal activity against Cryptococcus.

Furthermore, the cytotoxicity against C. neoformans is increased by

antibodies binding to the NK cell activating receptor CD16 (70).

Altogether, cerebral cryptococcal infection causes little or no

necrosis or brain damage until later disease and, consequently,

neurocryptococcosis usually presents as a subacute meningoencephalitis

(71). The adult patients with neurocryptococcosis typically present

neurological symptoms, including headache, altered mental status,

lethargy along with fever, nausea and vomiting (71). However, in older

people, these symptoms can be considered unspecific or could not to be

accurately reported by patients and therefore they can be

easily misdiagnosed.
4 Immunosenescence in the innate
immune cells

The effectiveness of immune system against infections is

challenging in the elderly. Aging induces significant changes in

both innate and adaptive immune defense mechanisms, a

phenomenon that has been defined as immunosenescence.

One of the first defense elements of the innate immune system

is the lung surface barrier, which protects against inhaled bacteria,

viruses, and fungi. The cilia motility decreases with aging leading to

impaired mucociliary transit that may increase the likelihood of

infection in the elderly (72, 73). Aging processes may also impair

several functions of the innate immune cells, including neutrophils,

macrophages, dendritic cells, and NK cells (74–76) (Figure 2).
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Neutrophils are the first responders when an infection occurs.

Several studies suggest that aging reduces their chemotactic

activity, phagocytosis and ROS production. Moreover, TLR signal,

that activates macroautophagy, appears altered; aging itself also

affects the neutrophil-mediated recruitment and activation of

macrophages and dendritic cells (77).

Macrophages orchestrate the innate and adaptive responses, thanks

to their role in antigen presentation. Macrophages may have two

different polarization statuses: M1 phenotype, induced by

lipopolysaccharide (LPS) or interferon (IFN)-g stimulation, shows a

proinflammatory profile; the M2 phenotype, induced by IL-4, has an

anti-inflammatory profile. Typically aging impairs the M1/M2 balance

(78, 79); in older mice, indeed, macrophages present in hepatic and

adipose tissues, have shown predominantly polarization to M1

phenotype, while accumulation of M2 macrophages occurs in lung,

spleen, muscle, bone marrow, and lymphoid tissues (79–83). Age-

related changes in macrophages included decreased phagocytosis,

autophagy, free radical production and impaired clearance of

apoptotic cells. All these modifications cause a decreased ability of

macrophages to fight pathogens in older people. The reduced antigen

presentation cell activity is probably due to a decreased expression of

major histocompatibility complex (MHC) class II molecules, which

play a key role in the initiation of the adaptive immune defense of CD4

T cells; furthermore, MHC class II expression driven by IFN-g is

impaired in macrophages of aged mice (84).

Dendritic cells, another type of antigen presenting cells, are

responsible for the activation of NK cells and proliferation of CD4

and CD8 T cells and produce type I and III interferon (IFN-I/III).

Dendritic cell functions are reduced in older adults with decreased

migration capacity and impaired ability to activate the adaptive

response (85). Dendritic cells and macrophages show a low TLR

expression, essential for the initiation of the inflammatory

signaling cascade.

Finally, NK cell are innate immune effectors that mediate a rapid

cytotoxicity through perforin exocytosis and the production of

chemokines; perforin disrupts fungal membrane integrity, aiding

entry of granzymes into the fungal cell, leading to apoptosis. NK

cells are key regulators of other immune cells due to their presenting

antigen function, which may trigger cascade of immune responses,

involving T-cells, B-cells, and dendritic cells (86). Furthermore, NK

cells play a role in the recognition and elimination of senescent cells.

NK cells are frequently decreased in older individuals, thus

contributing to impaired microbial defense and increased risk of

infection (87).

In this context, the degree of immunosencesce is also influenced

by the total previous immunological changes that occurred during

the lifespan and involving both innate and adaptive immunity.

