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Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder

characterized by the destruction of platelets. Although it was long believed that

the critical role of autoantibodies in platelet destruction, primarily through the

Fc-dependent platelet clearance pathway, recent findings indicate that the

significance of the Fc-independent platelet clearance pathway mediated by

hepatocytes, thus shedding light on a previously obscure aspect of ITP

pathogenesis. Within this context, the desialylation of platelets has emerged as

a pivotal biochemical marker. Consequently, targeting platelet desialylation

emerges as a novel therapeutic strategy in the pathogenesis of ITP. Notably,

prevailing research has largely focused on antiplatelet antibodies and the

glycosylation-associated mechanisms of platelet clearance, while

comprehensive analysis of platelet desialylation remains scant. In response, we

retrospectively discuss the historical progression, inducing factors, generation

process, and molecular regulatory mechanisms underlying platelet desialylation

in ITP pathogenesis. By systematically evaluating the most recent research

findings, we contribute to a comprehensive understanding of the intricate

processes involved. Moreover, our manuscript delves into the potential

application of desialylation regulatory strategies in ITP therapy, heralding novel

therapeutic avenues. In conclusion, this manuscript not only fills a critical void in

existing literature but also paves the way for future research by establishing a

systematic theoretical framework. By inspiring new research ideas and offering

insights into the development of new therapeutic strategies and targeted drugs,

our study is poised to significantly advance the clinical management of ITP.
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GRAPHICAL ABSTRACT

The role of platelet desialylation in primary immune thrombocytopenia.
1 Introduction

Primary immune thrombocytopenia (ITP), an acquired

autoimmune bleeding disorder, displays diverse characteristics of

heterogeneity (1), chronicity (2), asymptomatic nature (3), and

severity (4). As the global population ages, there is a discernible

increase in the quantity of ITP cases. The reported incidence of

primary ITP ranges from 1.9 to 6.4 per 100,000 per year in children

(5) and 2 to 10 per 100,000 per year in adults (6). Notably, there is a

higher prevalence among individuals over 60 years of age,

contributing to the growing health concern associated with this

condition. Additionally, women of childbearing age exhibit a

slightly elevated prevalence compared to men in the same age

group, with rates ranging approximately from 9.5 to 23.6 per

100,000 per year (7). Beyond the physical manifestation, patients

grappling with ITP face not only the imminent risk of severe or fatal

bleeding events but also content with a myriad of challenges,

including a high disease burden and unfavorable prognosis. These

factors contribute significantly to mental stress and psychological

burden. A retrospective analysis highlights the economic impact,

revealing that drug therapy for ITP incurs costs in hundreds of

millions of dollars annually, translating to an average yearly expense

of approximately $28,000 per ITP patient in the United States (8).

Despite notable advancements in ITP treatment, the disease’s

incidences remain elevated, and there exists a lack of

standardization in both diagnosis and treatment protocols.

Currently, there are no standardized guidelines for the diagnosis
Abbreviations: AMR, Ashwell-Morell receptor; DANA, 2-deoxy-2,3-didehydro-

N-acetylneuraminic acid; ITP, Primary immune thrombocytopenia; MKs,

Megakaryocytes; NEUs, Neuraminidases; PDE3A, Phosphodiesterase; PKA,

Protein kinase A; PS, Phosphatidylserine; TMEM16F, Transmembrane protein

16F; TPO, Thrombopoietin; vWF, von Willebrand factor; b-Gal, b-galactose; N-

GlcNAC, N-acetyl glucosamine.
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and treatment of ITP, which is a diagnosis of exclusion. This means

that the disease is identified by the absence of other causes or

conditions that could explain the reduction in platelet count. In

addition to reduced platelets, the rest of the blood cell counts are

normal. The diagnosis of ITP can only be confirmed by other

secondary factors of thrombocytopenia except medical history,

physical examination, blood count, and peripheral blood smear

microscopy (9–11). Nevertheless, this limited approach introduces a

risk of misdiagnosis, underscoring the critical need for precise

clinical diagnosis and individualized treatment strategies.

Addressing these challenges is imperative for enhancing patient

outcomes and refining the overall management of ITP.

However, a lack of a clear understanding of the pathogenesis of

ITP directly hinders the attainment of precise diagnosis and

personalized treatment strategies. Current research suggests that

the pathogenesis may be linked to immune system dysregulation

and the generation of autoantibodies targeting platelets. In other

words, the body’s immune system erroneously identifies its platelets

as foreign substances, leading to the production of antibodies that

attack these platelets. This process results in excessive platelet

destruction and clearance (12). Prior investigations have proposed

that platelet destruction caused by platelet autoantibodies primarily

occurs through the Fc-dependent platelet clearance pathway (FcgR).
In this pathway, the Fc segment of autoantibodies in ITP patients

