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Rheumatoid arthritis (RA) is an autoimmune disease causing progressive joint

damage. Early diagnosis and treatment is critical, but remains challenging due to

RA complexity and heterogeneity. Machine learning (ML) techniques may

enhance RA management by identifying patterns within multidimensional

biomedical data to improve classification, diagnosis, and treatment predictions.

In this review, we summarize the applications of ML for RA management.

Emerging studies or applications have developed diagnostic and predictive

models for RA that utilize a variety of data modalities, including electronic

health records, imaging, and multi-omics data. High-performance supervised

learning models have demonstrated an Area Under the Curve (AUC) exceeding

0.85, which is used for identifying RA patients and predicting treatment

responses. Unsupervised learning has revealed potential RA subtypes. Ongoing

research is integrating multimodal data with deep learning to further improve

performance. However, key challenges remain regarding model overfitting,

generalizability, validation in clinical settings, and interpretability. Small sample

sizes and lack of diverse population testing risks overestimating model

performance. Prospective studies evaluating real-world clinical utility are

lacking. Enhancing model interpretability is critical for clinician acceptance. In

summary, while ML shows promise for transforming RA management through

earlier diagnosis and optimized treatment, larger scale multisite data, prospective

clinical validation of interpretable models, and testing across diverse populations

is still needed. As these gaps are addressed, ML may pave the way towards

precision medicine in RA.
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1 Introduction

Rheumatoid arthritis (RA) is a prevalent autoimmune disorder

characterized by inflammation and discomfort in numerous small

joints, potentially leading to joint deformity and impaired

functionality. Furthermore, it ranks among the primary

contributors to chronic disability (1). Furthermore, RA not only

impacts the joints but also has implications for other bodily systems,

including the cardiovascular and respiratory systems, leading to an

elevated susceptibility to conditions such as myocardial infarction,

stroke, and pulmonary fibrosis (2, 3). Chronic illnesses and

persistent pain can result in psychological distress for patients,

manifesting as symptoms of depression and anxiety (4). Hence, it is

imperative to promptly identify individuals with a high

susceptibility to RA in order to facilitate early diagnosis and

anticipate the potential severity of disease progression.

Furthermore, the timely administration of efficacious medications

is essential in impeding the advancement of the disease.

The phrase “machine learning (ML)” surged in popularity in the

late 1990s in the field of artificial intelligence (5). In the past decade,

ML has made significant advancements as a result of the increased

availability of data and improvements in algorithms, enabling the

identification of complex patterns and correlations within datasets

(6). The biomedical field has experienced a significant increase in

data volume, ranging from molecular details to comprehensive

information on the human body system, due to advancements in

high-throughput sequencing technologies, electronic health

records, and medical imaging (7). Healthcare providers and

researchers are currently facing a growing number of clinical

challenges, leading them to explore ways to enhance decision-

making effectiveness, refine personalized treatment strategies, and

optimize resource allocation methods. ML is uniquely positioned to

extract valuable patterns and insights from large datasets,

potentially automating and enhancing the efficiency of healthcare

decision-making and services. The incremental incorporation of

biomedicine with various disciplines, including computational

science, mathematics, and statistics, has spurred interdisciplinary

partnerships, leading to accelerated progress in the application of

ML in the field of biomedicine (8). In the clinical practice of RA,

Rheumatoid Factor (RF) and Anti-Citrullinated Protein Antibody

(ACPA) serve as crucial diagnostic biomarkers for RA, playing key

roles in its diagnosis. However, approximately 20-25% of RA

patients are seronegative, posing challenges to early diagnosis and

potentially leading to delayed diagnosis and treatment (9). With the

advent and development of biologics, significant progress has been

made in the treatment of RA. Nevertheless, many RA patients

exhibit poor responses to drug treatments, failing to achieve

sustained remission (10), and currently, it is not possible to

predict which treatment drugs will have the best therapeutic effect

on individual patients. The accumulation of biomedical big data

may provide new insights into better understanding the

heterogeneity of RA (11). With the increase in data volume and

complexity, traditional statistical analysis methods have become

insufficient, especially when dealing with nonlinear relationships

and complex interactions between variables (12). These unmet
Frontiers in Immunology 02
needs pose challenges to the precision medicine of RA. Using ML

techniques for data processing and pattern recognition to build

predictive models for RA can assist clinicians in making more

accurate data-driven decisions (13). Therefore, understanding the

prevalent ML algorithms in RA, their effectiveness, and potential

applications is crucial. Our study is dedicated to evaluating recent

literature on applications of ML in RA classification and outcome

prediction, with the goal of offering a dependable benchmark for

reference and guiding future research endeavors. By enhancing the

utilization of sophisticated modeling in RA and advocating for

precision medicine in the field, our work aims to propel

advancements in RA treatment and management.
2 ML algorithms to enhance
precision rheumatology

ML, a crucial component of artificial intelligence, is divided into

two main categories: supervised and unsupervised learning.

Supervised learning employs labeled training datasets to identify

patterns and relationships. Upon training, the model can predict or

classify new data inputs, yielding corresponding results. This

method utilizes a range of algorithms, such as logistic regression,

random forests, gradient boosting, and decision trees. Each

algorithm contributes uniquely to the robustness and accuracy of

predictive outcomes, making supervised learning integral to

advancements in data-driven research methodologies (14).

Supervised learning is divided into two principal methodologies:

classification and regression (15). Classification methodologies

segregate patients according to distinct characteristics (16). By

employing datasets comprising genetic information, gene

expression profiles, and clinical indicators from patients with RA,

algorithms can be trained to identify RA patients within

populations, as well as to ascertain which patients exhibit optimal

responses to specific treatments. Regression models, on the other

hand, are designed to predict continuous outcomes (17), such as

disease activity scores and response rates to treatments in RA

patients, thus facilitating personalized monitoring and

management to optimize treatment efficacy. In contrast,

unsupervised learning explores inherent patterns and

relationships in datasets without predetermined labels (18).

Clustering algorithms, an exemplary application of unsupervised

learning, automatically group data into multiple clusters to

maximize intra-cluster similarity and minimize inter-cluster

similarity, aiding significantly in RA research by identifying

potential patient subgroups who may exhibit favorable responses

to specific treatments or distinct disease progression patterns. Deep

learning, employing Artificial Neural Network (ANN) technologies,

enhances the analysis and prediction of complex data through

sophisticated non-linear mapping relationships (19). Particularly,

Convolutional Neural Networks (CNNs) in deep learning

architectures are adept in processing image data (20), enabling

automatic feature learning from multiple convolutional layers

which assist physicians in identifying early signs of arthritis or

disease progression in X-ray or Magnetic Resonance Imaging (MRI)
frontiersin.org
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images of RA patients. In summary, supervised and unsupervised

learning each serve specific roles, while deep learning technologies

enhance the capability of these methods to process complex data,

thereby effectively advancing the field of precision rheumatology.

