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Immune infiltration-related
genes regulate the progression
of AML by invading the bone
marrow microenvironment
Shuangmei Yu 1 and Jiquan Jiang 2*

1Department of Radio-immunity, Heilongjiang Provincial Hospital, Harbin, China, 2Department of
Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
In this study, we try to find the pathogenic role of immune-related genes in the

bonemarrowmicroenvironment of AML. ThroughWGCNA, seven modules were

obtained, among which the turquoise module containing 1793 genes was highly

correlated with the immune infiltration score. By unsupervised clustering, the

turquoise module was divided into two clusters: the intersection of clinically

significant genes in the TCGA and DEGs to obtain 178 genes for mutation

analysis, followed by obtaining 17 genes with high mutation frequency.

Subsequently, these 17 genes were subjected to LASSO regression analysis to

construct a riskscore model of 8 hub genes. The TIMER database, ImmuCellAI

portal website, and ssGSEA elucidate that the hub genes and risk scores are

closely related to immune cell infi l tration into the bone marrow

microenvironment. In addition, we also validated the relative expression levels

of hub genes using the TCGA database and GSE114868, and additional

expression levels of hub genes in AML cell lines in vitro. Therefore, we

constructed an immune infiltration-related gene model that identify 8 hub

genes with good risk stratification and predictive prognosis for AML.
KEYWORDS

acute myeloid leukemia, immune infiltration-related genes (IIRGs), WGCNA, LASSO,
immune infiltration analysis, bone marrow microenvironment
1 Introduction

Acute myeloid leukemia is a group of hematological malignancies with multiple genetic

characteristics and high clinical heterogeneity (1, 2). Although intensive chemotherapy,

novel targeted drug therapy, and allogeneic stem cell transplantation have made significant

progress and have high efficacy (3). However, the prognosis of patients with AML is still

poor, with high relapse and mortality rates (4). It has been reported that the estimated 5-
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year survival rate of AML patients with good cytogenetics is

approximately 55%. In comparison, the estimated 5-year survival

rates of patients with intermediate and poor cytogenetics are only

24% and 5%, respectively (5). Therefore, it is crucial to determine

patient r isk strat ificat ion and prognost ic assessment

during diagnosis.

Currently, the generally recognized clinically relevant

prognostic parameters of AML, such as age, white blood cell

count, and cytogenetic changes, provide some clues for prognosis

prediction and risk stratification assessment, but the results are

unsatisfactory (6). Notably, in recent years, the rapid development

of high-throughput sequencing and chip detection technologies has

provided essential insights into the pathology and pathogenesis of

various diseases (7). In addition, bioinformatics analysis is widely

used in tumor research and prognosis prediction, and analyzing

public databases and mining novel prognostic markers provides a

broader perspective for the clinical diagnosis and prognosis

assessment of AML (8). In particular, the Weighted Gene Co-

expression Network Analysis (WGCNA) (9), as a comprehensive

biological algorithm, has significant advantages in analyzing

association patterns between genes. Module clustering of genes

with similar expression patterns and correlation analysis between

modules and clinical traits are two highlights of WGCNA.

Actually, the relationship between the immune system and

tumors is intricate and can form a complex network called the

tumor microenvironment (TME) (10, 11). In the TME, tumor cells

communicate not only with each other but also with stromal cells

and immune cells (12). The constant interaction between tumor

cells and the tumor microenvironment plays a decisive role in

tumor initiation, progression, metastasis, response to treatment,

and predicting prognosis (13). Similarly, the occurrence and

development of AML are closely related to the bone marrow

microenvironment (14). It has been reported that early resistance

is mediated by the bone marrow microenvironment, which protects

residual leukemia cells and impacts on chemotherapy efficacy over

time (15). However, research on how immune cells infiltrate AML

and promote AML progression remains to be further elucidated.