binds to the Fc receptor on the surfaces of macrophages or hepatic

macrophages (Kupffer cells) located in the hepatosplenic

reticuloendothelial system. This forms an antibody-receptor

complex triggering platelet destruction and clearance by immune

cells. Simultaneously, it inhibits platelet aggregation and adhesion,

ultimately leading to thrombocytopenia (13, 14). Apart from the

platelet destruction mediated by FcgR, recent research has shown a

growing interest in hepatocyte-mediated Fc-independent platelet

clearance pathway. In this process, platelet autoantibodies induce

the desialylation of sialic acid from the platelet surface. Desialylated
frontiersin.org
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platelets are then recognized and cleared by the Ashwell-Morell

receptor (AMR) present in hepatocytes (15, 16). Platelet

desialylation emerges as a critical biochemical marker influencing

both platelet count and functionality. Mounting evidence indicates

that platelet desialylation plays a pivotal role in ITP pathogenesis,

with the process of platelet destruction likely correlated with the

production of platelet desialylation and its molecular regulatory

mechanisms (17–19). Subsequent observations revealed a gradual

recovery in peripheral platelet counts in mice as sialidase levels

increased (16). Clinical studies demonstrated that patients with

infection-induced thrombocytopenia exhibit significantly higher

levels of platelet desialylation (16, 20). Additionally, the use of the

sialidase inhibitor Oseltamivir to inhibit platelet desialylation could

significantly alleviate the phenomenon of low platelet counts (21,

22), thus suggesting a broader mechanism of platelet desialylation.

Altered desialylation in patients with ITP not only impairs platelet

count and functionality but also induces increased apoptosis, as

evidenced by heightened caspase-9 activation, particle formation,

and a reduction in platelet lifespan. These factors collectively

contribute to a decrease in platelet count and compromised

function (23–26). The aforementioned discoveries suggest that the

liver’s phagocytosis of desialylated platelets signifies a major

pathway for platelet breakdown, significantly contributing to the

development of ITP.

Therefore, in this manuscript, we synthesized the latest domestic

and international research findings to delineate the historical

progression of platelet desialylation and its triggering factors. We

subsequently conducted an in-depth analysis of the generation

process of platelet desialylation and its molecular regulatory

mechanisms. Finally, we explore the potential applications of

sialylation regulation strategies in the treatment of ITP.

Furthermore, we propose some prospective views and strategic

recommendations that can inform the clinical treatment of ITP by

elucidating the role of platelet desialylation in the pathogenesis of the

condition. These recommendations include methods to reduce viral

and bacterial infections, along with their associated antigenic

stimulation of the immune system. We also explore approaches to

modulate the expression of anti-platelet antibodies and the formation

process of sialic acid-glycoprotein complexes. Additionally, we delve

into the investigation of specific targets and biomarkers associated

with platelet desialylation to mitigate its impact on platelet function.

The overarching goal of these efforts is to offer more beneficial targets

and strategies for clinical management and drug development of ITP,

to avoid unnecessary or ineffective treatments. By facilitating a precise

diagnosis and individualized treatment for ITP patients, we aspire to

enhance treatment outcomes and improve the quality of life for those

affected by ITP.
2 Historical progression of
platelet desialylation

Over the past few decades, significant breakthroughs have been

made in understanding the process of platelet desialylation and its

impact on the development and progression of hematological
Frontiers in Immunology 03
diseases (Figure 1). Research from as early as the 1960s first noted

that platelets in ITP patients had reduced sialic acid content, leading

to their excessive destruction and clearance (17). This observation

sparked in-depth studies into the mechanisms of platelet

desialylation, particularly the Fc-independent pathways of platelet

clearance. In 2003, Hoffmeister et al. made a groundbreaking

discovery, revealing that platelets stored in vitro and then

transfused into humans were quickly cleared by the liver. Further

studies revealed that platelets stored for less than 2 hours lost b-
galactose (b-Gal) on the membrane glycoprotein GPIba, thereby
exposing N-acetyl glucosamine (N-GlcNAc) recognition sites. This

led to the rapid recognition and clearance of these platelets by aMb2
macrophages in the liver (27, 28). This finding answered long-

standing questions about why stored platelets were rapidly cleared

after transfusion. However, subsequent studies showed that blocking

the N-GlcNAc/aMb2 pathway did not resolve the issue of liver

clearance of stored platelets. A breakthrough came in 2008 when

Grewal found that pneumococcal-induced sepsis led to the release of

neuraminidase (NEUs) by the bacteria, which caused platelet

desialylation and exposed b-Gal, allowing the platelets to be

recognized and cleared by the AMR (29). This discovery not only

shed light on a novel function of the AMR but also offered a fresh

perspective on the platelet clearance pathway’s mechanism. Studies

also indicated that long-term storage (over 48 hours) of platelets led

to the recognition of b-Gal on GPIba by the AMR, potentially leading

to platelet desialylation (18, 30, 31). Additionally, desialylation of the

von Willebrand factor (vWF) receptor on platelets accelerated their

clearance (32). In 2015, Li et al. found that anti-GPIba antibodies in

ITP patients trigger the surface translocation of NEU1, leading to

platelet desialylation and subsequent recognition and clearance by the

AMR. This process could be blocked by sialidase inhibitors (15).