In the preprocessing phase, data cleaning and organization are

paramount, involving the removal of duplicates and correction of

anomalies (21). Furthermore, feature engineering plays a critical

role in identifying predictors (x) that significantly influence the

target variable (y) through strategic selection and transformation of

data, a crucial task in supervised learning. Accurate feature selection

not only enhances the precision of the model but also its

interpretability. When constructing predictive models, addressing

the challenge of managing a large volume of available features is

commonplace. While the use of advanced and efficient algorithms is

vital, ineffective predictive information derived from these features,

or the presence of numerous irrelevant variables, can impair model

performance. Implementing key feature selection strategies is

crucial, including statistical filtering, wrapper methods, and

advanced embedded techniques (22–24). For instance, Random

Forest assesses feature importance by calculating their contribution

to model accuracy (25), whereas Logistic Regression identifies key

influencing factors by analyzing the magnitude and direction of

coefficients (26). Through rigorous feature selection, the

dimensionality and complexity of the dataset are effectively

reduced, thereby enhancing the interpretability and practical

application of the predictive model in clinical decision-making

(22). For example, identifying RA patients with specific genetic

mutations through feature selection has indicated that these

individuals respond more positively to methotrexate, a principal

drug for RA treatment. This insight assists physicians in devising

targeted treatment plans, thereby improving therapeutic outcomes.
Frontiers in Immunology 03
ML algorithms are increasingly recognized as powerful

analytical tools in the field of RA research. As depicted in

Figure 1, they provide assistance across multiple domains,

including diagnosis, disease progression forecasting, prediction of

treatment responses, and identification of potential complications.

These computational tools are guiding the field towards a more

refined and individualized approach, allowing clinicians and

researchers to explore the complexities of RA with greater accuracy.
3 ML models in precision diagnosis
and therapeutics for RA

A variety of predictive models have been built using ML

algorithms in RA research. Presented in Table 1 is the appraisal

of performance when these ML models serve as classifiers across a

multitude of data types from various sources. The functionalities of

these classifiers include identification of individuals at risk for RA,

diagnosis and differentiation of subtypes, discrimination of disease

activity levels, forecasting of treatment outcomes as effective or

ineffective, and predicting the presence or absence of comorbidities.
3.1 Stratification of RA risk cohorts

Identifying individuals at risk for RA is crucial for early

intervention, which has been shown to yield substantially better

outcomes when applied during the preclinical stages rather than

after the overt development of clinically significant arthritis (70).

Specifically, by identifying individuals at high risk and conducting
FIGURE 1

Schematic overview of clinical prediction in RA using ML The schematic illustrates the comprehensive workflow and applications of ML algorithms in
the management of RA. It encapsulates the stepwise process from data collection, including electronic health records, imaging, and multi-omics
data, through data preprocessing and feature engineering, to model training and validation phases. The central part of the diagram highlights the
primary domains of ML application in RA: risk prediction, diagnosis and subtype classification, prediction of disease activity and progression,
treatment response, and comorbidity identification for RA. It emphasizes the iterative optimization of models and the synergy between clinical and
computational insights aimed at advancing early diagnosis, personalized treatments, and patient outcomes in RA management.
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TABLE 1 Application of ML in RA.

Task Sample Size Features ML
algorithms

Performance Ref

Risk Prediction Training set:
RA patients: n = 599
Controls: n = 1673
Test set 1:RA: n = 125
Controls: n = 349
Test set 2:RA: n = 127
Controls: n = 355
Test set 3:RA: n = 127
Controls: n = 355

9 SNPs LR, SVM, Naïve
Bayes, RF, XGBoost

AUC > 0.9 (27)

RA or no arthritis:
n =17,366
Training set: n = 8683
Validation set: n = 4342
Test set: n = 4341

Age, gender, race, high
BMI, gout, diabetic,
smoked, sleep, blood
pressure, patient health
questionnaire, income to
poverty ratio

Bayes validation set:
AUC = 0.826
test set:
AUC = 0.805

(28)

Training cohort:
RA: n=47
non-RA: n=64
Test cohort:
UA: n = 62

the Leiden prediction
rule, 12-gene risk metric

SVM AUC = 0.84 (29)

UA: n = 72,
RA: n = 8,
HD: n = 13

cpg sites,
clinical parameters

LR, SVM, RF AUC: 0.875-1 (30)

Diagnosis hand radiograph images:
Training set:
RA: n = 256
OA: n = 262
Normal: n = 231,
Others: n = 242;
Validation set:
RA: n = 56
OA: n = 57
Normal: n = 51
Others: n = 53;
Test set:
RA: n = 56
OA: n = 58
Normal: n = 51
Others: n = 53

– CNNs Classification of RA and
normal:
AUC = 0.97
Classification of RA and
OA and normal:
Acc = 0.806
Classification of RA and
OA and normaland
others:
Acc = 0.844

(31)

1337 RA ultrasound images of 208 patients – DL Classification of synovial
proliferation or not:
Group1/Group2/
Group3:
AUC = 0.863/0.861/
0.886
Classification of healthy
and diseased:
Group1/Group2/
Group3:
AUC=0.848/
0.864/0.916

(32)

Training set:
HC: n = 100
RA: n = 100
Validation set:
HC: n = 18
RA: n = 20

hand images,
Age, gripforce

BayesNet,
NaïveBayes,
Logistic, k-NN,
RF,etc.

Classification of RA and
HC
Acc = 0.947
Sen = 0.95
Spe = 0.944
AUC = 0.971

(33)

Training set: GSE93272, GSE45291, GSE74143,
GSE65010, GSE15573, GSE61635, GSE65391,

15 key genes AUC > 0.85 (34)

(Continued)
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TABLE 1 Continued

Task Sample Size Features ML
algorithms

Performance Ref

GSE138458, GSE143272, GSE113469, GSE50772
Test set: GSE55457,

LASSO, SVM, RF,
XGBoost,
BPNN, CNN

GSE93272, GSE17755 MAPK3, ACTB, ACTG1,
VAV2, PTPN6, ACTN1

LASSO Training set:
AUC= 0.801
Validation set:
AUC= 0.979

(35)

Uninflamed: n = 10
Resolving arthritis: n = 9
Early RA: n = 17
Established RA: n = 12

cytokine, chemokine GMLVQ RA vs. non-inflamed
group:
AUC = 0.996
Early RA vs. resolved
arthritis group:
AUC = 0.764

(36)

Training set: GSE12021, GSE55235, GSE55457,
GSE55584
Validation set: Dataset1: GSE89408
Dataset2: GSE77298, GSE153015

m6A
methylation regulators

RF, Rpart, LASSO,
XGBoost, LR

Classification of RA and
HC
AUC = 0.85 (IGF2BP3)
AUC = 0.85 (YTHDC2)

(37)

Serum of 225 RA patients and 100 HC
Discovery set: n = 243
Validation set: n = 82

26 metabolites and lipids LR, RF, SVM Classification of RA and
HC:
AUC = 0.91
Sen = 0.897
Spe = 0.906

(38)

Test cohort:
RA: n=36
OA: n=18
HC: n=18
Validation cohort:
RA: n=24
OA: n=12
HC: n=12

3 groups of differentially
expressed proteins

RF Classification of RA:
AUC = 0.9949
Classification of ACPA-
positive RA patients:
AUC = 0.9913
Classification of ACPA-
negative RA patients:
AUC = 1.0

(39)

IBD: n = 14, MS: n = 7, RA: n = 5, JIA: n = 3, SLE: n =
3, T1D: n = 2, BS: n = 2, AS: n = 2, APS: n = 1、PSC: n
= 1, MG: n = 1, ReA: n = 1

gut microbiome RF, SVM
, XGBoost,
Ridge Regression

Classification of RA and
IBD: AUC > 0.86
Classification of RA and
MS: AUC > 0.96

(40)

