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Hospital of Nanjing University Medical School, Nanjing, China, 3Department of Anesthesiology and
Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
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Background and aims: The mitotic catastrophe (MC) pathway plays an important

role in hepatocellular carcinoma (HCC) progression and tumor microenvironment

(TME) regulation. However, the mechanisms linking MC heterogeneity to immune

evasion and treatment response remain unclear.

Methods: Based on 94 previously published highly correlated genes for MC, HCC

patients’ data from the Cancer Genome Atlas (TCGA) and changes in immune

signatures and prognostic stratification were studied. Time and spatial-specific

differences for MCGs were assessed by single-cell RNA sequencing and spatial

transcriptome (ST) analysis. Multiple external databases (GEO, ICGC) were

employed to construct an MC-related riskscore model.

Results: Identification of two MC-related subtypes in HCC patients from TCGA,

with clear differences in immune signatures and prognostic risk stratification.

Spatial mapping further associates low MC tumor regions with significant

immune escape-related signaling. Nomogram combining MC riskscore and

traditional indicators was validated great effect for early prediction of HCC

patient outcomes.

Conclusion: MC heterogeneity enables immune escape and therapy resistance

in HCC. The MC gene signature serves as a reliable prognostic indicator for liver

cancer. By revealing clear immune and spatial heterogeneity of HCC, our

integrated approach provides contextual therapeutic strategies for optimal

clinical decision-making.
KEYWORDS

mitotic catastrophe, spatial transcriptome, prognosis, hepatocellular carcinoma,
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1 Introduction

Primary liver cancer (PLC) is one of the most common

malignant tumors globally and the leading cause of tumor-related

deaths (1). Each year, over 700,000 new hepatocellular carcinoma

(HCC) cases are diagnosed worldwide, with half occurring in China

(2). PLC primarily includes HCC, intrahepatic cholangiocarcinoma,

and mixed hepatocellular cholangiocarcinoma, with HCC being the

most prevalent (3). HCC is challenging to diagnose early and

progresses rapidly, resulting in poor prognosis. The American

Joint Committee on Cancer (AJCC) classification is routinely

used to assess HCC risk and treatment based on clinical stage.

However, due to the complex tumor pathogenesis, individual

differences, and tumor microenvironment (TME) heterogeneity,

AJCC may be insufficient for accurately predicting prognosis and

chemotherapy response. Furthermore, adjuvant chemotherapy

(ACT) decisions based on clinicopathological staging, without

considering molecular characteristics, risk inappropriate

treatments (4). Therefore, exploring HCC molecular mechanisms

and identifying new therapeutic targets is of significant scientific

and clinical value.

Tumor cell proliferation, driven by excessive activation of

mitosis-related signals, is a hallmark of cancer (1, 3). Mitotic

catastrophe (MC) is a key regulatory mechanism in tumor cell

death, triggered by issues such as spindle assembly defects and

DNA damage, leading to cell division failure and programmed

cell death via necrosis, apoptosis, senescence, or autophagy (5, 6).

MC is characterized by abnormal cell division features like

multinucleation, micronuclei, meganuclei, multipolar spindles,

and polyploidy (7). MC disorders are involved in various liver

diseases, including cirrhosis and liver tumors, playing a critical role

in HCC progression, drug resistance, and immune evasion.

Therefore, targeting MC in tumor cells offers a novel therapeutic

perspective (8, 9).

Recent studies suggest that certain chemotherapeutic drugs may

benefit HCC patients by activating the MC pathway. For instance,

Taxol disrupts mitosis and induces cell death by stabilizing

microtubules, forming multinucleated cells. A small molecule

inhibitor, CGK733, enhances Taxol’s MC toxicity by targeting

ATM and ATR kinase activity (10). Low-dose doxorubicin also

induces HCC cell death through MC, forming cells with multiple

micronuclei, while high-dose doxorubicin only induces apoptosis.

Bcl-xL overexpression blocks apoptosis from high-dose

doxorubicin but not MC and non-apoptotic death from low-dose

doxorubicin (11, 12). Moreover, the HCC first-line treatment,

sorafenib, can induce DNA replication errors and irregular

mitosis, leading to MC and enhanced non-apoptotic liver injury

by inhibiting Cyclins (E, A, and B) (13). Radiotherapy similarly

causes MC through irreparable DNA double-strand breaks and

micronuclei formation, leading to tumor cell mitotic failure (14).

The TME plays a crucial role in HCC development and

recurrence, with potential interactions between MC and TME

affecting tumor progression and immune response (15). Hypoxia

in the TME may regulate MC either positively or negatively (16).