Indeed, the concept that memory is not an exclusive attribute of

adaptive immunity is now gaining ground, as it has been observed

that innate immune cells also have a sort of memory, which has

been termed ‘trained immunity’. The innovative concept of

immunobiography proposed by Franceschi et al. suggests that the

immune system, due to its memory and plasticity, is able to register

all the immunological experiences and stimuli to which the

organism is exposed, which induces a continuous immune

adaptation (88). In summary, all the changes in the innate
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immune responses of older individuals, combined with senescence

of lymphocytes, lead to a decrease in resilience to address infections;

moreover, impaired immune cells at BBB level combined with an

age-related subtle alteration of BBB place the older patient at an

increased risk of infection in the CNS. Therefore, in the next

section, we will also discuss BBB changes due to aging. The

alteration of BBB integrity, together with senescence of the

immune system, is indeed recognized as one of the most relevant

mechanisms involved in the susceptibility to neurocryptococcosis in

older people.
5 Aging and the blood brain barrier

The BBB is a highly selective interface that regulates

communication between circulation and the brain. The BBB aims

to maintain CNS homeostasis, provides nourishment, and protects

from unregulated exposure to blood and its contents. The BBB acts

as a selective barrier that restricts the flow of many substances into

and out of the CNS, also preventing unwanted toxins and pathogens

from invading the brain. Proper permeability of the BBB

contributes to the maintenance of functions and brain health. The

BBB is subject to changes due to natural aging processes, that affect

the integrity of the barrier even in the absence of underlying
Frontiers in Immunology 06
pathological conditions. In fact, the vulnerability of the CNS to

infectious agents increases with aging, as the stability of the BBB

declines and the permeability increases, thus enhancing to an

increased flow of solutes, lymphocytes, and innate immune

cells (89).

Aging involves adaptive mechanisms in the BBB with alterations

to various components of the BBB structure as tight junctions,

transporters, microglia, astrocytes and pericytes (Figure 3).

Aging-related neurovascular changes in the BBB include

mechanisms of inflammation mediated by the complement

pathway. An increase in C3a/C3aR signaling promotes the

expression of vascular cell adhesion molecule-1 (VCAM1), which

regulates the immune cell adhesion process, and conducts to

peripheral immune cell infiltration and vascular inflammation

(90). Age-related inflammation and vascular cells senescence

involve also CRTC1/cyclooxygenase-2 dysregulation (91). The

inflammatory processes promote activation of glia cells and

recruitment of leukocytes across the BBB. The leukocyte-

endothelial cell interactions increase BBB permeability inducing

the production of pro-inflammatory mediators such as reactive

oxygen species and cytokines, which determine the alterations in

paracellular and transcellular transport and decreased tight junction

proteins expression (92). Also senescent erythrocytes show

alterations in morphology and tightness, that consequently affects
FIGURE 2

Immunological characteristics of the normal and the aging lung. (A). Normal lung. Surface barriers: their integrity contributes to protect against
inhaled CC. Neutrophils: activated neutrophils produce ROS and contribute to recruitment and activation of macrophages and dendritic cells.
Macrophages: M1 macrophages show a proinflammatory profile and express chemotactic activity and phagocytosis ability with free radical
production. (B). Aging lung. Surface barriers: the decreased cilia motility is associated to higher risk of CC infection. Neutrophils, DC, and NK cells:
reduced chemotactic activity, phagocytosis and ROS production. Macrophages: accumulation of M2 macrophages with anti-inflammatory profile.
PC, proinflammatory cytokines; AC, anti-inflammatory cytokines; CC, Cryptococcal cells.
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transportation and exchange of gases within the BBB and the

damage mediated by reactive oxygen species (93).

Overall, several BBB modifications are favored by senescence

(94). Aged pericytes show biomarkers of cellular senescence,

including increased senescence-associated secretory phenotype

(SASP) factors and cell cycle block (95). Accumulation of senescent

astrocytes contribute to dysfunction, neuroinflammation and

secretion of SASP factors, which communicate cellular damage to

neighboring cells via autocrine/paracrine pathway (96).

Moreover, during aging the number of astrocytes expressing

neuroinflammatory genes and the number of brain endothelial cells

with high levels of senescence-related gene expression increase.

Among genetic factors, the impact of e4 isoform of apolipoprotein E

has been associated with changes in tight-junction regulation and

altered transport systems. Some BBB transporters including large

neutral amino acid transporter (LAT-1), p-glycoprotein and

transporters for IL-1, choline, triiodothyronine, tumor necrosis

factor-alpha, glucose, Tyr-MIF-1 and enkephalins, decrease with

healthy aging (97).