In this study, we aimed to decipher the pathogenic role of

immune infiltration-related genes in the bone marrow

microenvironment in AML. First, we obtained immune

infiltration-related genes through WGCNA, unsupervised

clustering analysis and GSCA mutation analysis. Subsequently, a

riskscore model was established through LASSO COX regression

analysis. More importantly, we conducted an in-depth analysis of

the immune-infiltrated tumor microenvironment on the gene

signature established in this study. In addition, the relative

expression levels of immune infiltration-related genes in the

riskscore signature were verified in the external dataset and AML

cell lines. Our study combines WGCNA, GSCA mutation analysis,

and immune infiltration tumor microenvironment analysis to

reveal the complexity of AML further. It provides a new

perspective for clinical risk stratification and prediction of

prognosis, which is helpful for elucidating and exploring the

pathogenesis of AML.
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2 Materials and methods

2.1 Data acquisition and processing

Bone marrow RNA sequencing data and corresponding clinical

information of 151 AML patients were retrieved from TCGA-

LAML dataset which is the subset of The Cancer Genome Atlas

(TCGA, https://portal.gdc.cancer.gov/) database. Additionally, we

obtained the transcriptomic profiles of GSE71014, which consists of

104 AML samples, and GSE114868, which consists of 194 AML

samples and 20 normal samples from the Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) database (16)

(The information was listed in Supplementary Table S1). The

datasets were utilized as the validation set.
2.2 Weighted gene co-expression
network analysis

The Weighted Gene Co-expression Network Analysis

(WGCNA) is an algorithm used to identify gene co-expression

networks by high-throughput expression profiles of mRNAs with

different traits. Here, immune cell infiltration-related genes were

identified using the “WGCNA” R package. The correlation between

gene expression and sample trait (immune cell infiltration score)

was determined by the criterion of gene significance (GS) > 0.9 and

module membership (MM) > 0.9.
2.3 Unsupervised clustering analysis and
identification of differentially
expressed genes

The R package “ConsensusClusterPlus” presented the

unsupervised subgroups and clusters of high immune-related

modular genes identified by WGCNA. We used the “limma” R

package to identify differentially expressed genes (DEGs) in the

subgroups generated by unsupervised clusters. The rigorous

filtering threshold is |log2 fold-change (FC)| > 1.0, and the false

discovery rate (FDR)< 0.05. The DEGs were then visualized with a

volcano plot and heatmap.
2.4 GO, KEGG, GSEA and GSVA
enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed

using the “clusterProfiler” package. Furthermore, the GSEA

(version 4.1.0) (17) software was utilized to analyze gene function

concerning high- and low-risk scores, the rigorous threshold is

adjust p value< 0.05 and FDR< 0.25. Similarly, GSVA enrichment

analysis revealed the disparities in GSVA scores between the high-

risk and low-risk samples (18).
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2.5 Mutation analysis of GSCA

The Gene Set Cancer Analysis (GSCA, http://bioinfo.life.hust.

edu.cn/GSCA/#/) is a web-based database that offers an interactive

and comprehensive platform (19). The GSCA database includes a

“mutation” module that allows for the analysis of mutation

frequencies in specific genes of interest, mainly single

nucleotide variants.
2.6 Univariate and multivariate COX and
LASSO regression analysis

We employed the least absolute shrinkage and selection

operator (LASSO) method to construct a refined and simplified

COXmodel for predicting patient risk and prognosis to mitigate the

risk of overfitting prognostic risk models. The risk score (RS)

formula is defined as follows:

RS =o
n

i=1

Coefi � Expi

Among them, n represents the number of genes included in the

prognostic signature, Coefi represents the LASSO coefficient of gene

i, and Expi indicates the expression value of gene i.

The model was used to calculate riskscores based on the

expression of the related genes in different AML samples.

Additionally, GSE71014 was utilized to compute the risk score for

each patient. Nomogram was constructed to visualize the results of

multiple factor regression analysis by “RMS” R software package.
2.7 Immune infiltration analysis

In order to assess the abundance of immune cell infiltration, a

series of analyses about immune cell infiltration were conducted in

AML. The single-sample Gene Set Enrichment Analysis (ssGSEA)

method, available in the “GSVA” R package, was employed to assess

the infiltration level of immune cells between high-risk and low-risk

groups. We employed Immune Cell Abundance Identifier

(ImmuCellAI, http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/) to

identify the levels of immune cell infiltration in both high-risk and

low-risk groups. Specifically, we utilized the TIMER2.0 database

(20) (https://timer.cistrome.org/) to analyze the differences in

infiltration between mutant and wild-type genes involved in the

LASSO model across different immune cell types.
2.8 Validation of mRNAs relative
expression level

We selected the TCGA-GTEx dataset and GSE114868 dataset to

verify the differential expression of hub genes in AML and normal

tissues. In addition, we validated the relative expression levels of

hub genes in cell lines.
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Human AML cells (HL-60 and THP-1) were purchased from

Procell (Wuhan, China), and human AML cells (MOLM-13) were

purchased from MeisenCTCC (Jinhua, China), respectively. AML

cells and normal cells (bone marrow mesenchymal stem cells

[BMSC]) were cultured in RPMI 1640 (Sigma) and DMEM/F12

(gibco), respectively, with 10% fetal bovine serum (gibco).