Chronic biophysical constraints and AMPK-mediated molecular

coevolution in the TME can promote chromosomal changes and
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mitosis progression in cancer cells (17). However, radiotherapy-

induced MC may exacerbate TME conditions through micronuclei

DNA fragmentation and senescence-associated secretory

phenotype (SASP), necessitating senolytic drugs to clear senescent

cancer cells (14). Targeted therapies may also influence tumor

differentiation and metastasis by mediating the MC pathway (15).

This study utilized bioinformatics methods and predictive

modeling to evaluate key MC regulatory genes in liver cancer

progression and their correlation with TME. We aimed to

identify immune associations with MC-related genes (MCGs) in

HCC and explore the MC signature’s potential as a biomarker for

HCC treatment.
2 Methods

The workflow of this study was shown in Supplementary

Figure S1.
2.1 Publicly available cohort datasets
and preprocessing

We obtained all MCGs from a previously published database

(18), which currently contains 1,214 MC-associated genes and 5,014

compound data entries. From these, we selected 94 candidate genes

with the highest feasibility level as our MCGs. We collected gene

expression profiles of HCC and corresponding clinical datasets

from the Gene Expression Omnibus (GEO) (19), The Cancer

Genome Atlas (TCGA) (20), and the International Cancer

Genome Consortium (ICGC) (21). We utilized gene expression

and clinical information from GSE116174, GSE14520 (22),

GSE45114 (23), and GSE76427 (24) for machine learning to

screen the best prognostic prediction model. Additional datasets

were used to evaluate our model’s efficiency: GSE104580 for

transcatheter arterial chemoembolization (TACE) response,

GSE223201 (25) for response to lenvatinib, GSE202069 (26) for

anti-PD-L1 therapy response, GSE153203 (27) for combined

lenvatinib and pembrolizumab treatment, GSE148355 (28) for

HCC degree and tissue differences, GSE91061 (29) for melanoma

anti-PD-L1/CTLA4 therapy, and the IMvigor210 cohort (30) for

metastatic urothelial cancer anti-PD-L1 treatment.
2.2 Mutation and somatic copy number
alteration analysis

We obtained mutation and SCNA data from GSCA: Gene Set

Cancer Analysis (https://guolab.wchscu.cn/GSCA/#/) (31). In

SCNA analysis, we classified a copy number of 2 as amplification

and -2 as deep deletion. To minimize false positives, we retained

only functional mutations (e.g., frameshift, nonsense, intragenic

deletions/insertions). Using the maftools R package (32), we

analyzed the tumor mutation annotation format (MAF) file and

presented a gene mutation heatmap. Patient clinical and genomic

data were also sourced from GSCA. Our survival analysis focused
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on the correlation between SCNA, mutation, and overall survival,

while differential expression analysis compared tumor-related gene

expression between SCNA and mutation positive/negative groups.
2.3 Consensus clustering analysis of MCGs

We identified HCC’s MC subtypes using consensus clustering

analysis, applying an unsupervised algorithm with Euclidean

distance and Ward linkage measures. The optimal cluster number

was determined using the ConsensusClusterPlus R package (33),

with 1,000 iterations to ensure stability. Principal component

analysis then evaluated sample distribution differences between

clusters. We compared the relationship between cluster-defined

MC subtypes and clinicopathological characteristics (age, gender,

stage, pathological type, grade) to evaluate clinical significance. The

Kaplan-Meier method compared clustering’s impact on survival

across datasets (p < 0.05 considered significant). We used the

ggalluvial R package to create Sankey diagrams, visually

displaying the correspondence between clustering and clinical

variables. Finally, we presented gene expression patterns in

different clusters via heatmaps.
2.4 Enrichment analysis: ssGSVA, GSEA,
and WGCNA

Using the GSVA R package (34), we calculated functional

annotation scores for gene sets of molecular subtypes and

immune cell composition. Since most MCGs were negatively

correlated with the MC process, we first calculated ssGSVA scores

and then subtracted these scores from a constant to ensure a

positive correlation with MC levels. Heatmaps were used to

compare biological function differences between clusters. The

Limma R package was used to screen differentially expressed

genes (DEGs) between clusters. Based on DEGs and logFC values,

we performed gene set enrichment analysis (GSEA) using the

clusterProfiler R package and visualized the results. The

c2.cp.kegg.v6.2 gene set from MsigDB was used for both GSVA

and GSEA analyses (35).