Discovery cohort: 167 RA and 91 controls
Validation cohort: 12 SLE、32 RA and 32 controls

miR-22-3p,
miR-24-3p,
miR-96-5p, miR-134-5p,
miR-140-3p, miR-627-5p

LASSO, RF, LR Classification of RA and
non-RA:
AUC = 0.71
Classification of ACPA-
positive RA and others:
AUC = 0.73
Classification of ACPA-
negative RA and others:
AUC = 0.73

(41)

H&E-stained images of TKR explant synovium (OA: n =
147, RA: n = 60)
Training set: n = 166
Test set: n = 41

14 pathologist-scored
features、computer
vision-quantified
cell density

RF Classification of RA and
OA
AUC = 0.91

(42)

129 synovial tissue samples
RA: n = 123
OA: n = 6

histologic scoring SVM Classification of the
high inflammatory
subtype and others:
AUC = 0.88
Classification of the low
inflammatory subtype
and others:
AUC = 0.71
Classification of the
mixed subtype and
others:
AUC = 0.59

(43)

(Continued)
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TABLE 1 Continued

Task Sample Size Features ML
algorithms

Performance Ref

Disease
activity/
imaging
progression

Hanyang Bae RA Cohort:
No progression:
n = 118
Severe progression:
n = 120
NARAC Cohort:
No progression: n = 68
Severe progression: n = 86

genetic and
clinical factors

SVM Classification of
radiologic progression
and no progression
AUC = 0.7872

(44)

ultrasound images from RA patients
Training set: n = 1678
Testing set: n = 322

– CNN Distinguishing class 0
from the other classes:
AUC = 0.96
Distinguishing class1
from class 2 and 3
classes:
AUC = 0.94
Distinguishing class 2
from class 3 classes:
AUC = 0.93

(45)

135 visits from 41 patients dose percentage change,
the DAS-28 ESR score,
ESR, disease duration,
CRP, and the duration of
remission at study entry

LR, KNN, NB, RF,
Stacking-
Meta Classifier

Classification of flare yes
and. flare no
AUC: 0.72 - 0.81

(46)

stable RA patients: n = 130
training set: n = 104
test set: n= 26

baseline
serum proteomics

LASSO, XGBoost Classification of flare
and remission
AUC = 0.8

(47)

2 electronic health record platforms
UH Cohort: n = 578 (Training Cohort : Test Cohort: n=
116)
SNH Cohort: n= 242 (Training Cohort: n = 125, Test: n
= 117)

medications, patient
demographics,
laboratories, and prior
measures of
disease activity.

DL Classification of
controlled and
uncontrolled
UH training model test
in UH Test Cohort:
AUC = 0.91
UH training model test
in SNH test Cohort:
AUC = 0.74

(48)

300 RA patients laboratory data, medicare
claims and medications

LR Classification of high/
moderate and low
disease activity/
remission
AUC = 0.76

(49)

Optum dataset:n = 68,608
Externally validatiation:
IBM CCAE: n = 75,579
IBM MDCD: n = 7,537
IBM MDCR: n = 36,090

health service utilization,
demographics,
prescription claims for
immunosuppressants,
steroids, DMARDs, pain
medications, and other
comorbid conditions.

regularized LASSO,
LR, RF, GBM

90-day TAR: AUC (IBM
CCAE) = 0.77, AUC
(IBM MDCR) = 0.75,
AUC (IBM MDCD) =
0.77,
730-day TAR:
AUC = 0.71

(50)

Terapeutic
response

MTX All patients with new onset RA
Training cohort:
n = 26
Validation cohort: n = 21

metagenomic,
clinical-pharmacogenetic
variables

RF AUC = 0.84 (51)

Training dataset: ESPOIR: n =
493
EAC: n = 239
External validation dataset:
Treach: n = 138

DAS28, creatininemia,
leucocytes, lymphocytes,
AST, ALT, swollen joints
count and corticosteroids
co-treatment.

LR, RF,
LightGBM,
CatBoost

Training dataset:
AUC = 0.73
External validation set:
AUC = 0.72

(52)

349 RA patients:
Training set: n = 279
Test set:
n = 70

95 haplotypes and 5
non-genetic factors

NN, SVM, LR, EN,
RF, Boosted Trees

AUC: 0.776 - 0.828
Sen: 0.656 - 0.813
Spe: 0.684 - 0.868

(53)

(Continued)
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TABLE 1 Continued

Task Sample Size Features ML
algorithms

Performance Ref

82 RA patients:
good responders:
n = 42
poor responders/nonresponders:
n = 43

gene expression L2-regularized LR,
RF, network‐
based approach

predictive utility
between 4 weeks and
pretreatmen: acc = 0.61,
AUC = 0.78
predictive utility at the
4‐week time point: acc =
0.68,
AUC = 0.78.

(54)

TNFi Discovery cohort:
n = 74(52 responders and 22 non
responders)
Validation cohort:
n = 25(14 responders and 11
non responders)

clinical and
molecular parameters

LR AUC = 0.91 (55)

Training dataset: n = 1892
Testing dataset: n = 680

demographic, clinical,
and genetic markers

linear models,
CART, SVM, GPR

Training dataset:
AUC = 0.66
Testing dataset:
AUC = 0.615

(56)

Synovial tissue samples:
RA: n = 256,
OA: n = 41
NC: n = 36;
Genes: n = 11,769

pathway and DEG NB, DT,
KNN, SVM

For infliximab response:
Pathway-driven model
AUC = 0.87, AUPR =
0.78;
DEG-driven mode
AUC = 0.92, AUPR
= 0.86

(57)

179 RA patients:
Training set: n = 141
Validation set: n = 38

9 clinical
parameters

NN Response to infliximab
AUC = 0.75

(58)

responders: n = 23
non-responders: n = 16

clinical data, flow
cytometry measurements,
protein measurements
and transcriptomics data

Linear, non-linear,
kernel-based

response to TNFi
AUC = 0.81

(59)

Training set: n = 161
Validation set: n = 118

DAS28, lymphocytes,
ALT, neutrophils, Age,
weight and ever smoked

LR, RF,
XGBoost, CatBoost

Response to Etanercept:
Training set:
AUC = 0.74
Validation set:
AUC = 0.70
Response to monoclonal
anti-TNF antibodies:
Training set:
AUC = 0.74
Validation set:
AUC = 0.71

(60)

Other
drugs

R4RA synovial biopsies:
n = 164

gene expression, clinical
data and
histological data

elastic net
regression, GBM

For rituximab response
AUC = 0.744
For tocilizumab
response
AUC = 0.681
For refractory state:
AUC = 0.686

(61)

1204 patients treated
with bDMARDs

age, rheumatoid factor,
ESR,
disease duration, CRP

Lasso, Ridge, SVM
, RF, XGBoost

Acc:
0.528 - 0.729
AUC: 0.511 - 0.694

(62)

Training set:
n = 625
Independent test set: n = 322

PtGA RF, XGBoost,
ANN, SVM

Acc = 0.726
AUC = 0.638
F1 score = 0.841

(63)

Training set:
51 MR and 85 NR

DAS-28 CART Training set:
AUC = 0.89
Sen = 0.88

(64)

(Continued)
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regular medical examinations and monitoring RA-related

biomarkers, such as inflammation levels and autoantibodies, early

detection of the disease can utilize the ‘window of opportunity’ for

therapeutic intervention. Early interventions can help prevent

severe radiographic damage and disability, thus significantly

improving patient prognosis (71). The exact etiology of RA

remains not fully understood; however, it is known that genetic

and environmental factors, as well as their interactions, influence

the onset and progression of RA (72). ML, as an effective data

analysis tool, is capable of processing and interpreting large

volumes of diverse data, ranging from genetic factors to lifestyle

choices. ML can uncover potential risk patterns within complex

genetic and environmental datasets, assisting clinicians in making

more accurate disease predictions and risk assessments.