Total RNA was extracted from BMSC and AML cell lines

using the TRIzol reagent (Invitrogen). RT-qPCR assays were

performed using the SYBR Green Realtime PCR Master Mix

(TOYOBO). The mRNA expression levels were normalized to

GADPH, and each sample was tested in triplicate. The primer

sequences of mRNAs and GAPDH were synthesized by BGI

(Beijing, China). The primers used in this study are listed in

Supplementary Table S2.
2.9 Statistical analysis

All analyses were performed using R v. 4.2.1 (https://www.R-

project.org). Data were presented as means ± standard error of the

mean (SEM) in at least three independent experiments and

analyzed with GraphPad Prism 9.3.1. The Wilcoxon rank sum

test and the Welch’s t-test were used to compare the expression

differences of unpaired samples between the two groups. The

Wilcoxon rank sum test was utilized to analyze the relations

between the clinicopathological features and risk score.

The detailed flowchart is exhibited in Supplementary Figure S1.
3 Results

3.1 The identification of modules related to
immune infiltration through WGCNA

The WGCNA algorithm was used to identify modules related to

immune infiltration (including StromalScore, ImmuneScore, and

ESTIMATEScore). When the scale-free topology fitting index

reached 0.9, the soft-thresholding power b was 7 (Supplementary

Figure S2A). Seven modules were identified under the parameter

settings of minModuleSize=100 and mergeCutHeight=0.15

(Figures 1A, B). According to the correlation coefficient and

P-value, the MEturquoise module was the module with

the strongest correlation with scores (StromalScore, r = 0.75,

P = 1e-28; ImmunoScore, r = 0.81, P = 7e-37; ESTIMATEScore,

r = 0.83, P = 3e-40; Figure 1C). In addition, GS and MM in the

turquoise module were highly correlated, indicating that this

module was most significantly correlated with immune

infiltration (Figures 1D–F). For this reason, we selected the

MEturquoise module containing 1793 genes as the key module

for subsequent analysis.

In order to investigate the potential mechanism of co-expressed

genes in the turquoise module, we conducted GO and KEGG

enrichment analysis. The results indicated that these genes were

highly enriched in terms of “positive regulation of cytokine
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D E F

A

FIGURE 1

Identifying immune-related modules by WGCNA. (A). The cluster was based on the transcriptome data from TCGA-LAML. The color intensity
represents the immune factor (StromalScore, ImmuneScore and ESTIMATEScore). (B). Hierarchical cluster analysis was performed to detect co-
expression modules with corresponding colors. Each branch of the tree diagram represents genes, and genes clustered into the same module are
assigned the same module color. (C). Module-trait heatmap revealing the relationship between modules and immune factors, including
StromalScore, ImmuneScore and ESTIMATEScore. The red refers to a positive correlation, while the blue indicates a negative correlation. (D–F). The
correlation analysis between membership (MM) in turquoise module and gene significance (GS) for immune factor.
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production” (Supplementary Figure S2B), “external side of plasma

membrane” (Supplementary Figure S2C), “phonological binding”

(Supplementary Figure S2D), “Transcriptional misregulation in

cancer” (Supplementary Figure S2E). The details of the results are

shown in Supplementary Table S3. Overall, the genes in the

turquoise module were highly correlated with the immunological

biological processes of AML.
3.2 Unsupervised clustering analysis of
turquoise module

According to the corresponding cumulative distribution

function and K value function d area, when K = 2, the curve

exhibited stable aggregation (Supplementary Figures S3A, B).

Therefore, the turquoise module was divided into two subgroups

(Cluster 1: 88 samples; Cluster 2: 63 samples; Figure 2A). The

principal component analysis (PCA) clearly distinguished the two

clusters (Figure 2B). The results were also validated using t-

distributed Stochastic Neighbor Embedding (t-SNE) and Uniform

Manifold Approximation and Projection (UMAP) analysis

(Supplementary Figures S3C, D).