Through Weighted Gene Co-expression Network Analysis

(WGCNA) and dynamic tree cutting, we identified co-expression

modules. We screened mRNA modules significantly related to

MCG clusters and selected the highest correlation modules for

further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses.
2.5 Functional hub gene analysis

We constructed the MCGs interaction network using the

STRING database (36), setting the protein-protein interaction

(PPI) score threshold to 0.7. After importing the network into

Cytoscape software, we applied the EPC, MCC, Degree, and MNC
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algorithms in the cytoHubba plugin (37) to extract core network

genes. Using the limma R package, we identified genes among the 94

MCGs with expression differences greater than 1.5-fold and adjusted

p-values less than 0.05. By comparing these with core network genes,

we identified key tumor-related genes. We analyzed differences in

functional MCGs between normal and liver cancer tissues through

the Human Protein Atlas (HPA). To verify clinical significance, we

conducted pan-cancer expression and prognostic analysis of key

genes on the GSCA platform using the TCGA database.
2.6 Machine learning for integrative
construction of a consensus signature

To build a comprehensive risk scoring model with high

accuracy and stability, we employed an integrated machine

learning method (38) that combines 10 single models and 50

combination models for training. These models include Random

Survival Forest (RSF), Supervised Principal Components

(SuperPC), Least Absolute Shrinkage and Selection Operator

(LASSO), and stepwise Cox regression. Our feature selection

process was rigorous:
1. Single-factor Cox analysis screened MC related genes in the

TCGA-LIHC datasets.

2. 50 algorithm combinations performed leave-one-out cross-

validation to obtain a prediction model.

3. All models were tested on 6 independent validation datasets.

4. The Concordance index (C-index) of each model on the

validation set was calculated.
2.7 Construction of the MC
prognosis riskscore

We used LASSO and Cox regression models to screen excellent

prognostic biomarkers from 94 candidate MCGs, determining the

lambda value through 10-fold cross-validation (39). The LASSO

Cox regression model was established using TCGA datasets as the

training set, and multi-variable Cox analysis obtained regression

coefficients for each gene to construct a Cox regression riskscore.

The riskscore calculation formula is: Riskscore = ∑Coefficient of

(gene i) × Expression of gene (i). We evaluated model accuracy

using the C-index and Receiver Operating Characteristic (ROC)

curve, calculating the Area Under the Curve (AUC) to compare

with single biomarkers. Kaplan-Meier survival analysis verified the

riskscore, and we drew 1, 3, and 5-year ROC curves to test

model stability.

To further enhance prediction ability, we integrated T, N, M

stage, overall stage, Child-Pugh level, and MC riskscore. Using the

rms R package, we constructed survival nomograms for prognostic

value prediction. This comprehensive approach ensures our model’s

robustness and clinical applicability.
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2.8 The role of MCGs signature in
predicting immunotherapeutic and other
therapeutic benefits

The IMvigor210 dataset includes 348 urothelial cancer cases

with expression data, survival data, follow-up information, and

immunotherapy response status. GSE91061 comprises 101

melanoma cases with gene expression, survival, follow-up, and

immune data. GSE140901 contains comprehensive clinical data

and immune efficacy for 24 HCC samples. Patients were categorized

into PD, SD, PR, and CR groups based on their immune response.

The MC riskscore was calculated using normalized count data to

analyze its impact on prognosis and efficacy of PD-L1 inhibitors.

GSE104580 was utilized to evaluate the riskscore’s predictive

efficiency for TACE response. GSE223201 was obtained to assess

riskscore differences following treatment with the VEGFR inhibitor

lenvatinib in HCC. GSE202069 was used to evaluate the predictive

efficiency of clinical response to anti-PD-L1 therapy in HCC

patients. GSE153203 was employed to evaluate riskscore

differences in HCC mice treated with a combination of lenvatinib

and pembrolizumab.
2.9 Immune infiltration analysis

We quantified infiltration levels of 16 immune cell types and 13

immune-related pathways in each HCC sample using the

ESTIMATE R package (40) on TCGA expression data. To

validate the immune characteristics of MCGs clustering, we

compared gene expression differences in major histocompatibility

complexes and T cell stimulatory factors between clusters.

Using seven algorithms within the IORB R package (41)—

TIMER, CIBERSORT, EPIC, QUANTISEQ, XCELL, and MCP-

COUNTER—we determined differences in immune cell infiltration

and function between high-risk and low-risk groups, displaying results

graphically as a heatmap. We evaluated immune and stromal scores

with the ESTIMATE algorithm and calculated differences in immune

checkpoint genes between risk subgroups. Additionally, we predicted

Immunophenoscore (IPS) for different riskscore subgroups.