Further research discovered that the binding of desialylated platelets

to the AMR was discovered to activate the JAK2/STAT3 signaling

pathway, promoting the production of thrombopoietin (TPO)

production and thereby regulating thrombopoiesis (33). With an

improved understanding of platelet desialylation mechanisms,

researchers have developed more accurate diagnostic methods and

therapeutic approaches, including sialic acid level testing (34),

immunomodulators (35), immunoglobulin therapies (36), and a

few novel medications (37). These advancements aim to alleviate

symptoms and enhance the quality of life for patients with ITP.

Hence, reviewing the research on platelet desialylation not only

provides references for the treatment of ITP but also offers hope for

enhancing the quality of life for these patients.
3 Inducing factors for
platelet desialylation

The factors contributing to platelet desialylation primarily

encompass aging under normal physiological conditions,

autoimmune system disorders in pathological circumstances,

exposure to foreign antigens and autoantigens, and assaults by

pathogen-derived NEUs. These elements collectively play a

significant role in the generation of platelet desialylation (Figure 2).
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The factors contributing to platelet desialylation are diverse and

intricate among which are (i) Aging platelets: Under normal

physiological conditions, aging platelets shed sialic acid residue

from the surface glycoproteins during circulation. This exposes the

subterminal b-Gal, rendering targets for recognition, and clearance

by the AMR. This process also induces an up-regulation of TPO, a

significant factor in platelet desialylation (33). The influence on

platelet desialylation is noteworthy; (ii) Abnormal disorders of the

autoimmune system: In pathological states, autoimmune system

disorders in ITP patients result in the generation of corresponding

antibodies such as anti-GPIIb/IIIa, anti-GPIba, anti-GPIb/IX and

anti-GPIa/IIa antibody. These antibodies may induce platelet

desialylation, subsequently cleared by excessive phagocytosis by

the monocyte-macrophage system (38–40). The impact of

abnormal autoimmune system disorders on platelet desialylation

is substantial; (iii) Viral and bacterial infections: Plays a crucial role

in platelet desialylation. Antigens carried by viruses, combined with

native platelet antigens, lead to cross-activation of T and B cells,

epitope spreading, and eventually platelet desialylation (40).

Concurrently, NEUs originating from pathogens modify the sialic

acids on platelet surfaces, triggering platelet desialylation (37).

NEUs, characterized by a mushroom-like tetrameric glycoprotein

structure, are prevalent in viruses, bacteria, and mammalian cells

(41). NEUs are categorized into four types ranging from NEU1 to

NEU4 (Table 1). Among them, NEU1, NEU2, and NEU4 are

associated with platelet desialylation and are predominantly

found on resting platelets. Specifically aggregated by GPIba
activated by vWF, these enzymes catalyze the sialic acid moiety,

cleaving the sialic acid residues at the end of the sialic acid

glycoprotein complex. This process induces platelet desialylation,

creating a positive feedback loop of “platelet activation-

desialylation”, ultimately resulting in platelet clearance in the liver

(52). Hence, the inhibition of NEUs in the pathogenesis of ITP may
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contribute to thrombocytopenia. Reducing viral and bacterial

infections, along with inhibiting NEUs during the pathogenesis of

ITP, holds the potential for ameliorating thrombocytopenia.

The aforementioned studies suggest a crucial role for immune

factors in platelet desialylation, with abnormalities in the

autoimmune system identified as a primary predisposing factor

for this phenomenon. Furthermore, specific viral and bacterial

infections, along with the aging platelets, have been linked to

platelet desialylation. In conclusion, a thorough exploration of

these predisposing factors is essential for shedding light on the

role of platelet desialylation in the pathogenesis of ITP.
4 The process of generation of
platelet desialylation

Platelet desialylation is a sophisticated biochemical process

comprised of three pivotal stages (Figure 3). Initially, there is an

expression of relevant antiplatelet antibodies like GPIa/IIa, GPIba,
and GPIb/IX. Subsequently, specific antibodies interact with sialic acid

molecules via their specific domains, forming sialic acid-glycoprotein

complexes that facilitate mutual recognition and adhesion of platelets to

other cells or molecules. Ultimately, platelet desialylation is triggered by

NEUs, which removes the terminal sialic acid residues from the sialic

acid-glycoprotein complexes. This process leads to the identification of

desialylated platelets, subsequently recognized and cleared by the AMR

through an Fc-independent platelet clearance pathway.
4.1 Expression of antiplatelet antibodies

The expression of antiplatelet antibodies represents an initial step

in the process of platelet desialylation, and their levels significantly
A B D E F G HC

FIGURE 1

Historical progression of platelet desialylation: (A, B) The discovery of platelet desialylation can be traced back to the 1960s. (C) Subsequently, research has
elucidated its significant impact on the pathogenesis of ITP, particularly in relation to the exposure of GPIba to N-GlcNAC recognition sites, which are
cleared by aMb2 recognition. (D, E) Furthermore, researchers found that neuraminidases released by Streptococcus pneumoniae caused platelet
desialylation, exposing b-Gal. This exposed residue is recognized and cleared by the AMR. (F) Additionally, desialylation of the vWFR on platelets
accelerated their clearance. (G, H) With an in-depth understanding of the mechanisms governing platelet desialylation, relevant diagnostic and therapeutic
methods have emerged. These include sialic acid level detection, immunosuppressant administration, and immunoglobulin therapy.
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correlate with the pathogenesis of ITP. These antibodies encompass

class I antibodies targeting human leukocyte antigens and those

directed at glycoproteins. Notably, glycoproteins targeting

antibodies are predominantly localized within the megakaryocyte

system, exhibiting specificity as autoantibodies.