Furthermore, as age advances, gut microbiota dysbiosis may

promote neuroinflammation causing the alteration of the brain

physiopathology and BBB permeability (98). All these mechanisms
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may lead to BBB dysfunction and make older patients more

vulnerable to neurocryptococcosis, facilitating the pathogen

multiple mechanisms of barrier interaction, disruption, and CNS

invasion. In this context, Cryptococcus itself is able to amplify BBB

damage. Cryptococcal-mediated mechanisms of BBB permeability

alteration that facilitate infection may involve the production by the

fungus of urease (99), serine protease (100), metalloprotease (101),

microvesicles (102), and induction of changes in the cytoskeleton of

microvascular endothelial cells (103).
6 The putative link between
immunosenescence and
neurocryptococcosis: a
comprehensive overview of
current evidence

Although clinical evidence has pointed out the higher

prevalence of neurocryptococcosis in older compared to younger

adults, the exact mechanisms underlying this epidemiological

evidence still need to be elucidated in depth.
FIGURE 3

Age-related neurovascular changes in the brain parenchima and BBB. Progressive aging-related neurovascular changes in the BBB include
mechanisms of inflammation mediated by the complement pathway (C3a/C3aR), with alterations to various components of the BBB structure as
tight junctions, transporters, microglia, astrocytes and pericytes. (1). An increase in C3a/C3aR signaling promotes the over expression of VCAM1, and
a dysregulation of CRTC1/cyclooxygenase-2. (2). The resulting inflammation promotes the recruitment of leukocytes across the BBB, and their
interaction with endothelial cells. (3). The leukocyte-endothelial cell interaction increases the BBB permeability and induces the production of
proinflammatory mediators, such as reactive oxygen species and cytokines. (4). Proinflammatory response leads to decreased tight junction proteins
expression and conducts to peripheral immune cell infiltration. (5). Proinflammatory cytokines spread outside the vessels, induce the recruitment
and activation of glial cells. (6). The accumulation of senescent astrocytes contributes to microglia activation, neuroinflammation and secretion of
SASP factors, which communicate cellular damage to neighboring cells via autocrine/paracrine pathway. BBB, blood brain barrier; VCAM1, vascular
cell adhesion molecule-1; CRTC1, CREB-regulated transcription coactivator 1.
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However, it is very plausible that age-related disruption of innate

and acquired immune response may increase the risk of both

cryptococcaemia and neurocryptoccocis and may enhance the

direct deleterious effects of cryptococcal infection. More in detail,

aging-induced defective clearing activity of alveolar macrophages,

along with increased polarization into pro-inflammatory M1 cells

and increased activation of Th2 responses, are thought to contribute

to increased cryptococcal damage (104, 105). Indeed, the high

virulence of cryptococci is related to their capacity of escaping

phagosome internalization or alternatively surviving within vesicles

and strongly reactivating when immune defenses decrease (106, 107).

Overall, age-associated alterations in innate immune responses

may increase the risk of ineffective cryptococcal clearance, severe

pulmonary disease and dissemination to the CNS. Furthermore,

aging is associated with increased expression of macrophage

receptors with collagenous structure (MARCO), which are

essentials in pathogen uptake by mononuclear phagocytes during

early infection (108) but may be further exploited by the pathogen

and polarize towards non-effective immune responses (109).

Aging also increases production of Th2 cells (110) thus creating

a favorable environment for the survival of criptococci, mediated by

the production of IL-4, IL-13, and IL-5 (105).

Furthermore, also age-related alteration of neutrophils could

impact on the cryptococcal virulence. Lung neutrophils are indeed

involved in degradation of pathogens as well as in the initiation of

inflammation and granuloma formation against them (111), and

along with dendritic cells, neutrophils also display age-driven

impairment, which is more qualitative than quantitative. In fact,

their number may be substantially maintained in healthy older

individuals and their immune recruitment into the lungs is elevated,

probably because of inflammaging (112); in contrast, the accuracy

of neutrophil response towards pathogens is impaired (113–115),

because of decreased specificity against the infectious stimuli, which

may contribute to increased morbidity and mortality of

cryptococcal infections in older hosts. Additionally, as individuals

age, neutrophils produce more elastase enzymes (115), that can

damage lung cells and vessels, impair macrophage immune

responses (116), and potentially favoring the deleterious effects of

lung infections from opportunistic microorganisms. Furthermore,

decreased expression of TLR1 in aged neutrophils decrease

production of IL-8 and recovery from apoptosis (117).