Predictive modeling harnessing ML techniques to pinpoint

individuals at an elevated risk for RA can be principally

segregated into two domains: forecasting the incident risk in

asymptomatic persons and assessing the progression likelihood in

symptomatic patients with undifferentiated arthritis towards RA.

The detection of RA susceptibility in the broad population leans on
Frontiers in Immunology 08
the analysis of genetic variants alongside common clinical risk

indicators such as family history, age, and gender. A study found

nine single nucleotide polymorphisms (SNPs) linked to RA, by

combining these variations into a risk score and using ML

algorithms, researchers were able to accurately distinguish RA

patients from those without the condition, exhibiting five-fold

cross-validated AUCs surpassing the 0.9 threshold (27). 11 risk

factors for RA were identified from National Health and Nutrition

Examination Survey (NHANES) data and used to create a Bayesian

logistic regression model, which was refined using a Genetic

Algorithm. The model showed high predictive accuracy with an

AUC of 0.826 on the validation set (28). These findings highlight

the potential of machine learning strategies in predicting risk

populations for RA. Genetic risk scores derived from SNPs can

help identify an individual’s potential genetic risks, thereby

providing a crucial foundation for personalized medicine (73).

However, translating these studies into clinical decision support

tools faces obstacles, primarily ensuring the equal applicability of

Polygenic risk score (PRS) across populations (74). In reality, PRS

exhibits limited transferability among populations, and its clinical
TABLE 1 Continued

Task Sample Size Features ML
algorithms

Performance Ref

External validation cohort:
35 MR and 47 NR

Spe = 0.94
Validation cohort:
AUC = 0.82

Comorbidities 487 patients diagnosed with RA and osteoporosis
Training set: n = 340
Testing set: n = 147

baseline demographic,
clinical test indicators

RF, ANN, SVM,
XGBoost, DT

Training set:
AUC = 0.878
Testing set:
AUC = 0.872

(65)

2374 RA patients clinical features,
medication,
laboratory results

LR, RF,
XGBoost,
LightGBM

AUC = 0.75
Acc =0.68
F1 score = 0.7

(66)

2 atherosclerosis and 2 RA datasets NFIL3, EED, GRK2,
MAP3K11,
RMI1, TPST1

LASSO, RF AUC: 0.723 to 1 (67)

Training cohort:
RA+CHD: n = 294
RA: n = 718
Validation cohort: RA+CHD: n = 70
RA: n = 204

age, hypertension, anti-
CCP antibody positivity,
rheumatoid factor
positivity, a high ESR,
high CRP levels, and
dyslipidemia of LDL-c,
TC, triglycerides and
HDL-c

GBDT, KNN, LR,
RF, XGBoost, SVM

AUC = 0.77
Sen = 0.639
Spe = 0.772

(68)

RA-ILD: n = 75
RA-non-ILD: n = 78

age, KL-6, D-dimer,
CA19-9

LASSO, RF, PLS AUC = 0.928
Sen = 0.83
Spe = 0.81

(69)
fro
Acc, accuracy; ADA, adaptive boosting; ALT, alanine aminotransferase; AST, aspartate aminotransferase; APS, antiphospholipid syndrome; AS, ankylosing spondylitis; AUPR, area under the
precision-recall; BMI, body mass index; BS, behcet’s syndrome; b/tsDMARDs, biologic or targeted synthetic disease modifying antirheumatic drugs; CART, classification and regression tree;
CA19-9,carbohydrate antigen 19-9; CCP, cyclic citrullinated peptide; CHD, coronary heart disease; CRP, c-reactive protein; DAS 28, disease activity score-28; DEG, differentially expressed gene;
DL, deep learning; DT, decision tree; EN, elastic nets; ESR, erythrocyte sedimentation rate; GBDT, gradient boosting decision tree; GBM, gradient-boosted machine; GPR, gaussian process
regression; HC, healthy control; HDL, high density lipoprotein; IBD, inflammatory bowel disease; ILD, interstitial lung disease; JIA, juvenile idiopathic arthritis; KL-6, Krebs von den Lungen-6;
KNN, k-nearest-neighbors; LASSO, least absolute shrinkage and selection operator; LDL, low density lipoprotein; LR, logistic regression; MG, myasthenia gravis; MR, multi-refractory; MS,
multiple sclerosis; MTX, methotrexate; Non-ILD, rheumatoid arthritis-without interstitial lung disease; NB, naïve bayes; NN, neural networks; NR, non-refractory; OA, osteoarthritis; OP,
osteoporosis; PLS, partial least square; PRS, polygenic risk score; PSC, primary sclerosing cholangitis; PtGA, patient global assessment of disease activity; R, responders; RA, rheumatoid arthritis;
ReA, reactive arthritis; RF, random forest; SEN, sensitivity; SLE, systemic lupus erythematosus; SNH, safety-net hospital cohort; SNP, single nucleotide polymorphism; SPE, specificity; SVM,
support vector machine; TAR, time at risk; TC, total cholesterol; T1D, type 1 diabetes; TNFi, tumor necrosis factor inhibitor; TKR, total knee replacement; UH, university hospital cohort;
XGBoost, eXtreme Gradient Boosting.
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utility in RA remains undetermined, necessitating substantial

investment in extensive data collection across diverse ethnic

groups and methodological research to enhance genetic

prediction in admixed individuals (75). Another critical issue is

the interpretability of genetic findings in participants, requiring

clinicians to possess the capacity to comprehend and interpret data

(76). Furthermore, privacy and security of the involved genetic data

must be adequately ensured. Federated learning, as a distributed

machine learning technique, aims to achieve collaborative modeling

while ensuring data privacy, security, and legal compliance (77).

Participants can train their local models using their proprietary

data, and through iterative training, each participant contributes to

the construction of a global model without sharing their data

externally (78). This approach fosters collaboration among

multiple medical institutions, facilitating the sharing of model

learning outcomes (79).

The likelihood of individuals with undifferentiated arthritis

(UA), who exhibit joint symptoms without fulfilling the full

diagnostic criteria, subsequently progressing to RA poses a

clinical conundrum. Accurate prediction of this progression can

facilitate early diagnosis and intervention for those at risk, while

concurrently preventing overtreatment and diminishing both the

health repercussions and superfluous healthcare expenditures for

those unlikely to develop RA (80). Models are increasingly geared

towards the evaluation of dynamic variables, reflecting shifts

correlated with disease activity, such as gene expression profiles,

epigenetic modifications, and a spectrum of detailed symptomatic

and clinical markers.

A notable investigation sought to unearth clinically pertinent

predictive biomarkers from peripheral blood CD4 T cells in UA

patients, employing a support vector machine (SVM) classification

model. This approach demonstrated that an integration of the pre-

established Leiden predictive rule with a 12-gene risk indicator notably

enhanced the prognostic capability from the original (AUC=0.74) to a

significantly improved accuracy for seronegative UA patients

(AUC=0.84) (29). A comparative analysis of three distinct ML

algorithms revealed that a SVM model, which integrated DNA

methylation profiles from 40 CpG sites with clinical parameters

including disease activity score (DAS) and RF, effectively distinguished

individuals withUAwhowere predisposed to developing RAwithin one

year, achieving an AUC range of 0.85 to 1 (30).