Categorized based on the antigenic target site, these antibodies

include various types such as anti-GPIa/IIa, anti-GPIba, anti-GPIb/
IX, and anti-GPIIb/IIIa antibodies (53, 54). In the majority of ITP

patients, anti-GPIIb/IIIa antibodies are present in 70% to 80% of cases,

while anti-GPIba antibodies are found in 20% to 40% of cases. A

minority of ITP patients may have both or exhibit antibodies against

other glycoproteins (38). Among these, the anti-GPIIb/IIIa antibody

primarily mediates platelet clearance through the FcgR pathway. The

binding of GPIIb/IIIa to the Fc segment of its specific antibody

activates the macrophage’s tyrosine kinase, binding to the low-

affinity FcgRIIA or FcgRIIIA on the macrophage’s surface. This

results in platelet removal through both direct phagocytosis and

complement-mediated phagocytosis in the spleen (7, 55).

In contrast, most studies reported that anti-GPIba antibodies

predominantly utilize an Fc-independent pathway for platelet

clearance. When GPIba binds to the F(ab)2 segment of its

specific antibody, it further stimulates platelet activation through

the GPIba-mediated signaling pathway. This induction leads to the
Frontiers in Immunology 05
removal of sialic acid residues from the platelet surface, exposing

subterminal b-Gal, which is recognized and cleared by AMR (24,

56, 57). Overall, anti-platelet antibodies such as GPIba play a

critical role in platelet desialylation. Abnormal expression or

mutation of these antibodies can result in thrombocytopenia and

impaired function, contributing to the immune system’s excessive

clearance of platelets and exacerbating the condition of ITP.
4.2 Formation of sialic acid-
glycoprotein complexes

The formation of sialic acid-glycoprotein complexes refers to

the binding of specific glycoproteins on the surface of platelets to

sialic acid molecules. This process significantly influences platelet

function and biological activity, and it is a key mechanism in the

desialylation of platelets in ITP. During the pathogenesis of ITP,

specific binding sites on the terminal glycan chains of platelet

glycoproteins, such as b-Gal and N-GlcNAc, can bind to sialic

acid molecules, forming “sialic acid-glycoprotein complexes”.

This complex formation alters the structure and function of the

platelet glycoproteins, thereby impacting the biological activity and

lifespan of platelets within the body. Taking GPIIb/IIIa (aIIbb3)
FIGURE 2

Inducing factors for platelet desialylation: The factors contributing to platelet desialylation include immune factors, viral and bacterial infection, and
platelet senescence. The immune factors predominantly encompass platelet autoantibodies, humoral immunity, and cellular immunity. Additionally,
foreign antigens and self-platelet antigens carried by the viruses can trigger cross-activation of B cells and T cells, leading to epitope spreading and
subsequent platelet desialylation. Simultaneously, pathogen-derived NEUs serve as pivotal regulators, contributing significantly to the induction of
platelet desialylation.
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and GPIb-IX-V as examples, these glycoproteins play central roles

in both physiological and pathological processes of platelets. GPIIb/

IIIa, a key factor in platelet adhesion and aggregation (58, 59), and

GPIb-IX-V, which serves as a receptor for vWF and is involved in

platelet adhesion and activation following vascular injury, are

frequently targeted (60, 61). After binding with sialic acid, these

glycoproteins may influence the recognition and clearance

mechanisms of platelets, contributing to the pathogenesis of ITP.

It has been discovered that GPIIb/IIIa promotes NEU1 surface

translocation and platelet desialylation in GPIIb/IIIa-containing

ITP patients relies on FcgRIIA signaling on the surface of splenic

macrophages rather than the platelet activation pathway (7).

Thus, understanding the binding mechanism between platelet

surface glycoproteins and sialic acid, namely, the formation of sialic

acid-glycoprotein complexes, is crucial for exploring the role of

platelet desialylation in the pathogenesis of ITP.
Frontiers in Immunology 06
4.3 Platelet desialylation

Initially, galactosidases (Gals) may catalyze the removal of sialic

acid residues from the terminal end of the sialic acid-glycoprotein

complex, initiating the process of platelet desialylation.

Subsequently, desialylation leads to the sequential exposure of b-
Gal and N-GlcNAC on the sialic acid-glycoprotein complex, which

is then recognized and cleared by the AMR or aMb2 in the liver.

Ultimately, deglycosylation results in the exposure of N-GlcNAC,

which may be recognized and cleared through carbohydrate

receptors, further mediating their uptake by macrophages.

Notably, the AMR, the principal lectin expressed on

hepatocytes, is a highly conserved transmembrane hetero-

oligomeric glycoprotein complex. The AMR recognizes, and

scavenges circulating desialylated platelet glycoproteins (62). It

has been established that the AMR facilitates platelet clearance by
TABLE 1 Types of Sialidases.