To assess the relationships between clustering subtypes and

immunotherapy effects, we employed immunotherapy response

predictors: immune checkpoints, Tumor Immune Dysfunction

and Exclusion (TIDE) score, and TME score.
2.10 Drug sensitivity analysis

We utilized IC50 values from two comprehensive databases for

drug sensitivity analysis (42):
Fron
1. GDSC: 860 cell lines against 265 small molecule drugs.

2. CTRP: 1,001 cell lines against 481 small molecule drugs.
Using Pearson correlation analysis with FDR-adjusted p-values,

we calculated the correlation between gene expression and drug
tiers in Immunology 04
IC50. Drugs were ranked based on their comprehensive correlation

coefficient and FDR levels with our retrieved genes.

To evaluate binding energy and interaction modes between

candidate drugs/small molecules and targets, we obtained:
1. Compound molecular structures from PubChem

2. Target protein structures from the Protein Data

Bank (PDB)
We performed molecular docking studies using Autodock Vina

1.2.2 (43) for model visualization, ensuring a thorough and

reproducible analysis of drug-target interactions.
2.11 Single-cell RNA sequencing analysis

We downloaded scRNA-seq data of 7 HBV-related HCC tissues

from GSE202642 in GEO. Cells with less than 250 expressed genes

were removed, and remaining genes were logarithmically normalized.

Weused ScaleData and SCTransform functions in Seurat R package to

eliminate batch effects. For nonlinear dimensionality reduction, we

employed uniform manifold approximation, selecting the first 13 of

the 20 principal components.

Using FindNeighbors and FindClusters functions (dimensions

= 20, resolution = 0.5), we clustered individual cells into subgroups.

We performed UMAP dimensionality reduction with RunUMAP.

We annotated cell types (cancer cells, endothelial cells, hepatocytes,

fibroblasts, immune cells) through marker genes like EPCAM,

MS4A1, CD79A, FGFBP2, CD68, ACTA2, PECAM1 (44).

We conducted scRNA trajectory analysis using monocle2 (45),

intercellular communication analysis with italk (46), and PAGA

analysis with SCP package (47).
2.12 Spatial transcriptome analysis

We obtained original chip data from GSM7661255 from a HCC

patient who experienced recurrence after cabozantinib/nivolumab

(CABO/NIVO) treatment from GEO (48). Data preprocessing used

Seurat R package for background correction, normalization, and

standardization (44).

Differential expression analysis with sub-cluster comparisons

was performed using FindMarkers function. We annotated different

tumor cell states from GSE202642 onto spatial data using Seurat’s

FindTransferanchors algorithm. The Xcell scoring method defined

relative gene-set enrichment scores of signal pathways in different

regions (49).

Using COMMOTmethod, we inferred intercellular communication

and spatial signal directionality specificity, along with key downstream

genes, considering competition between different ligand-receptor (LR)

pairs and spatial cell distances (50). For analyzing inter- and intra-

cellular interactions, we utilized stLearning SCTP pipeline (51), which

extracts significant spot/cell interactions, calculates LRscores based on

co-expression information and cell type diversity, and maps results

onto spatial distribution.
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Applying multimodal intersection analysis (MIA) based on

hypergeometric testing, we analyzed significant enrichment of

specific cell gene-sets, identifying major cell types in various

spatial regions (52).

We used SPATA2 for spatial trajectory analysis, exploring gene

expression variations in tumor spatial heterogeneity (53). The

runVectorFields function calculated vector field tables, indicating

aggregated gene expression direction. The getSpatialTrajectoryIds

function visualized spatial-specific changes from key MC genes, MC

scores, and cell proliferation scores. For copy number variation

(CNV) analysis, we aligned genes based on chromosome positions

and assessed CNVs using moving averages with a 100-gene sliding

window for each chromosome using InferCNV function.