Contemporary studies report promising predictive performance

in identifying at-risk individuals within the general population and

in forecasting RA development in patients with UA, and that the

features having the greatest impact on predictive outcomes were

identified and selected as much as possible during model training in

order to simplify the model and potentially improve performance

and generalizability. More important than performance, however, is

the potential for practical clinical application, and future studies will

need to examine the generalizability of the model by testing it in

populations of multiple ethnicities and regions, and tracking the

progression of individuals to RA in larger prospective cohorts to

observe the accuracy of the model.
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3.2 Diagnosis and subtype classification
of RA

The diagnostic framework for RA, especially in the context of

seronegative RA, is intricate and often obstructed by the absence of

potent biomarkers, impeding early detection and management (47).

Investigations are thus aimed at the identification of new

biomarkers to bridge this gap.

Non-invasive imaging techniques are pivotal in elucidating

inflammatory activity and its effects on joint morphology,

especially when serological markers are indistinct or inconclusive.

These tools are indispensable for both diagnostic purposes and for

monitoring treatment efficacy (81). Furthermore, the application of

ML algorithms in the analysis of imaging data presents a

sophisticated approach to patient classification (82). Üreten K

et al. presented a model of a Visual Geometry Group-16 (VGG-

16) neural network for hand radiographs augmented by transfer

learning to distinguish RA patients from non-RA patients, which

achieved an AUC of 0.97 (31). Ultrasound imaging of the

metacarpophalangeal joints in RA patients has been categorized

for classification purposes, employing a DenseNet-based deep

learning model in several regions of interest, significant efficacy

was demonstrated in distinguishing between synovial proliferation

and healthy and diseased synovium, as evidenced by AUCs

exceeding 0.8 (32). Additionally, research has been conducted

utilizing hand RGB images and gripforce as features to develop a

random forest model with an AUC of 0.97 for distinguishing

between individuals with RA and control subjects, thereby

offering a supplementary diagnostic tool for RA (33). Image-

based predictive models have shown notable performance in

research settings, accurately differentiating RA patients from

others in various cohorts, thereby contributing to the precision

and efficiency of RA diagnosis. These models facilitate the early

detection of abnormal changes within the joints, enabling timely

intervention and ultimately delaying the progression of RA.

However, their clinical application still faces significant

challenges. A primary obstacle is the interpretability of the

models. Owing to the ‘black box’ nature of deep learning models,

the decision-making processes are opaque and difficult to

comprehend, which may affect both physician and patient trust

and understanding of model predictions (83). To address this

limitation, some well-known methods can be utilized: The Class

Activation Mapping (CAM) technique helps in understanding the

regions of interest within images as attended by the model (84);

Shapley Additive exPlanations (SHAP) elucidate the global impact

of each feature on the model (85); and Local Interpretable Model-

agnostic Explanations (LIME) explicate the local prediction process

for individual samples (86). Collectively, these methods provide

interpretability tools that enhance comprehension of the model’s

decision-making process and improve its interpretability. Future

studies are also suggested to involve multi-center collaborations to

enhance image collection with the intent to further refine and

generalize these diagnostic models.
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In RA, both individual analyses and integrative omics studies

have accumulated a vast amount of data, providing insights into the

mechanisms of RA from multiple perspectives. Genomics identifies

genetic variations associated with RA, revealing potential genetic

mechanisms influencing gene expression (87). Epigenetic

modifications, including DNA methylation, histone modifications,

chromatin remodeling, and non-coding RNA, play crucial roles in

maintaining normal gene expression patterns. Epigenomics studies

these modifications to reveal gene expression and regulatory

mechanisms in RA, offering insights into the diverse molecular

processes involved (88). Transcriptomics, by analyzing the

variations in gene expression under different conditions, provides

a detailed elucidation of which genes are upregulated or

downregulated in RA. This process not only involves the

regulation at the genetic level but also directly affects the

production and function of the corresponding proteins (89).

Proteomics provides a comprehensive analysis of protein

composition, expression levels, and modification states,

elucidating the interactions and connections among proteins that

may play key roles in RA inflammation and immune response

processes (90). Metabolomics provides insights into the shifts in

metabolic states and pathways during the progression of RA. These

changes are potentially influenced by alterations in gene and protein

activities. Furthermore, metabolites themselves can play a

modulatory role, affecting gene transcription and protein

expression, thereby forming a complex interplay that influences

disease dynamics (91). Host genomic variations significantly

influence the composition of the gut microbiota, which can

synthesize, regulate, or degrade endogenous small molecules or

macromolecules, resulting in metabolic changes. Utilizing

metagenomics and related techniques reveals the role of gut

microbiota in the development of RA by influencing metabolic

pathways and modulating the host immune system (92). Omic

studies are characterized by the generation of vast, high-

dimensional datasets. ML algorithms are critically employed for

visualization and processing such information—finding patterns,

crafting predictive models, and examining large-scale, multi-omic

data to identify biomarkers and pathways implicated in disease

progression (93, 94). Existing research has integrated multimodal

data and employed various machine learning algorithms to develop

high-performance diagnostic models for RA. Key genes highly

correlated with RA phenotypes have been identified through the

application of weighted gene co-expression network analysis

(WGCNA) and differential gene expression (DEG) analysis on

RA blood sample microarray datasets. These genes have been

deployed as features to assess the performance of six ML models,

with five demonstrating commendable efficacy (AUC > 0.85) (34).

Through the sourcing of RA patient peripheral blood sample

microarray datasets from the GEO database, a platelet-related

signature risk score model was formulated, comprised of six

genes, using the Least Absolute Shrinkage and Selection Operator

(LASSO) algorithm. The model exhibited AUCs of 0.801 and 0.979

across the training and validation sets, respectively (35). Employing

the Generalized Matrix Learning Vector Quantization (GMLVQ)

method, mRNA expression profiles of cytokines and chemokines

from synovial biopsies were analyzed, leading to the identification
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of two gene sets. These sets were instrumental in generating a model

capable of differentiating between various arthritis types, with AUC

scores reaching 0.996 and 0.764 for distinguishing diagnosed RA

from non-inflammatory cases and early-stage RA from self-

remitting arthritis, respectively (36). By focusing on the

expression of 19 N6-methyladenosine (m6A) methylation

regulators, diagnostic models have been established to separate

RA from non-RA conditions. A subset of these regulators,

particularly IGF2BP3 and YTHDC2, demonstrated accuracies and

AUCs exceeding 0.8 across most ML models, indicating the

potential diagnostic importance of m6A methylation profiles (37).

A multi-variable classification model, incorporating 26 metabolites

and lipids, was devised utilizing three ML algorithms. The logistic

regression model, in particular, stood out for its ability to

differentiate seropositive and seronegative RA from normal

controls within an independent validation cohort, securing an

AUC of 0.91, thus showcasing that a holistic metabolomic and

lipidomic approach grounded in Liquid Chromatography-Mass

Spectrometry (LC-MS) can effectively segregate RA cases (38).

Serum antigens were analyzed in patient cohorts with RA,

osteoarthritis (OA), and healthy controls. Subsequently, distinct

biomarker sets were identified for the differentiation of RA, ACPA-

positive RA, and ACPA-negative RA using feature selection

through the Random Forest algorithm. The model demonstrated

exceptional performance with AUC values of 0.9949, 0.9913, and

1.0, respectively, establishing a proteomics-based diagnostic model

for RA (39). Furthermore, leveraging metagenomic data to predict

the microbiomic characteristics of the gut in autoimmune diseases

has been demonstrated to discriminate between various types of

autoimmune disorders (40).