Next, differential gene expression analysis was performed on

clusters 1 and 2, with 857 DEGs generated, including 352

significantly upregulated genes and 505 significantly

downregulated genes. The DEGs were displayed through volcano

plots and heatmaps (Figures 2C, D). We conducted GO and KEGG

analyses to better understand the biological processes and signaling

pathways related to DEGs (Figure 2E). The GO and KEGG analysis

results showed that DEGs were mainly enriched in biological

processes such as “myeloid Leukocyte migration”, “negative

regulation of immune system process” and in signaling pathways

such as “Phagosome”, “Cytokine-cytokine receptor interaction”. In

addition, the StromalScore, ImmuneScore, and ESTIMATEScore

evaluated by the ESTIMATE algorithm showed that the scores of

cluster 2 were significantly higher than that of cluster 1 (Figure 2F).
3.3 Screening of candidate genes and
GSCA mutation analysis

A univariate COX regression analysis was conducted to identify

2623 clinically significant genes in the TCGA-LAML dataset, with a

strict screening criterion of adj P<0.01. The Venn diagram was used

to intersect DEGs and clinically significant genes, generating 178

candidate genes (Figure 2G). The pathogenesis of AML was closely

related to genetic abnormalities and gene mutations. Therefore, we

conducted mutation analysis on 178 candidate genes through the

GSVA website and obtained 17 genes with high mutation

frequencies. The 17 genes were CALR, CD4, CD93, CDH23,

CDK14, CRISPLD1, CTSZ, DNMT3A, HTR7, KIAA0513, LILRB1,

LRP1B, MYB, PLXNB1, SAMD11, ZNF253, ZNF506. Here, we only

presented the top 10 mutated genes (Figure 2H; Supplementary

Figure S4A). The mutation categories and variant types were shown

in Supplementary Figures S4B–F.
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3.4 Construction and validation of the
prognostic model based on eight
hub genes

The LASSO algorithm was used to further screen 17 candidate

genes with high mutation frequency for prognostic model

construction. Eight characteristic genes were identified through

the lowest cross-validation error: ZNF506, SAMD11, PLXNB1,

MYB, HTR7, CDK14, CRISPLD1 and CD4 (Figures 3A, B). The

formula of riskscore is: riskscore = gene expression × coefficient

(Table 1). Patients were divided into high-risk and low-risk

groups according to the median riskscore as the cutoff value

(cut off = -2.10281) (Figure 3C). Kaplan-Meier survival analysis

showed that the OS of high-risk group patients was significantly

lower than that of low-risk group patients (Figure 3D).

Strikingly, Kaplan-Meier survival analysis was performed on

the eight hub genes, and the results showed that these genes have a

high predictive ability for AML (Supplementary Figures S5A–H).

Time-dependent ROC curves were calculated, and the AUC values

for 1, 3, and 5 years were all greater than 0.75, indicating that the

risk model has good performance (Figure 3E). In addition, we also

verified the effectiveness of the risk model on GSE71014. It was

encouraging that the survival status and gene expression were

consistent with those in the TCGA cohort, and excellent

prognostic ability was also demonstrated (Figures 3F–H). In

summary, the prognostic model we constructed demonstrated

excellent predictive performance. In addition, compared with the

low-risk group, the Stromalscore, Immunescore, and

ESTIMATEscore in the high-risk group were significantly

increased (Figure 3I).
3.5 Correlation analysis between riskscore
and clinical features

In order to clarify the correlation between riskscores and

clinical features, the riskscores of patients were compared based

on the clinical characteristics of different groups. In the high-risk

group, the proportion of age > 60, chromosomal abnormalities, and

NPMc mutations significantly increased (Supplementary

Figures 6A–P).
3.6 Screening of independent prognostic
factors and construction of nomogram

The prognostic performance of the risk model was obtained by

conducting univariate and multivariate COX regression analysis

with riskscore and a variety of clinical features (age and Cytogenetic

risk). The univariate COX regression analysis of the TCGA cohort

showed that age, riskscore, and Cytogenetic risk were risk factors for

AML (Figure 4A). The results of multivariate COX analysis

indicated that age and riskscore were independent prognostic

factors for AML patients (Figure 4B). Then, we combined age

and riskscore to establish the nomogram for survival prediction
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FIGURE 2