Categorization Position Substrate Function References

NEU1 Lysosome
Oligosaccharide,
glycopeptides

Phagocytosis, lysosomal degradation,
cytotoxicity, immunity

(42–44)

NEU2 Cytoplasm
Oligosaccharide,

glycoprotein, gangliosides
Differentiation of myoblasts and

neural cells
(42, 45, 46)

NEU3 Cytoplasmic membrane Gangliosides
Differentiation, apoptosis, and adhesion of

neural cells
(47–49)

NEU4
Endoplasmic reticulum,
lysosomes, mitochondria

Oligosaccharide,
glycoprotein, gangliosides

Differentiation, apoptosis, and adhesion of
neural cells

(42, 50, 51)
FIGURE 3

Platelet desialylation involves three key steps: 1. Expression of anti-platelet antibodies, such as anti-GPIIb/IIIa antibodies, anti-GP-IX-V antibodies and
anti-GPVI antibodies, in which anti-GPIba antibodies clear platelets through the Fc-independent platelet clearance pathway, thereby activating
immune cells and affecting platelet function and survival. In addition, the abnormal expression or mutation of these anti-platelet antibodies may lead
to thrombocytopenia and impaired function, and promote the excessive clearance of platelets by the immune system, thus exacerbating the disease
of ITP; 2. Specific binding sites (such as b-Gal and N-GlcNAc) on the terminal sugar chains of platelet surface glycoproteins form sialoglycoprotein
complexes with sialic acid molecules to change the structure and function of platelet glycoproteins, thereby affecting platelet biological activity and
function; 3. Gals may mediate platelet desialylation, resulting in removal of terminal sialic acid, thereby exposing b-Gal and N-GlcNAc on the surface
of platelets, allowing them to be recognized and cleared by specific receptors of the immune system such as AMR and aMb2. Together, these steps
constitute the complex mechanism of platelet desialylation in ITP, and its abnormality may lead to impaired and reduced platelet function, which in
turn affects the blood coagulation process.
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binding b-Gal, triggering the production of hepatic TPO via the

JAK2-STAT3 pathway (33). While the AMR does regulate platelet

clearance to a certain degree, the mechanisms by which it

participates in the clearance of desialylated platelets have not

been fully elucidated. Further research is needed to explore these

mechanisms in greater detail.

Additionally, the integrin aMb2 (also known as CD11b/CD18,

CR3, or MAC-1), situated on the surface of Kupffer cells, is another

receptor that recognizes and binds desialylated platelets as large

clusters of non-covalently bound heterodimeric transmembrane

glycoproteins. It has been discovered that Kupffer cells can

rightfully identify and engage in the phagocytosis of desialylated

platelets through aMb2 (63). Furthermore, cold-degalactosylated

platelets are cleared by the MAC-1. Recently, it was revealed that

macrophage galactose lectin (MGL) from Kupffer cells aids in the

clearance of desialylated platelets through collaboration with the

AMR (62). These findings imply that platelet desialylation is a

crucial element of the “glycan-agglutinin” mechanism, referring to

platelet clearance mediated by glycan-agglutinin binding (64, 65).

In summary, the desialylation process of platelets encompasses

several crucial stages, among which anti-GPIIb/IIIa antibodies and anti-

GPIba antibodies may be expressed, which play a significant role in the

activation and aggregation of platelets. Furthermore, the formation of

the sialic acid-glycoprotein complex and platelet desialylation are

indispensable in the pathogenesis of ITP. Aberrations in these

processes have the potential to lead to desialylation and structural

disarray of platelets, thereby impacting the coagulation cascade.
5 Molecular regulatory mechanisms of
platelet desialylation in ITP

The molecular regulatory process of platelet desialylation

involves the coordinated regulation of several key signaling

pathways, including PI3K/AKT, JAK/STAT, and MAPK signaling

pathways (Figure 4). A comprehensive understanding of these

signaling pathways and their interconnections is crucial to grasp

the role of platelet desialylation in the pathogenesis of ITP.
5.1 PI3K/AKT signaling pathway

The PI3K/AKT signaling pathway is a critical cellular pathway

with significant implications for the pathogenesis of ITP, playing a

pivotal role in the generation of platelet desialylation.

In the context of platelet desialylation, the PI3K/AKT signaling

pathway contributes to maintaining platelet stability, inhibiting

apoptosis, and promoting cell survival. Activation of PI3K kinase

leads to the generation of the intracellular secondary signaling

molecule PIP3, subsequently activating the AKT kinase. Activated

AKT then mediates platelet desialylation through various pathways.

Research has suggested that the decreased platelet counts observed in

ITP patients with anti-GPIba antibodies may be attributed to the

activation of the PI3K pathway induced by the anti-GPIba antibody,

leading to AKT activation, a downstream effector of PI3K (66).
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Subsequently, AKT induces platelet apoptosis by diminishing the

activity of protein kinase A (PKA), regulated by phosphodiesterase

(PDE3A), and simultaneously instigates platelet activation through

the AKT pathway. The exposure of apoptotic and activated platelets

to phosphatidylserine (PS) on the membrane surface allows

recognition, phagocytosis, and subsequent elimination of platelets

by Kupffer cells, resulting in decreased platelet count. Suppression or

genetic ablation of AKT or AKT-regulated apoptotic signaling, or the

obstruction of PS exposure, can protect platelets from clearance.