Overall, multiple mechanisms are involved in age-related

derangement of innate immunity. In this context, several findings

support the link between the higher susceptibility to infections and

the increased mortality of elderly people to the emerging concept of

trained innate immunity.

This theory suggests that innate immune cells possess non-

specific immunological memory, whose main function is to resolve

aggressions rapidly and stop the inflammatory process (118).

However, after each activation, the innate immune system remains

at a higher activation/readiness state (119). In older people this

process is more evident, as shown by the chronic activated state of

many tissue-resident and blood-born innate immune cells, including

neutrophils and microglia, which display hyperactivation phenotypes

in response to inflammatory stimulation, with an aberrant
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proinflammatory status (4, 119–121). Therefore, trained innate

immunity may become hyperactivated with aging, contributing to a

pro-inflammatory cytokine releasing and inflammaging. However,

innate immune cells such as macrophages may also experience a

decreased reactivity to different stimuli; thus, trained immunity

may undergo a decline, contributing to immunosenescence. Factors

that lead trained innate immunity to a weakened or hyperactivated

state have not been clearly identified. However, the concept of

immunobiography, which is based on the development of an

immunological history, could explain the heterogeneity of

responses in the elderly toward one form rather than the other (88).

The hyperactivation of inflammatory signaling pathways,

associated to a dysregulation of proinflammatory mediators and

defined as inflammaging, might lead to a relative immune paralysis

state, characterized by markedly impaired innate immune function

against pathogens (120, 122, 123).

In this framework, dysregulation of IFN-I response may

represent a phenotype of late senescence and appears to contribute

to the maintenance of the age-associated inflammation (124). Indeed,

on one hand, aging and age-related comorbidities may impair IFN-I

production thus leading to ineffective viral clearance and increased

susceptibility to infections during the first contacts with the

pathogens (5); on the other hand, paradoxically, various aging

tissues and organs from mammalian hosts perpetually accumulate

changes brought by IFN-I pathway activation (20). Therefore, IFN-I

may contribute to the increased neuroinflammatory status

characterizing aging of the brain (125–127), which is frequently

enhanced by the presence of comorbidities (128, 129). Accordingly,

IFN-I signaling has been shown to be up-activated in the choroid

plexus in the aged CNS of humans and mice (130, 131).

In summary, during aging we may recognize a progressive

establishment of an “interferonopathic disorder”, that is an IFN-

mediated inflammatory status mainly characterized by a severe age-

related neuroinflammation and IFN-I up-regulation, a phenomenon

also known as IFN-aging (20, 132). In addition to aging-related

impairment in IFN-I responses, many comorbidities associated with

aging are known to contribute to elevated IFN-I levels. However, so

far studies concerning the role of IFN-Is during fungal infections have

generated conflicting results. A host protective contribution of IFN-Is

to immunity against C. neoformans was highlighted by some studies

showing that IFNa/b deleted mice were more susceptible to infection

than wild-type mice (133–135). On the other hand, some

investigations reported that the clearance of C. neoformans in the

mouse lungs was accelerated at the early phase of infection, under a

condition lacking IFN-I-mediated signaling, suggesting that IFN-Is

may be involved in negative regulation of the early host defense (136).

Probably, the role of IFN changes in the context of cryptococcal

infection from a protective to a deleterious role depending on the

phase of the infection, the virulence of the pathogen and the general

performance status of immune system.

To this regard, it is important to take in mind that key features

of cryptococcal pathogenesis are the ability of the fungus to survive

and replicate within macrophages; then they are typically expelled

by a mechanism of non-lytic exocytosis called vomocytosis and/or

by cell lysis (64). Vomocytosis has been shown to be enhanced by
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IFNa and/or IFNb, and abrogated when IFN-I signaling is blocked

(137). Essential features of IFN-I signaling are shown in Figure 4.