Unsupervised clustering analysis. (A). Consensus clustering matrix of turquoise module for k=2. (B). The principal component analysis (PCA) shows a
different distribution of the two clusters. (C). Volcano plot of DEGs between cluster 1 and cluster 2. |log2FoldChange| > 1 and adj. P< 0.01 were
identified as significant DEGs. The red dots represent up-regulated genes and the blue dots represent down-regulated genes. (D). Heatmap of DEGs
between cluster 1 and cluster 2. (E). Functional enrichment analysis of DEGs between cluster 1 and cluster 2. (F). Immune Scores of ESTIMATE
algorithm between cluster 1 and cluster 2. (G). Intersection of DEGs and clinical significance genes by Venn. (H). The top 10 mutated genes and
variant classification in 178 candidate genes. (*** P<0.001).
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(C-index=0.736; Figure 4C). The prediction results of

1-year, 3-year, and 5-year OS indicated that the survival rate

predicted by nomogram closely matches the best predictive

performance (Figure 4D). Decision curve analysis (DCA) also

demonstrated the clinical application value of constructing the

nomogram (Figure 4E).
3.7 GSEA and GSVA between high-risk and
low-risk groups

To analyze the impact of high-risk and low-risk groups on AML

progression, we conducted GSEA to determine the most significant

enrichment pathway between the two risk groups. The results
Frontiers in Immunology 07
showed that the high-risk group was significantly enriched in

processes such as “Innate Immune System”, “Adaptive Immune

System” and “Toll-Like Receptor Cascades” (Figures 5A, B,

Supplementary Table S5).

We also used GSVA to explore the differences in biological

behavior between high-risk and low-risk groups. Compared with

the low-risk group, the high-risk group was significantly enriched in

biological pathways, such as “PRIMARY IMMUNODEFICIENCY”,

“LEUKOCYTE TRANSENDOTHELIAL MIGRATION” and

“NOD LIKE RECEPTOR SIGNALING PATHWAY”. On the

contrary, compared with the high-risk group, the low-risk group

only enriched with “RIG I LIKE RECEPTOR SIGNALING

PATHWAY” (Figures 5C, D). The above biological processes

were closely related to the immune system and immune cells.
B C

D E

F
G H

I

A

FIGURE 3

Construction and validation of prognosis model. (A). LASSO coefficient profiles of 17 genes with high mutation frequency. (B). Partial likelihood deviation
of LASSO coefficient distribution. (C). The survival status of patients and the expression of genes with different risk grades in the TCGA cohort. (D).
Kaplan–Meier survival analysis based on risk score in the TCGA cohort. (E). The predictive capacity of the risk score for the 1- year, 3-year and 5- year
survival rates. (F–H). Stratified survival analysis of risk models and clinical characteristics in external GSE71014. (I). Scores of ESTIMATE algorithm between
low riskscore and high riskscore. (* P<0.05; ***P<0.001).
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3.8 Immune microenvironment landscape
of AML

In order to better elucidate the immune microenvironment of

AML, we conducted a series of immune infiltration tumor

microenvironment analyses using various algorithms.

We revealed the immune cell infiltration levels of eight hub genes

mutations using several algorithms by the TIMER database. When

using the CIRBERSORT deconvolution method, there was difference

in immune cell infiltration during mutation of CDK14, CRISPLD1,

MYB, and SAMD11, while there was no difference in CD4, HTR7,

PLXNB1, and ZNF506 (Figures 6A–D). In addition, we also applied

other algorithms from the TIMER database to evaluate the level of

immune cell infiltration between gene wild type and mutation,

showed the same results above (Supplementary Figure S7).
B

C

D E

A

FIGURE 4

The construction and verification of the nomogram model for survival prediction. (A, B). Univariate and multivariate COX regression analysis of
riskscore and clinical characteristics. (C) The nomogram constructed by combining riskscore and age. (D). The calibration curve of the nomogram.
(E). The DCA of the nomogram.
TABLE 1 The genes and coefficient in LASSO model.