Inhibiting the biological activity of PDE3A, PKA, PS, etc., or

conducting gene knockdown of relevant proteins could potentially

mitigate antibody-induced platelet removal and augment the platelet

count. Another investigation revealed that Akt not only interacts with

the cytoplasmic structural domain of GPIba but also transmits vWF-

GPIba interaction signaling, culminating in platelet activation (67,

68). Furthermore, the PI3K/AKT signaling pathway may potentially

interact with other crucial signaling pathways to accelerate platelet

desialylation. For instance, the interaction of AKTwith other proteins

in the PI3K signaling pathway could trigger the release of calcium

ions from platelets and activate the Transmembrane Protein 16F

(TMEM16F), thereby influencing the aggregation and adhesion

properties of platelets (66, 69). Consequently, the suppression of

AKT-mediated apoptosis mitigates platelet clearance in vivo,

presenting a potential novel therapeutic approach for treating ITP.

These findings underscore the pivotal regulatory function of the

PI3K/AKT signaling pathway in platelet desialylation, thereby

impacting the pathogenesis of ITP through its influence on

platelet activation and apoptosis.
5.2 JAK/STAT signaling pathway

In the pathogenesis of ITP, the JAK/STAT signaling pathway

may regulate platelet desialylation through diverse mechanisms.

Initially, its activation may potentially influence the expression of

key enzymes involved in sialic acid synthesis, consequently leading to

reduced sialic acid production. Subsequently, aberrant JAK/STAT

signaling may enhance sialidase activity, accelerating sialic acid

degradation and resulting in reduced sialic acid on the platelet

surface. Ultimately, this pathway may also govern the expression of

genes associated with the biosynthesis and degradation of sialic acid,

thereby adjusting the concentration of sialic acid on the platelet

surface at the transcriptional level, consequently influencing the

process of platelet desialylation. Observations indicate that the

AMR interacts with desialylated platelets, modulating the

production of TPO via the JAK2 signaling pathway and STAT3

activation, both in vitro and in vivo (33, 70). This discovery offers new

perspectives and a deeper understanding of the prevalent adverse

clinical effects associated with JAK1/2 inhibition in ITP. Another

study found that IL-1b could induce an autocrine loop of IFN-b in

hematopoietic cells, activating the JAK/STAT signaling pathway and

further mediating the surface translocation of NEU1 on MKs in

patients with ITP, leading to platelet desialylation and decreased

platelet production. The JAK1/2 inhibitor Baricitinib has

demonstrated its ability to reverse platelet desialylation and

dysfunction both in vitro and in vivo (71).
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The above-mentioned results highlight the significant function

of the JAK/STAT signaling pathway in platelet desialylation. It not

only regulates the signaling aspects of platelet desialylation but also

influences the sialic acid content on the platelet surface by

modulating NEU expression.
5.3 MAPK signaling pathway

In platelets, the MAPK signaling pathway serves as a regulator

for various cellular processes, including platelet differentiation and

apoptosis. Consequently, this pathway might also be associated with
Frontiers in Immunology 08
platelet sialic acid metabolism and desialylation. Chen et al.

observed significantly elevated expression levels of MAPK and

mTOR, along with their phosphorylated proteins, in the platelets

of ITP patients compared to healthy individuals. This suggests that

the activation of the MAPK signaling pathway in the platelets of ITP

patients might be associated with platelet desialylation and

apoptosis (72). Furthermore, the activation of cytoplasmic

phospholipase A2, mediated by p38 MAPK, resulted in the

release of arachidonic acid from membrane phospholipids,

causing the shedding of 14–3-3z from Bad. Subsequently, 14–3-

3z, bound to the cytoplasmic region of GPIba, initiates platelet

desialylation and apoptosis (73, 74). The aforementioned findings
FIGURE 4

Molecular regulatory mechanisms of platelet desialylation in ITP: The molecular regulatory mechanism of platelet desialylation involves the
regulation of several key signaling pathways. In particular, the recognition and binding of anti-GPIb-IX antibodies triggers cascade activation of
downstream signals, thereby regulating multiple signaling pathways closely related to platelet function. For example, the PI3K/AKT signaling pathway
plays a central role in platelet desialylation, accelerating platelet apoptosis by inhibiting PKA activity and promoting PS exposure. Secondly, JAK/STAT
signaling pathway directly affects the level of sialic acid on the surface of platelets and accelerates the degradation process of sialic acid by
regulating the expression of enzymes related to sialic acid synthesis and degradation. Finally, activated MAPK signaling pathways enhance platelet
desialylation and promote platelet transition to apoptosis by promoting specific phosphorylation events. Activation of these signaling pathways not
only promotes biochemical changes in desialylation, but also leads to significant changes in platelet function. Under the action of metalloproteinase
ADAM17, the sialic acid on the cell surface is clipped and activates the anti-apoptotic signaling pathway within the cell by interacting with receptors
on the cell surface. In addition, through the synergic action of calcium-activated TMEM16F and xkr8 molecules, PS is redistributed from the inner
lobules of the plasma membrane to the outer lobules, and this change further leads to increased expression of b-Gal and P-selectin, which
intensifies platelet activation and clearance.
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indicate that the MAPK signaling pathway could play a pivotal role

in the process of platelet desialylation, providing valuable insights

into the modulating of this process and enhancing our

understanding of the pathogenesis of ITP. However, the precise

influence of this signaling pathway on the process of platelet

desialylation remains to be clarified, necessitating further research

in the future.