Histopathology, as a fundamental pillar in confirming disease

diagnosis, stands as the definitive standard for the verification of

numerous ailments (95). Overlap of symptoms in certain

pathologies may obscure the principal etiology responsible for

articular manifestations; in such instances, tissue biopsy,

particularly of synovial tissue, proves invaluable. Following Total

Knee Arthroplasty (TKA), synovial samples from 147 OA and 60

RA individuals were subjected to hematoxylin and eosin (H&E)

staining. Utilization of a Random Forest Algorithm, integrating

pathologist-derived scores with computer vision-generated cellular

density measures, led to the construction of an optimal

discriminative model for OA and RA, achieving a model AUC of

0.91 (42). This serves as a potent discriminative tool for RA

assessment. Orange et al. utilized consensus clustering of gene

expression data from synovial tissues of patients with RA to

identify three distinct synovial subtypes: high-inflammatory, low-

inflammatory, and mixed. They subsequently employed a support

vector ML algorithm to distinguish between these subtypes based

on histological features, achieving area under the curve values of

0.88, 0.71, and 0.59, respectively (43).

Despite the high performance of ML-derived predictive models

for RA diagnosis, concerns on potential model overfitting due to

limited sample sizes, which may exaggerate effect sizes, cannot be

overlooked. Additionally, independent evaluation of the research

methodology, data processing, and outcomes by an external party

ensures the accuracy and reliability of the research findings.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1409555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2024.1409555
Validation of these models in diverse datasets, supplemented by

molecular biology experimentation, is imperative for evaluating

true diagnost ic meri t . Predic t ive models re ly ing on

histopathological data encounter additional challenges, including

the necessity for manual feature annotation by pathologists and the

invasiveness of the procedure, compounded by technical and

sample handling issues. External validation is a critical quality

control measure, ensuring that model utility and accuracy in

diagnosing RA reflect true clinical relevance and potential for

widespread application. The diagnosis of RA extends beyond

segregating RA from healthy subjects or OA patients. Future

investigations must address the diagnostic capacity of predictive

model-derived markers in distinguishing seronegative RA from

other inflammatory arthritides, such as psoriatic arthritis, reactive

arthritis, or spondyloarthritis. Concomitantly, safeguarding against

confounding variables and maintaining diversity within patient

cohorts are essential to render the model universally applicable.
3.3 Prediction of disease activity and
imaging progression in RA

Radiographic deterioration in RA is characterized by the degree

of articular damage and the presence of distinct lesions such as joint

space narrowing, bone erosion, and osteoporosis, as revealed

through diagnostic imaging modalities including X-rays, magnetic

resonance imaging, or computed tomography scans (96). The

quantification and prognostication of structural joint impairment

traditionally hinge on clinical expertise, underscoring the necessity

for an automated, bias-free evaluation method. A study utilizing

SVM modeling on cohorts comprising 374 Korean and 399 North

American patients with incipient RA identified SNPs correlated

with radiographic progression. An integrated model encompassing

SNPs with clinical parameters exhibited optimal performance,

yielding a mean ten-fold cross-validation AUC of 0.78, providing

a more satisfactory distinction between severe and non-severe

progression (44).

Radiological damage bears a significant association with disease

activity in RA, with heightened activity posing an increased risk for

osseous impairment. CNNs trained on ultrasound imagery of RA

joints, have facilitated the automatic grading of disease activity,

achieving an overall classification accuracy of 83.9% (45).

Vodencarevic et al. used data from 135 consultations with 41 RA

patients to predict flare incidents during biologic disease-modifying

antirheumatic drugs (DMARDs) tapering in remission. They

combined multiple ML models to achieve an AUC of 0.81 (46).

Furthermore, baseline serum proteomics from 130 stable RA

patients in clinical remission was analyzed for biomarkers

predictive of future disease flares, employing LASSO and eXtreme

Gradient Boosting (XGBoost) algorithms to construct predictive

models. The XGBoost model exhibited superior performance in

differentiating between relapsed and non-relapsed patients with an

AUC of 0.80 (47).

The expansive volume of patient intelligence and clinical

information harbored in electronic medical records (EMR) and

electronic health records (EHR) constitutes a substantial body of
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data ripe for investigation (97, 98). Nonetheless, hindrances such as

imbalances in data record quantities across patients, omissions of

pivotal information, and the variability in patient conditions and

therapeutic outcomes over time contribute to the complex temporal

nature of the data (48). Conventional ML techniques encounter

constraints concerning data pre-processing, time-series analysis

capacity, and the simplification of intricate relational processing

(99). Deep learning integrated with structured EHR data, have been

deployed to prognosticate disease activity during subsequent

outpatient rheumatology consultations, wherein the model trained

on the UH cohort manifested an AUC of 0.91 for internal validation

and 0.74 for external cohort testing (48). Feldman et al. endeavored

to enhance the precision of RA disease activity evaluation by

integrating electronic medical records and claims data, achieving

an AUC of 0.76 in discriminating high/moderate from low disease

activity/remission (49). Chandran et al. employed the use of

biologic agents or tofacitinib as a surrogate for distinguishing

disease severity indicators, with the model accurately predicting

both current and future disease activity validated across various

databases with AUCs exceeding 0.7 (50).

The aforementioned results substantiate the viability of

employing routinely documented clinical and laboratory data to

assess and forecast disease activity in RA. With the progressive

advancements in information technology, an extensive array of data

has become accessible, prompting researchers to explore ML

methodologies for the extraction of RA patient records from

electronic health record data, thereby enabling the study of

substantial populations at minimal expense. Algorithms trained

via ML are progressively leveraged with EMR for clinical

investigations. These algorithms function by detecting specifiable

patterns in the data associated with RA, yet systematic disparities in

EMR data quality present hurdles for model generalizability.

Despite these challenges, high-caliber investigations are somewhat

limited and the dependability and transferability of pertinent ML

methods remain largely undetermined, rendering periodic

evaluation of algorithm performance imperative. The current

research trend involves the utilization of thousands of digitally

annotated images obtained from large-scale observational studies,

clinical trials, and electronic medical records, along with clinical

data, to automatically classify and quantify the extent of joint

damage and activity scores in RA using ML algorithms (100–102).
3.4 Prediction of RA treatment response

In the realm of RA therapeutics, a plethora of options including

nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids,

conventional synthetic DMARDs, biologic DMARDs, and oral

small molecules have been made available (103). The selection of

appropriate treatments continues to challenge clinicians owing to

the vast range of alternatives and the prevalent trial-and-error

approach in therapeutic prescription, exacerbated by a lack of

comprehensive knowledge regarding drug efficacy and safety

across distinct patient demographics (53).

Methotrexate (MTX) stands as the quintessential first-line

therapy in RA treatment strategies (104). Investigation into
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1409555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2024.1409555
whether disparities in the gut microbiome across individuals could

serve as predictive markers for MTX efficacy in newly onset RA was

conducted by Artacho et al. Fecal samples from 26 new-onset RA

patients, procured prior to MTX treatment, were analyzed using

16S ribosomal RNA (16S rRNA) and shotgun sequencing.