Gene
Symbol

Description coefficient

CD4 CD4 Molecule 0.0175

CDK14 Cyclin Dependent Kinase 14 -0.0782

CRISPLD1
Cysteine Rich Secretory Protein LCCL

Domain Containing 1
0.3169

HTR7 5-Hydroxytryptamine Receptor 7 0.1547

MYB MYB Proto-Oncogene, Transcription Factor -0.3450

PLXNB1 Plexin B1 -0.1233

SAMD11 Sterile Alpha Motif Domain Containing 11 -0.0508

ZNF506 Zinc Finger Protein 506 -0.0135
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ssGSEA was used to calculate the infiltration fraction of 20

immune cells in different risk groups. The results showed significant

differences in the infiltration levels of 10 types of immune cells in

the high-risk and low-risk groups (Figure 6E; Figures S8A, C).

Correlation analysis also showed a positive correlation between

riskscore and infiltration of Dendritic cells and Macrophage cells,

while a negative correlation between riskscore and infiltration of

CD8+T cells, Mast cells, and NK cells (Figures 6G–K).

Furthermore, we applied the ImmuCellAI portal to evaluate the

infiltration abundance of 24 immune cells in different risk groups.

Compared with the low-risk group, the infiltration proportion of DCs

(p< 0.001), NK cells (p< 0.05), and NK-T cells (p< 0.05) were

significantly increased in the high-risk group. On the contrary, the

infiltration proportions of B cells (p< 0.001), CD4-T cells (p< 0.05),

Gamma-delta cells (p< 0.05), Th1 cells (p< 0.05), and MAIT cells (p<

0.001) were significantly reduced (Figure 6F; Figures S8B, D). The

correlation analysis of ImmuCellAI also showed a positive correlation

between risk score with infiltration of Dendritic Cells and a negative

correlation with infiltration of B cells and CD4+T cells (Figures 6L–N).

In addition, correlation analysis of riskscore and immune

infiltration scores calculated by the ESTIMATE algorithm

demonstrated a positive correlation between riskscore with
Frontiers in Immunology 09
Stromalscore, Immunescore, and ESTIMATEScore, respectively

(Figures 6O–Q). The above results indicated that the LASSO

model we constructed was closely related to immune infiltration.
3.9 Verification of the expression level of
hub genes

It was found that only CDK14, CRISPLD1, MYB, and SAMD11

showed significant differences in immune cell infiltration between

wild-type and mutation-type. Therefore, we selected them as hub

genes for validation of expression level. Using transcriptome data

from TCGA, we observed a significantly high expression of these

four hub genes in AML patients (Figures 7A–D). We also validated

the expression levels of hub genes by the validation set GSE114868.

As depicted in Figures 7E–H, CDK14 did not show statistical

differences between AML and normal tissue, while the expression

levels of residual hub genes remained consistent with TCGA. In

addition, we validated the expression level of hub genes in AML cell

lines. Compared with normal bone marrow mesenchymal stem

cells, the relative expression levels of the four hub genes were

significantly increased in AML cell lines (Figures 7I–L).
B

C D

A

FIGURE 5

Biological characteristics between high-and low-risk groups. (A, B). Gene set enrichment analysis (GSEA) of riskscore. (C, D). Gene set variation
analysis (GSVA) of riskscore.
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4 Discussion

Acute myeloid leukemia has a high degree of clinical

heterogeneity. Therefore, even patients with the same clinical

phenotype may have different outcomes (2). As the relationship
Frontiers in Immunology 10
between cytogenetics and AML is fully demonstrated, many

researchers have devoted themselves to revealing the role of

immune factors in the occurrence and development of AML and

considering it as a potential prognostic factor (21–23). In this study,

we obtained the turquoise module, which is highly correlated with
B C D

E F

G H I J

K L M N

O P Q

A

FIGURE 6

Immune microenvironment landscape of AML. (A–D). TIMER database was used to validate the relationship between the mutation of genes and the
infiltration level of immune cells in AML. (E). The proportion of immune infiltration between high-risk and low-risk groups using “GSVA” R package.
Red represents the high-risk group and blue represents the low-risk group. (F). The difference of immune infiltration between high-risk and low-risk
groups in the “ImmuCellAI” algorithm. Red represents the high-risk group and blue represents the low-risk group. (G–N). The correlation analysis
between immune cells and riskscore. (O–Q). The correlation analysis between immune factors and riskscore. (Tem, T effector memory cells; MAIT,
Mucosal-associated invariant T cells). (* P<0.05; ** P<0.01; *** P<0.001).
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the immune infiltration score, by performing WGCNA on

transcriptome data and corresponding clinical information

downloaded from the TCGA-LAML database. We also

constructed a prognostic model involving eight hub genes

through unsupervised clustering, mutation analysis, and LASSO

regression analysis. Then, a nomogram was displayed based on the

riskscore and age of the prognostic model for survival prediction.