In brief, the PRR-PAMP/DAMP interactions induce the

selective recruitment of the Toll/IL-1R domain-containing

adaptor-inducing IFN-b (TRIF), which binds to the TLRs and

then recruits downstream signaling molecules that ultimately

induce the production of IFN-I (138). In particular, TRIF forms a

signaling complex with TNF receptor-associated factor (TRAF) and

this leads to phosphorylation of the transcription factor interferon

regulatory factor (IRF)3 (139). This phosphorylation event causes

IRF3 to dimerize, translocate into the nucleus, and induce the

expression of IFNa and IFNb. Both secreted IFN-Is can bind the

IFN-a/b receptor (IFNAR1/2) in an autocrine or paracrine manner

and activate a signaling cascade leading to expression of IFN-

stimulated genes (ISGs), via JAK-STAT1/2 signaling (Figure 1).
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It is hypothesized that in a first phase of cryptococcal infection,

IFN-I responses may induce innate immune cells to act as

“vomocytes”, giving rise to an ineffective fungal clearance which

leads to a latent asymptomatic lung infection that may be

considered as a host tolerance mechanism able to prevent or limit

the tissue damage and the systemic dissemination (135).

Consequently, whereas cryptococcal vomocytosis at an early stage

of infection might be beneficial, since it would limit the risk of

systemic fungal shedding, once the fungus has reached the blood

stream or CNS, enhanced vomocytosis is likely to be deleterious,

since it would allow the pathogen to escape the constraints of a

phagocyte and grow rapidly in the extracellular environment.

In addition to the putative dysregulation of IFN-dependent

molecular pathway, other molecular mechanisms are probably

involved in the increased susceptibility to neurocrytococcosis in
FIGURE 4

Enhancement of vomocytosis via IFN-I mediated pathway. The different effects of IFN-I signaling, depending on ligand, dose, and duration of
exposure. (1). The TLR-PAMP/DAMP interactions induce the selective recruitment of TRIF, which binds to the TLRs and then recruits a series of
downstream signaling molecules, leading to IFN-I production. (2). TLR-PAMP/DAMP interactions induce TRIF to form a signaling complex with TRAF
and this leads to phosphorylation of IRF3. (3). This phosphorylation event causes IRF3 to dimerize, translocating into the nucleus, and inducing the
expression of IFNa and IFNb. (4). Both secreted IFN-Is can bind IFNAR1/2 in an autocrine or paracrine manner and activate a signaling cascade
leading to expression of ISGs. (5). In particular, the c-termini of IFNAR1 and IFNAR2 are associated with TYK2 and JAK1, respectively, and activation
of the receptor transduces the phosphorylation of JAK1 and TYK2 by tyrosine phosphorylation. (6). This initiates a signaling cascade composed of
proteins of the STAT family. (7). STAT1 and STAT2 proteins, activated upon JAK1 phosphorylation, dimerize and rapidly translocate to the nucleus,
where they, together with IRF9, form a trimolecular complex called IFN-stimulated gene factor 3 (ISGF3). ISGF3 is a critical transcription factor
complex involved in the cellular response to IFN-Is, particularly IFN-a and IFN-b. (8). This complex activates the transcription of ISGs. (9). However,
IFN-I responses may also induce innate immune cells to act as “vomocytes”, giving rise to an ineffective fungal clearance which leads to a latent
asymptomatic lung infection. In any case, this ISGF3 engagement by IFN-I production leads to activation of the inflammatory gene expression
program, responsible for activation and/or exacerbation of inflammatory responses. Altogether, ISGs may produce, via JAK-STAT/IRF signaling
network, distinct biological responses and sustained IFN-I signaling leads to chronic immune activation, inflammation and, consequently, immune
exhaustion and dysfunction. Consequently, during infections, the effects of IFN-I signaling can be protective or detrimental, depending on the
context, including pathogen species, infection route, and tissue specific features. DAMP, damage-associated molecular patterns; IFNAR1/2, IFN-a/b
receptor; IFN-I, interferon; IRF, interferon regulatory factor; ISGs, IFN-stimulated genes; ISGF3, interferon stimulated gene factor 3; ISGF9, interferon
stimulated gene factor 9; JAK1, Janus kinase; PAMP, pathogen-associated molecular patterns; STAT, signal transducer and activator of transcription;
TRAF, TNF receptor-associated factor; TRIF, Toll/IL-1R domain-containing adaptor-inducing IFN-b; TYK2, tyrosine kinase 2.
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the older people compared to young individuals. For instance, an

invertebrate model of C. neoformans and C. gattii infection

suggested that defects in both longevity and innate immunity,

affecting the insulin/IGF-1 signaling/DAF-16 pathway, has been

linked to a raised susceptibility to Cryptococcus (140).