In conclusion, the molecular regulatory mechanisms of platelet

desialylation involve the modulation of multiple signaling

pathways. These regulatory mechanisms are crucial for

maintaining platelet stability, functionality, and lifespan. Aberrant

activation or impairment of these signaling pathways could lead to a

decrease in platelet count and abnormal function. Hence, a

comprehensive exploration of the molecular regulatory

mechanisms of platelet desialylation is anticipated to provide new

pathways and strategies for the accurate diagnosis and personalized

therapy of ITP.
6 The potential application of
sialylation modulation strategies in the
treatment of ITP

The treatment strategy for ITP should adhere to the principles

of stratification and personalization to ensure sustained platelet

counts at safe levels and reduce incidents of bleeding while

minimizing adverse effects. Glucocorticoids remain the primary

therapeutic agent for ITP. However, a staggering 98% of patients

undergoing prolonged hormonal therapy experience side effects,

leading to 38% discontinuing or reducing their medication due to

intolerance. Additionally, some patients exhibit no response to

glucocorticoids or experience a disease relapse upon cessation of

hormonal treatment (75, 76). Furthermore, certain strategies such

as the administration of rituximab (77, 78) and splenectomy (79,

80) aim to manage ITP by reducing platelet destruction. However,

there remains a subset of patients for whom these treatments are

ineffective or who encounter postoperative recurrence issues (81).

In recent years, the emergence of sialidase inhibitors has opened up

novel therapeutic avenues for ITP patients, showing enhanced

efficacy in clinical management (Table 2). Currently, primary

sialidase inhibitors include Oseltamivir and 2-deoxy-2,3-

didehydro-N-acetylneuraminic acid (DANA), which may enhance

platelet production by inhibiting platelet desialylation, consequently

augmenting platelet counts in ITP patients.

Oseltamivir is a specific sialidase inhibitor widely utilized in

clinical settings for the prophylaxis and therapy of Influenza A or B

virus infection, stands out among these inhibitors (88). Compared

to existing ITP treatment drugs, Oseltamivir mitigates the immune

cells’ onslaught on platelets by interfering with the structure of sialic

acids on their surface. Meanwhile, this oral therapy is clinically

readily available and more cost-effective compared to intravenous

immunoglobulin therapy and most second-line therapies.

Furthermore, re-administration of Oseltamivir during relapse

resulted in higher remission rates. Multiple independent

retrospective studies indicate that Oseltamivir may mitigate the
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destruction of peripheral platelets by inhibiting platelet

desialylation and restoring platelet counts in ITP patients (82–84,

89, 90). Combining Oseltamivir with other therapeutic approaches

has the potential to optimize current first-line therapy, potentially

enhancing platelet responses to improve the long-term prognosis of

ITP patients. In a clinical study, four out of six patients with

refractory ITP who were administered Oseltamivir in conjunction

with other ITP medications achieved remission and exhibited

higher initial response rates (85). A recently published Phase II

trial investigating the efficacy of Oseltamivir coupled with

dexamethasone for treating ITP in Lancet Hematology indicated

that the group treated with the Oseltamivir-dexamethasone

combination demonstrated significantly higher effectiveness in

treating ITP compared to the group treated with dexamethasone

alone (86). Although additional studies have explored the potential

of Oseltamivir as a novel target therapy in ITP, more

comprehensive large-scale clinical trials are required to

systematically assess its long-term effectiveness and side effects

(such as nausea, vomiting, headache, muscle pain and

drowsiness). Substantial evidence-based medicine is needed to

validate the safety and effectiveness of Oseltamivir as a first-line

therapeutic choice for ITP.

DANA, a synthetic inhibitor of mammalian, bacterial, and

viral sialidases, has been investigated as a potential therapeutic

agent for ITP. Several in vivo experiments utilizing a mouse

model of ITP showed that DANA effectively decreased platelet

breakdown by inhibiting platelet desialylation (91, 92). These

promising results suggest that DANA holds potential as a viable

therapeutic strategy for ITP, providing valuable insights for

future clinical investigations and the advancement of

related pharmaceuticals.