Meanwhile, we conducted an enrichment analysis on the turquoise

module and two riskscore groups. In addition, we also depicted the

immune infiltrating tumor microenvironment landscape of high-

risk and low-risk group and hub genes, aiming to decipher the

pathogenic role of immune infiltration-related genes in the bone

marrow microenvironment of AML. The results of this study

indicated that the newly identified immune infiltration-related

prognostic model could serve as a potential prognostic biomarker

for AML.
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The prediction model obtained from high-dimensional data

may have the risk of overfitting, and the LASSO penalty effectively

addresses this defect (24). So far, several prognostic models have

been reported. For example, Guo et al. constructed a prognostic

model of six genes closely related to genetic abnormalities (25).

However, most previous studies lacked an evaluation of the

effectiveness of prognostic models in predicting survival.

Compared with previous prognostic models, the prognostic

model established in this study exhibited better predictive

performance (1-year AUC = 0.787; 3-year AUC = 0.839; 5-year

AUC = 0.920). More importantly, we focused on constructing

immune infiltration-related prognostic models for the first time,

which, to our knowledge, have been rarely reported in AML. In

addition, the prognostic model we constructed was not affected by

other clinical features and exhibited prognostic independence. Age

could also serve as an independent prognostic factor. Next, we
B C D

E F G H

I J K L

A

FIGURE 7

Verification of relative expression levels of hub genes. (A–D). The relative expression levels of hub genes in TCGA cohort. (E–H). The relative
expression levels of hub genes in external validation dataset GSE114868. (I–L). The relative expression levels of hub genes in BMSCs and AML cell.
(*** P<0.001; no significance, ns).
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combined the risk score and age to construct a nomogram to further

reveal the accuracy of survival prediction.

The GO and KEGG enrichment analysis results, indicated that

the genes generated from immune factor-related modules and

unsupervised clustering were closely related to biological

processes involving immune cells and the immune system.

According to early reports, FBXO11 had a tumor-suppressive

effect on myeloid malignancies. Its absence led to significant

changes in the transcription pathways that affected leukocyte

proliferation, differentiation, and apoptosis, thereby inducing

MDS to AML transformation (26). Wu et al. found that the

frequency of Th17 cells significantly increased in peripheral blood

samples of untreated AML patients. When patients achieved

complete remission after chemotherapy, the increased frequency

of Th17 cells decreased (27). Vegiventi et al. systematically reviewed

the dysregulation of the innate immune system and inflammation-

related pathways associated with hematopoietic defects in the bone

marrow microenvironment, which may affect the progression of

AML, as well as the variability in Toll-like receptors (TLRs)

expression and NF- kB activation, IL1 receptor-associated kinase

(IRAK) dysregulation, the changes of TGF- b and SMAD signaling

pathway were both related to the pathogenesis of MDS/AML (28). It

was worth noting that the enrichment analysis results between

different riskscore groups were highly consistent with the above

biological processes, further confirming that our constructed

riskscore model could indirectly reflect immune infiltration.

To reveal the complexity of the AML bone marrow

microenvironment, we assessed the infiltration levels of immune

cells in different groups. In ssGSEA and ImmuCellAI immune

infiltration analysis, the infiltration abundance of the DCs, Tem

cell (T effector memory), NK cell, and Macrophages group were

significantly increased in the high-risk scoring group. Moore et al.

confirmed that the bone marrow microenvironment regulated the

occurrence, proliferation, and chemotherapy resistance of AML,

and the depletion of bone marrow macrophages promoted the

growth of AML cells in vivo (29). Macrophages can be roughly

divided into two categories: pro-inflammatory and anti-

inflammatory. Tumor associated macrophages being commonly

anti-inflammatory (30). We know that increased macrophage

infiltration is part of the AML immune landscape, probably

related to its anti-inflammatory.

Through immune infiltration analysis in the TIMER database,

we found that compared with other genes in the prognostic model,

CDK14, CRISPLD1, MYB, and SAMD11 showed significant

differences in immune cell infiltration during mutations,

indicating the vital role of these genes in the prognostic model.