To identify spot groups (NICHEs) with similar cell-type

compositions across samples, we utilized isometric log ratios,

transforming the estimated cell-type proportions of each spatial

transcriptomics spot and slide (54). We employed mistyR package

to assess the significance of major cell type abundance in explaining

other major cell types’ abundance (54).
3 Results

3.1 Somatic mutation landscape of MCGs

To investigate the genomic characteristics of MCGs in HCC, we

visualized mutation and SCNA data for 369 HCC patients from the

TCGA cohort (Figures 1A–C). Approximately 59.62% of patients

had mutations in MCGs, with mutation frequencies ranging from

2% to 48% (Figure 1A). The MCGs with the highest mutation

frequencies were TP53 (48%), PRKDC (9%), and ATM (5%), with

predominant mutation types being missense, frameshift deletions,

and nonsense mutations (Figure 1B). Amplification of NEK2,

MDM4, DTL, TPR, and WNT9A was notably high (over 70.8%),

with almost no deep deletions (Figure 1C). About 94.85% of HCC

patients had at least one MCGs SCNA (Figure 1D). Most MCGs

with high SCNA frequencies tended to be co-amplified rather than

co-deleted. HCC patients with MCGs mutations had significantly

higher expression levels of tumor-related genes, including MET,

TP53, ARID1A, and TTN (Figure 1E), while no significant

differences were found among patients divided by SCNA status

(Figure 1F). The tumor mutation map displayed the distribution of

tumor mutation burden (TMB) scores across various cancer types

(Supplementary Figure S2A). Mutual exclusivity and co-occurrence

analysis of the top 20 mutated MCGs revealed that TP53 mutations

co-occurred with mutations in several MCGs (e.g., CDKN1A,

PKD1, EGFR), with little mutual exclusivity observed

(Supplementary Figure S2B). CDKN1A, TP53, and STAG1 had

the highest variant allele frequencies (VAF) (Supplementary Figure

S2C). Enrichment analysis showed significant enrichment of MCGs

single nucleotide polymorphism (SNP) sites in cancer-related

signaling pathways, including TP53, cell cycle, and RTK/RAS

pathways (Supplementary Figure S2D). Immune infiltration

analysis indicated higher gamma/delta T cell infiltration in the

SCNA amplification group and higher CD4+ naive T cell infiltration

in the SCNA deletion group (Supplementary Figure S3A).
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Compared to the high mutation group, the low mutation group

exhibited greater immune cell infiltration (e.g., CD4+ naive, CD4+

T, Th2) (Supplementary Figure S3B). Progression-free survival

(PFS), disease-free interval (DFI), and disease-specific survival

(DSS) were significantly lower in the mutation group compared

to the non-mutation group (Figure 1G), while no significant

differences in overall survival (OS), PFS, DFI, or DSS were

observed between SCNA and non-SCNA patients (Figure 1H).

Kaplan-Meier curves for OS, PFS, DFI, and DSS are shown in

Supplementary Figures S3C and D. Pan-cancer analysis also

indicated minimal significant SCNA differences in prognosis

across all tumors, while MCGs mutations were associated with

significantly worse prognosis in LIHC, PAAD, PCPG, and other

cancers (Supplementary Figures S2E, S3E). These findings suggest

that mutations, rather than SCNAs, are the primary drivers of

MCGs dysregulation in HCC patients, leading to poor prognosis.
3.2 Functional analysis of MCGs

Expression and pathway activity analysis demonstrated that

apoptosis, cell cycle, DNA damage, and EMT pathways were

significantly positively correlated with MCGs, whereas RAS/MAPK

and PTK pathways were negatively correlated (Supplementary Figure

S4A). Survival analysis indicated that patients with lower MC

ssGSVA scores had significantly worse prognosis in OS, DSS, and

PFS across most cancers (Supplementary Figure S4B). Significant

ssGSVA score differences were also observed between normal and

tumor tissues in pan-cancers, with higher scores in normal tissues

(Supplementary Figure S4C). Strong correlation between ssGSVA

score and enriched pathway showed significant concentration of

MCGs gene functions (Supplementary Figure S4D). Correlation

analysis between GSVA scores and immune pathways/cells showed

a strong positive correlation between high MC levels and pathways

such as IL and MHC/APC co-stimulation, and significant correlation

with the infiltration of macrophages, Tfh, Th2, Treg, and other

immune cells (Supplementary Figure S4E). GSEA enrichment

analysis confirmed the enrichment of MCGs in HCC patients

(Supplementary Figure S4F).
3.3 Identifying hub functional MCGs

The PPI network for MCGs was established using STRING

(Figures 2A, B). By applying four built-in algorithms in Cytoscape

(EPC, MCC, Degree, and MNC), we identified six hub genes:

CCNA2, CCNB1, BRCA1, CDK2, PLK1, and CHEK1

(Figure 2C). Immunohistochemistry analysis revealed higher

protein expression of these hub MCGs in tumor tissue (except for

CHEK1) via the HPA website (Figure 2D). Pan-cancer mRNA

comparison confirmed higher expression of these genes in tumor

versus normal tissue (Figure 2E), and drug sensitivity analysis using

GDSC and CTRP suggested compounds like AR-42, I-BET-762, 3-

CI-AHPC, and BI-2536 as potential MC therapeutics (Figure 2F).