The aforementioned findings propose that aberrant

desialylation alterations in ITP could present novel therapeutic

targets. Consequently, inhibiting desialylation using sialidase

inhibitors is expected to emerge as a fresh therapeutic approach

for treating patients diagnosed with ITP. However, further clinical

investigations are necessary to confirm the safety and long-term

efficacy of these medications, as well as to determine the optimal

methods for their utilization.
7 Conclusions and perspective

The classical mechanisms of ITP mainly involve autoantibodies

and the destruction of platelets mediated by the immune system

(93, 94). However, recent research indicates that the Fc-

independent pathway of platelet clearance also plays a part in the

pathogenesis of ITP, with desialylation recognized as a new

mechanism for Fc-independent platelet clearance. NEUs facilitate

platelet desialylation, leading to Fc-independent platelet clearance

in patients with ITP via the AMR.

Given the complexity of the biological processes driving the

pathogenesis of ITP, potential directions for future research towards

mitigating platelet desialylation could include the following four

areas: (1) reducing the aging of circulating platelets and the

stimulation of the immune system due to viral and bacterial
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infections and their associated antigens; (2) regulating the

expression of antiplatelet antibodies and the formation of the

sialic acid-glycoprotein complex to prevent platelet reduction and

dysfunction caused by their abnormal expression or mutation; (3)
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through comprehensive research of platelet desialylation, exploring

specific targets and conducting subsequent experiments to regulate

the degree of platelet desialylation using AMR inhibitors and gene

knockout techniques, to reduce the production of antiplatelet
TABLE 2 Therapeutic Effect of Sialidase Inhibitors.

Medicines Object Research design
Method

of administration
Results of treatment P-value References

Oseltamivir
A 13-year-old girl
with chronic ITP

–

Oral Oseltamivir 75
mg twice daily for 5
days with 30 days

follow-up

After 16 days of
Oseltamivir treatment, the
patient’s platelet counts
increased from 4 × 109/L

to 97 × 109/L

– (82)

Oseltamivir

A cohort of 10
female patients aged
5–79 years with
chronic ITP

–

Oral Oseltamivir 75
mg twice daily for 5
days with a 6-month

follow-up

After 6 months of
Oseltamivir treatment, the
patient exhibited a 40%

response rate, and platelet
counts increased from
16×109/L to 111×109/L

– (83)

Oseltamivir
385 adult patients
with influenza A

or B
Retrospective study

Oral Oseltamivir 0.99
mg

(cumulative dose)

After 14 days of
Oseltamivir

administration, the two
groups of patients

receiving Oseltamivir
demonstrated increased

platelet counts of (57.53 ±
93.81) ×109/L, p=0.013,
and (50.79 ± 70.59) ×109/
L, p=0.023, respectively.

These counts were
significantly higher than

those in the group
without Oseltamivir,

which remained at (18.45
± 89.33) ×109/L

P<0.05 (84)

Oseltamivir

35 individuals
diagnosed with ITP
spanning ages 2 to

79 years

Multicenter,
prospective study

Oral Oseltamivir 75
mg twice daily for 5
days with a 3-month

follow-up

After 3 months of
Oseltamivir treatment, the
overall response rate was

66.7% (3 CR, 1 R)

P<0.05 (85)

Dexamethasone
combined

with
Oseltamivir

A group of 96
patients aged 18

years or older with
newly diagnosed
untreated ITP

Multicenter,
randomized, open-
label, parallel groups

Dexamethasone
monotherapy (40
mg/day orally for 4
days) or combination

therapy with
dexamethasone (40
mg/day orally for 4

days) plus
Oseltamivir (75 mg
orally twice daily for

10 days) was
administered,

followed by a 6-
month follow-
up period.

After 14 days of
administering Oseltamivir,

patients in the
Oseltamivir-co-

dexamethasone group
showed a notably higher
initial remission rate

(86%) compared to the
decemethasone-only

group (66%; odds ratio
(OR) 3.18; 95 CI% 1.13–
9.23). Furthermore, after 6
months of treatment, the

rate of sustained
remission was significantly
higher in the Oseltamivir

combined with
dexamethasone group

than in the
dexamethasone-only
group (23 (53%) vs. 14
(30%); OR 2.17; 95% CI

1.16–6.13)

P<0.05 (86)

Oseltamivir

A set of 7 female
patients aged 16–74
years with chronic,

persistent, or
refractory ITP

Prospective, single-
group

intervention study

Oral Oseltamivir 75
mg twice daily for 5
days with a 6-month

follow-up

After 6 months of
Oseltamivir treatment, 3
patients (42.9%) remained
in remission and 1 patient
developed a Complete
Response (14.3%)

P<0.05 (87)
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antibodies; (4) identifying specific biomarkers associated with

platelet desialylation, such as those that could modulate NEU

activity based on variations in platelet counts.

In conclusion, the process of platelet desialylation significantly

impacts the pathogenesis of ITP. Therefore, a comprehensive

exploration of the factors causing platelet desialylation, the

underlying biochemistry and molecular regulation of this process,

and the application of desialylation regulation strategies for the

treatment of ITP may help develop new therapeutic approaches and

techniques for this disease. It will also facilitate the accurate

diagnosis and individualized treatment of ITP patients to enhance

treatment effectiveness and improve their overall well-being while

reducing the burden of immune-related platelet disorders on the

healthcare system.
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89. Álvarez-Román MT, Rivas Pollmar MI, Bernardino JI, Lozano ML, Martıń-
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