Currently, some studies have reported that these four hub genes in

prognostic models play key roles in the tumor microenvironment.

Schulz et al. found that the transcription factor MYB was essential

for macrophage development (31). Zhao et al. confirmed that the

MYB was the main regulatory factor for hematopoiesis, which can

promote proliferation, inhibit cell apoptosis, and block

differentiation, tending to the occurrence of leukemia (32).

Abnormal expression of MYB can lead to changes in immune cell
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infiltration in the tumor microenvironment. When MYB is

upregulated, the number of activated cytotoxic CD8+ T cells

increase, helping to regulate tumor growth (33). Stromal cells in

the tumor microenvironment are mainly composed of Cancer-

associated fibroblasts (CAFs). As an important member of CAFs-

related genes, CDK14 can predict the effect of anti-PD-1 treatment

in melanoma patients (34). Park et al. identified genetic changes in

CRISPLD1 in renal cell carcinoma (RCC) through whole exome

sequencing (WES) (35). As a member of the cysteine-rich secretory

proteins, antigen 5, and pathogenesis-related 1 proteins (CAP)

family, CRISPLD1 was found to be closely related to tumors and

immune defense (36). Titus et al. identified the abnormal

methylation site of SAMD11 in breast cancer through the TCGA

database (37). Unfortunately, there is no literature documenting

that SAMD11 is related to the tumor immune microenvironment.

In short, these results indicate that hub genes play an important role

in the tumor mic roenv i ronment (o r bone mar row

microenvironment). Although the functions of these hub genes in

AML have not been fully elucidated, we still confirmed their role in

prognostic models.

The RT-qPCR results of AML cells showed significantly high

CDK14, CRISPLD1,MYB, and SAMD11 expression in HL-60, THP-

1, and MOLM-13 cells, consistent with our bioinformatics results.

Based on previous research and the results of this study, we

speculated that changes in the pathological process of AML may

create a specific immune microenvironment that can recruit various

immune cells, including T cell, DC, and macrophage populations.

The recruited cells interacted with AML cells through various

immune-related signaling pathways and cytokines and led to

abnormal expression of immune infiltration-related genes

involved in the LASSO model. They, in turn, promoted the

progression of AML.

The advantage of this study lies in the application of multiple

bioinformatics methods to systematically analyze the transcriptome

data of TCGA-LAML, providing essential insights into the immune

infiltration-related genes (IIRGs) driving immune cell infiltration

into the bone marrow microenvironment of AML. Despite the

excellent risk stratification and predictive performance of the

prognostic model constructed of 8 hub genes, our study still had

certain limitations. On the one hand, the prognostic model

constructed with eight hub genes cannot fully represent the

transcriptional expression profile landscape of the entire AML

genome, and the prognostic model we constructed lacked

prognostic efficacy evaluation of a large number of clinical

samples. On the other hand, we only validated the relative

expression levels of hub genes in AML cell lines, needing more

in-depth mechanism research in vivo and in vitro. Although we

know that there are these limitations, this type of modelling is

powerful to identify gene targets for further studies. In the future,

we will explore the mechanisms by which immune infiltration-

related genes promote AML progression through in vivo and in

vitro experiments. At the same time, we will also apply prognostic

models to clinical trials to further evaluate the robustness of their

prognostic efficacy and achieve clinical translation.
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5 Conclusion

In summary, we applied WGCNA, unsupervised clustering, and

mutation analysis to identify 17 candidate genes with high mutation

frequencies and clinical significance. Subsequently, a prognostic

model with reasonable risk stratification performance was

established using the LASSO algorithm. The prognostic model

we constructed exhibits excellent predictive performance

compared to traditional prognostic evaluation methods. We also

identified a nomogram that combines riskscore and age for

further survival prediction. In addition, a series of immune

infiltration analyses revealed that abnormal infiltration of

immune cells into the bone marrow microenvironment driven by

hub genes and high-risk score groups may be a prominent immune

landscape in the occurrence and development of AML. To sum up,

the prognostic model we have constructed involving immune

infiltration-related genes is expected to become a potential

prognostic marker for AML.
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mutation with the risk score.
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Validation of the relationship between the mutation of genes and the
infiltration level of immune cells in TIMER database.
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