Subsequent construction of a predictive model via random forests

revealed that a response to MTX treatment at 4 months could be

anticipated, with an AUC of 0.84, based on colony characterization

(51). Additional research involving ML algorithms applied to

clinical and biological data from 493 and 239 patients across two

cohorts, aimed to predict MTX treatment response at 9 months.

Notably, the Light Gradient Boosting Machine (LightGBM) model

acquired AUCs of 0.73 and 0.72 in training and external validation

sets, respectively (52). Lim et al. analyzed exome sequencing data

from 349 RA patients and predicted treatment response to MTX

using six ML algorithms. They identified 95 genetic factors and 5

non-genetic factors that influenced response. The predictions had

strong performance with AUCs between 0.776 and 0.828 in the test

set (53). Plant et al. utilized whole blood samples from RA patients

initiating MTX treatment, both before and 4 weeks after

commencement, conducting gene expression profiling to foretell

treatment response at 6 months. Application of an L2 regularized

logistic regression yielded an AUC of 0.78 (54). The development of

these predictive models has contributed significantly towards

identifying patients who are more likely to respond favorably to,

or may not derive benefit from, MTX treatment.

Anti-tumor necrosis factor (anti-TNF) agents have been

established as pivotal second-line therapeutic agents following

methotrexate. A prospective multicenter study recruited 104 RA

patients and 29 healthy donors to discover predictive biomarkers

for anti-TNF treatment usingML. A hybrid model combining clinical

and molecular variables achieved a high AUC value of 0.91 (55). The

DREAM RA Responder Challenge introduced a novel approach to

predicting anti-TNF treatment response by proposing an optimal

model that incorporates Gaussian Process Regression (GPR) and

integrates demographic, clinical, and genetic markers. This model

accurately predicts the Disease Activity Score in patients 24 months

post-baseline assessment and categorizes treatment response

according to the EULAR response criteria, effectively identifying

non-responders to anti-TNF therapy with an AUC of 0.6 in cross-

validation data (56). Kim et al. utilized 11 datasets containing 256

synovial tissue samples, integrating RA-associated pathway activation

scores and four ML types, and found that the SVMmodel performed

the best, with an AUC of 0.87 using the pathway-drivenmodel and an

AUC of 0.9 using the DEG-driven model (57).

Recent research has emphasized the potential benefits of

integrating diverse datasets for the purpose of treatment decision-

making. ML algorithms have demonstrated efficacy in enhancing

the precision of response prediction for TNF inhibitors and MTX.

Furthermore, ML methodologies are being increasingly utilized in

forecasting treatment responses to a range of other biologic

therapies (61–64). Clinical data may be limited by trial design,

including inclusion and exclusion criteria.Using deep learning

technology for cluster analysis on RA patients has revealed the

connection between patient characteristics and treatment response

(105). Advancements in spatial omics technologies enable a
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comprehensive and spatially intact analysis of synovial tissue in

RA patients. This approach allows for precise localization of cells,

exploration of cellular interactions, assessment of cell type

distributions, and identification of disease-associated molecular

markers (106). Integrating traditional multi-omics with spatial

data, spatial multi-omics elucidates the complexity and dynamics

of biological processes across various levels, including their

interactions and influences on each other. This approach deepens

our understanding of the pathological mechanisms of RA and

enhances our knowledge of its spatial heterogeneity (107). The

biopsy-driven RA randomized clinical trial (R4RA), which utilizes

spatial omics to create synovial biopsy gene maps, provides a

paradigm for predicting drug treatment responses and refining

therapeutic strategies. This is crucial for achieving personalized

medicine and optimizing treatment outcomes. Despite some

progress, spatial omics in RA research is still in its early stages.

Numerous challenges remain, such as high costs, high demands on

sample handling, patient acceptance, ethical issues, and the need for

advanced computational tools for data integration (108).

Overcoming these challenges will be crucial for developing

accurate, interpretable, and clinically applicable predictive models.

In summary while opportunities exist for refining the accuracy of

these predictions, progress is evident in this area of study. In the

future, using a larger, more comprehensive datase, appropriate

algorithms, and methods in parameter optimization, improving

model features and validating against independent cohorts may

further improve the discriminative power of predictive models.
3.5 Prediction of comorbidities related
to RA

ML is also gaining attention in the prediction of comorbidities

associated with RA. Focus within extant research has primarily been

oriented towards the identification of risk factors for osteoporosis (65,

66), assessment of cardiovascular risk (67, 68), and the prediction of

interstitial lung disease development (69) in individuals with RA.

Current models pertaining to comorbidities are limited in both

quantity and accuracy, with constraints stemming from various

sources, notably the scarcity of comprehensive comorbidity data

within RA patient cohort datasets. Furthermore, there is significant

variability in data quality across different cohorts. To overcome these

obstacles, future research should prioritize the accumulation of larger,

more robust datasets and improve integration among diverse data

sources.Simultaneously, there is a necessity for the advancement of

algorithms with broader applicability, thereby enabling the utilization

of ML in the prediction of complications associated with RA.
4 Conclusion and outlook

Integrating data from diverse sources allows ML models to yield

more comprehensive and precise predictions for the diagnosis and

treatment outcomes of RA. However, more focus and effort are needed

to create predictive models for comorbidities related to RA. Recent

research has demonstrated the potential of multimodal learning to
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improve clinical prediction accuracy. The optimal performing model

under specific conditions often necessitates an extensive comparative

analysis. Beyond frequently used metrics such as AUC, accuracy,

sensitivity, specificity, and F1 score, the employment of cross-

validation, the statistical tests applied, the model’s computational

cost, the data requirements, and accessibility, the adoption of

multimodal learning approaches aims to refine clinical predictions.

Efforts should be made to improve the clinical operability of models,

utilize external datasets from diverse origins for validation, assess the

model’s generalizability, monitor its long-term performance, and

evaluate its strengths and weaknesses through multidimensional

approaches rather than relying on a single performance metric.

Although ML models have demonstrated impressive predictive

prowess in research settings, it is imperative to establish their

practicality and effectiveness in real-world clinical scenarios. To

cultivate trust and acceptance among medical practitioners, it is

essential to enhance the interpretability of these models. This can be

achieved by prioritizing simplicity in experimental design or by

employing tools that enhance model interpretability. Finally, but

importantly, the privacy and ethical implications of big biological

data should be emphasized and protected.
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Hankemeier T, et al. Harmonization of quality metrics and power calculation in multi-
omic studies. Nat Commun. (2020) 11:3092. doi: 10.1038/s41467-020-16937-8

94. Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, et al. Recent trends in
biocatalysis. Chem Soc Rev. (2021) 50:8003–49. doi: 10.1039/D0CS01575J

95. Brown MV, McDunn JE, Gunst PR, Smith EM, Milburn MV, Troyer DA, et al.
Gunst PR Cancer detection and biopsy classification using concurrent histopathological
andmetabolomic analysis of core biopsies.GenomeMed. (2012) 4:33. doi: 10.1186/gm332

96. Yang S, Hollister AM, Orchard EA, Chaudhery SI, Ostanin DV, Lokitz SJ, et al.
Quantification of bone changes in a collagen-induced arthritis mouse model by
reconstructed three dimensional micro-CT. Biol Proced Online. (2013) 15:8.
doi: 10.1186/1480-9222-15-8

97. Liao KP, Kurreeman F, Li G, Duclos G, Murphy S, Guzman R, et al. Associations
of autoantibodies, autoimmune risk alleles, and clinical diagnoses from the electronic
medical records in rheumatoid arthritis cases and non-rheumatoid arthritis controls.
Arthritis Rheumatol. (2013) 65:571–81. doi: 10.1002/art.37801