Furthermore, the authors reported that C. neoformans or C. gattii

infections reduced the host lifespan. Another study in rats showed

that lung macrophages, after C. neoformans phagocytosing, induce

the synthesis of monocyte chemotactic protein 1 (MCP-1),

depending on the interaction of C. neoformans with CD11b/c and

CD18 and, interestingly, aging appears to be related to a reduced

production of MCP-1 by lung macrophages in response to

cryptococcal infection (141). Another evidence suggesting this

link between immunosenescence and cryptococcal infection is the

increased risk for cryptococcosis associated with long-term use of

fingolimod (142). Indeed, this drug induces phenotypic changes on

many cells of the immune system similar to the immunosenescence

observed in the older people.

In addition to systemic immunological alterations, also at CNS

level, in the context of cryptococcal infection, an aberrant immune

response probably contributes to the damage. To this regard, a small

cohort of 17 middle-age HIV-negative adults with severe CNS

cryptococcosis have shown an intrathecal expansion and activation

of dendritic cells and lymphocytes (CD4+, CD8+ and NK cells) and

high levels of inflammatory cytokines including IFN-g and IL-6,

leading to the idea that the increased inflammatory response in

neurocryptoccocosis doesn’t represent a protective defense, but

enhances markers of neuronal injury (143). These results appear to

be similar to the increased immune reconstitution inflammatory

syndrome (IRIS) in HIV-infected people or post-infectious

inflammatory response syndrome (PIIRS) in HIV-negative people

occurring occasionally with cryptococcal meningitis. A case of PIIRS

was also recently described in an elderly patient, who showed

increased IL-6 levels in the serial cerebrospinal fluid (CSF) (144).

Finally, immunosenescence has shown to affect also the

adaptive immune response to fungal infections. In this regard,

age-related T-cell dysfunctions in elderly mice have been reported

to be related to an increased susceptibility to systemic cryptococcal

infection compared with young adult mice (145).

Altogether, these findings underscore the importance of

studying human immune responses at different stages of infection

and in different immunological conditions.
7 Future directions in clinical research:
diagnosis and therapy

The significant association between aging and neurocryptococcosis

implies a need to adopt appropriate prevention measures.

Older populations may be more vulnerable to diagnostic error

for several reasons, including an incorrect attribution of symptoms

to normal aging, or to unrelated neurological findings.

Moreover, accurate diagnosis is also critical in older people,

who, in addition to concomitant neurological disorders, have a

slower onset of symptoms, evolving over days to a few weeks,

condition that could make it difficult an early diagnosis and lead to a
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delay in treatment (15). Furthermore, the clinicians sometimes

could focus unduly on clinical clues suggesting specific diseases,

while discounting opposing clues, and sometimes they could

confound meningitis with other disorders sharing similar

symptoms, including achy stiffness, headache, and high fever.

Misdiagnosis not only endangers the safety and health of older

patients, but also incurs additional costs for health care systems due

to misused clinical interventions and care of iatrogenic illness.

The clinical suspicion of neurocryptococcosis should be

followed by targeted diagnostic investigations, including first-line

computed tomography and magnetic resonance imaging;

subsequently, lumbar puncture for CSF analysis should be

performed to confirm the diagnosis; a positive CSF culture

indicates active cryptococcal disease and represents the gold

standard method to detect live pathogens; additional CSF

analyses, including India ink preparation and Gram staining, can

help quantify the degree of capsule thickness and melanization of

the yeast cells cultures, which are related to fungal virulence and

immunodepression of the host (146). In contexts where lumbar

puncture cannot be rapidly performed, clinicians can rely on the

positivity of the cryptococcal antigen in the serum, which can

strongly suggest the infection, even if the diagnostic gold standard

is the CSF culture. However, it is important to take in mind that,

when the fungal burden is low, CSF fungal culture can produce false

negative results, as well as India ink microscopy. Furthermore, the

slow-growing nature of Cryptococcus as well its possible

physiological viable-but-nonculturable (VBNC) status (147) may

contribute to false negative CSF cultures. In any case, despite

obtaining a reliable result may require several weeks, CSF fungal

culture remains paramount for the definitive diagnosis

of neurocryptococcosis.