98. Kurreeman F, Liao K, Chibnik L, Hickey B, Stahl E, Gainer V, et al. Genetic basis
of autoantibody positive and negative rheumatoid arthritis risk in a multi-ethnic cohort
derived from electronic health records. Am J Hum Genet. (2011) 88:57–69.
doi: 10.1016/j.ajhg.2010.12.007

99. Li H, Guan Y. Multilevel modeling of joint damage in rheumatoid arthritis. Adv
Intell Syst. (2022) 4:2200184. doi: 10.1002/aisy.202200184

100. Sun D, Nguyen TM, Allaway RJ, Wang J, Chung V, Yu TV, et al. RA2-DREAM
challenge community. A crowdsourcing approach to develop machine learning models
to quantify radiographic joint damage in rheumatoid arthritis. JAMA Netw Open.
(2022) 5:e2227423. doi: 10.1001/jamanetworkopen.2022.27423

101. Fiorentino MC, Cipolletta E, Filippucci E, Grassi W, Frontoni E, Moccia S. A
deep-learning framework for metacarpal-head cartilage-thickness estimation in
ultrasound rheumatological images. Comput Biol Med. (2022) 141:105117.
doi: 10.1016/j.compbiomed.2021.105117
frontiersin.org

https://doi.org/10.1002/art.41056
https://doi.org/10.1016/j.clim.2019.03.002
https://doi.org/10.1016/j.clim.2019.03.002
https://doi.org/10.3109/14397595.2016.1168536
https://doi.org/10.3109/14397595.2016.1168536
https://doi.org/10.1093/rheumatology/keab521
https://doi.org/10.1136/rmdopen-2022-002442
https://doi.org/10.1136/rmdopen-2022-002442
https://doi.org/10.1038/s41591-022-01789-0
https://doi.org/10.1186/s13075-021-02567-y
https://doi.org/10.1186/s13075-021-02635-3
https://doi.org/10.1186/s13075-021-02635-3
https://doi.org/10.1177/1759720X221124028
https://doi.org/10.2147/IJGM.S380197
https://doi.org/10.1038/s41598-023-48842-7
https://doi.org/10.3389/fimmu.2023.1126647
https://doi.org/10.3389/fimmu.2023.1126647
https://doi.org/10.18632/aging.v12i4
https://doi.org/10.1186/s13075-022-02800-2
https://doi.org/10.1186/s13075-022-02800-2
https://doi.org/10.1093/rheumatology/keu287
https://doi.org/10.1136/rmdopen-2018-000870
https://doi.org/10.1002/14651858.CD010227.pub2
https://doi.org/10.1016/j.jhep.2022.11.003
https://doi.org/10.1038/s41588-019-0379-x
https://doi.org/10.1038/s41588-022-01054-7
https://doi.org/10.1038/s41591-022-01767-6
https://doi.org/10.1109/TNNLS.2023.3269062
https://doi.org/10.1109/TNNLS.2023.3269062
https://doi.org/10.3390/ijerph20156539
https://doi.org/10.1001/jamadermatol.2023.5550
https://doi.org/10.1186/s13075-018-1715-8
https://doi.org/10.1016/j.pacs.2018.07.004
https://doi.org/10.1038/s41746-017-0013-1
https://doi.org/10.1038/s41746-019-0122-0
https://doi.org/10.1016/j.media.2019.101628
https://doi.org/10.1186/s13059-023-02858-4
https://doi.org/10.3390/biom12111604
https://doi.org/10.3390/plants8080270
https://doi.org/10.3389/fonc.2018.00041
https://doi.org/10.1016/j.molcel.2022.12.021
https://doi.org/10.1128/MMBR.66.1.39-63.2002
https://doi.org/10.3390/ijms20092070
https://doi.org/10.1159/000351912
https://doi.org/10.1038/s41467-020-16937-8
https://doi.org/10.1039/D0CS01575J
https://doi.org/10.1186/gm332
https://doi.org/10.1186/1480-9222-15-8
https://doi.org/10.1002/art.37801
https://doi.org/10.1016/j.ajhg.2010.12.007
https://doi.org/10.1002/aisy.202200184
https://doi.org/10.1001/jamanetworkopen.2022.27423
https://doi.org/10.1016/j.compbiomed.2021.105117
https://doi.org/10.3389/fimmu.2024.1409555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2024.1409555
102. Andersen JKH, Pedersen JS, Laursen MS, Holtz K, Grauslund J, Savarimuthu
TR, et al. Neural networks for automatic scoring of arthritis disease activity on
ultrasound images. RMD Open. (2019) 5:e000891. doi: 10.1136/rmdopen-2018-000891

103. Singh JA, Hossain A, Mudano AS, Tanjong Ghogomu E, Suarez-Almazor ME,
Buchbinder R, et al. Biologics or tofacitinib for people with rheumatoid arthritis naive
to methotrexate: a systematic review and network meta-analysis. Cochrane Database
Syst Rev. (2017) 5:CD012657. doi: 10.1002/14651858

104. Bluett J, Riba-Garcia I, Verstappen SMM, Wendling T, Ogungbenro K, Unwin
RD, et al. Development and validation of a methotrexate adherence assay. Ann Rheum
Dis. (2019) 78:1192–7. doi: 10.1136/annrheumdis-2019-215446
Frontiers in Immunology 16
105. Kalweit M, Burden AM, Boedecker J, Hügle T, Burkard T. Patient groups in
Rheumatoid arthritis identified by deep learning respond differently to biologic or targeted
synthetic DMARDs. PloS Comput Biol. (2023) 19:e1011073. doi: 10.1371/journal.pcbi.1011073

106. Jain S, Eadon MT. Spatial transcriptomics in health and disease. Nat Rev
Nephrol. (2024). doi: 10.1038/s41581-024-00841-1

107. Wu H, Dixon EE, Xuanyuan Q, Guo J, Yoshimura Y, Debashish C, et al. High
resolution spatial profiling of kidney injury and repair using RNA hybridization-based
in situ sequencing. Nat Commun. (2024) 15:1396. doi: 10.1038/s41467-024-45752-8

108. Kiessling P, Kuppe C. Spatial multi-omics: novel tools to study the complexity of
cardiovascular diseases. Genome Med. (2024) 16:14. doi: 10.1186/s13073-024-01282-y
frontiersin.org

https://doi.org/10.1136/rmdopen-2018-000891
https://doi.org/10.1002/14651858
https://doi.org/10.1136/annrheumdis-2019-215446
https://doi.org/10.1371/journal.pcbi.1011073
https://doi.org/10.1038/s41581-024-00841-1
https://doi.org/10.1038/s41467-024-45752-8
https://doi.org/10.1186/s13073-024-01282-y
https://doi.org/10.3389/fimmu.2024.1409555
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Advancing precision rheumatology: applications of machine learning for rheumatoid arthritis management
	1 Introduction
	2 ML algorithms to enhance precision rheumatology
	3 ML models in precision diagnosis and therapeutics for RA
	3.1 Stratification of RA risk cohorts
	3.2 Diagnosis and subtype classification of RA
	3.3 Prediction of disease activity and imaging progression in RA
	3.4 Prediction of RA treatment response
	3.5 Prediction of comorbidities related to RA

	4 Conclusion and outlook
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