The therapeutic approach also requires careful evaluation, since

antifungal drugs are particularly toxic and could aggravate the basic

medical conditions of frail older subjects suffering from multiple

comorbidities. The principal antifungal agents classically used for

the treatment of neurocryptococcosis consist of intravenous

amphotericin B deoxycholate and its lipid formulations, oral

flucytosine, and oral fluconazole (28). While amphotericin B and

flucytosine are fungicidal, fluconazole is only fungistatic. Lipid

formulations of amphotericin B are preferred on older patients

often affected by renal dysfunction or at risk for renal failure. The

high prevalence of multimorbidity and polypharmacy among older

adults, that contributes to the relatively increased risk, associated to

both the polypharmacy and the frail conditions, implies a need for a

very careful evaluation also concerning the risk/benefit ratio in the

different frail conditions of affected patients.

In particular, it should be taken in consideration that,

older patients using antimicrobials have a higher risk of adverse

side effects due to age-related changes in pharmacokinetic and

pharmacodynamic, multimorbidity, and polypharmacy (148). More

specifically, the use of amphotericin B is typically associated with a

higher risk of nephrotoxicity, hepatotoxicity, hematological effects,

and heart failure. Nephrotoxicity is the most common potential

adverse effect in older patients, presenting with an increased

creatinine level, hypo/hyperkalemia, and/or hypomagnesemia (148).

In addition, although the lipid formulations have been shown to be
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substantially less toxic than conventional amphotericin B, particularly

with respect to nephrotoxicity, concomitant or recent use of other

nephrotoxic drugs could have an additive effect (148).

With respect to flucytosine, despite leukopenia and

myelosuppression represent side effects frequently induced by high

plasma levels of this drug, maintained for a long time, the current use

of flucytosine is allowed for the treatment of cryptococcal meningitis,

in combination with amphotericin. However, the concurrent use of

flucytosine and nephrotoxic drugs should be avoided due to the risk

of accumulation of flucytosine (149). Furthermore, clinicians should

be aware that fluconazole, even at low doses, may cause cardiotoxicity

for prolongation of the QT interval (148).

In addition to currently available anti-fungal drugs, it would be

desirable for new therapeutic strategies to be available in the next

future for neurocryptocococosis. To this regard, some investigations,

based on pre-clinical findings, have tested commercially available

drugs used for other indications, including tamoxifen and sertraline

as potential treatment for cryptococcal infection, according to the so-

called repurposing strategy (150, 151). However, until now these

studies did not show any efficacy of these treatments against

cryptococcal infection.

In our opinion, considering the putative role of immunosenesce in

the increased susceptibility of older people for neurocryptococcosis,

potential therapeutic approach could be based on the regulation of

immune response. For instance, some strategies aimed to modulate

CD22 receptor on microglia seem to be able to restore homeostatic

microglial phagocytosis in ageing brain (152).

Another putative target to contrast immunosenescence is

inhibition of p-38, that is a molecule strongly implicated in the

aberrant inflammation due to age-related macrophagic dysfunction

(153, 154).

However, all these approaches need to be tested in the context of

cryptococcal infection.
8 Conclusions

Given the high complexity of neurocryptococcosis in older

individuals, we suggest that a multidisciplinary and comprehensive

approach to the disease to be followed; cryptococcosis presents

unique challenges in older individuals due to age-related changes in

immune function and increased susceptibility to infections. As our

population continues to age, it is imperative that healthcare

professionals remain vigilant in recognizing and managing

cryptococcal infections in this vulnerable population. Early

diagnosis, prompt treatment, and close monitoring are crucial for
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improving outcomes and reducing morbidity and mortality

associated with cryptococcosis in older adults. Additionally,

ongoing research is needed to better understand the epidemiology,

pathogenesis, and optimal management strategies tailored specifically

for older individuals.
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