Survival analysis demonstrated that almost all six hub MCGs were
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FIGURE 2

Identification of hub genes in MCGs protein-protein interaction network. (A) Identification of MCGs PPI network. (B) Circle layout visualization of the
MCGs PPI. (C) Identification of 6 hub genes with EPC, MCC, Degree, MNC algorithm. (D) Comparison of protein expression of hub MGCs between
normal and tumor tissue. (E) Comparison of mRNA expression of hub MGCs between normal and tumor in the Pan-cancer. (F) Drug sensitivity
analysis of compound targeted MGCs in the GDSC and CTRP. (G) Summary of the survival difference of hub MCGs in the Pan-cancer.
B C

D

E F
G

H

A

FIGURE 1

Genomic landscape of MCGs in HCC. (A) Landscape of genomic aberrations of the top 20 MCGs with mutation in HCC. (B) Summary of the
mutation classes of MCGs in HCC. (C) Lollipop chart of the SCNA proportion in MCGs. (D) Histogram of the proportion of differential SCNA types in
HCC. (E, F) Expression comparison of Tumor-related Genes between WT and MCGs mutation or SCNA in HCC. (G) Survival difference between
MCGs WT and mutation. (H) Survival difference between MCGs WT and SCNA.
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associated with poorer prognosis in liver cancer and other

cancers (Figure 2G).
3.4 Identification of MC subtypes in HCC

Unsupervised clustering of MCGs in HCC patients from TCGA

identified two stable subtypes: cluster 1 (289 cases) and cluster 2 (80

cases) (Figures 3A, B). An Alluvial diagram showed that cluster 2

had progressed TNM stage and worse survival outcomes compared

to cluster 1 (Figure 3C). Cluster 1 had higher MC ssGSVA scores

and better survival prognosis in OS and PFS (log-rank test, P ≤ 0.05)

(Figures 3D, E), although differences in DSS and DFI were not

significant (Supplementary Figure S5A). Patients divided by MC

ssGSVA score also showed significantly better prognosis in OS and

PFS of high MC subgroup. Nevertheless, no significant differences

were observed in terms of DSS and DFI survival prognosis

(Supplementary Figure S5B). In the ICGC cohort, no statistically

significant OS distinction was observed among patients stratified by

MC ssGSVA score, though a trend towards varying survival

outcomes was noted (log-rank test, P=0.08) (Supplementary

Figure S5C). The heatmap of differentially expressed MCGs

indicated that cluster 2 had higher expression of tumor-related

genes and worse survival outcomes (Figures 3F, G). Cluster 1 was

thus defined as the HCC subtype with higher MC levels and better
Frontiers in Immunology 07
prognosis, and cluster 2 with lower MC levels and worse prognosis.

Next, we performedWGCNA on 94MCGs and successfully divided

them into 7 modules, as shown in Hierarchical clustering

dendrogram and Modular-trait relationships (Supplementary

Figures S5D, E). The blue module was highly correlated with low-

MC (Cor = 0.48, P = 3e−22), in which a positive correlation between

module membership and gene significance were observed

(Supplementary Figure S5F). Genes in the blue module were

significantly enriched in mitosis, cell cycle, mitotic nuclear

division, spindle pole, and the p53 signaling pathway

(Supplementary Figures S5G, H).
3.5 Machine learning for integrative
construction of a consensus signature

Using MCGs mRNA expression profiles, we employed

integrative machine learning to develop a consistent MC riskscore

signature. In multiple datasets (TCGA-LIHC, ICGC-LIHC,

GSE116174, GSE14520, GSE45114, and GSE76427), 50 prediction

models were fitted using LOOCV, with RSF + SuperPC,

survivalSVM, and stepCox + LASSO performing best, the latter

being optimal in TCGA (Figure 4A). The optimal l in LASSO

regression was determined when the partial likelihood deviation

was minimal (Figure 4B). Stepwise Cox regression on 24 candidate
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FIGURE 3

Prognostic value of unsupervised clusters based on MCGs in HCC. (A) Consensus matrices of HCC patients in the TCGA cohort for k = 2 using 1000
iterations of unsupervised consensus clustering method (K-means). (B) Consensus cumulative distribution function (CDF) plot showing clustering
stability. (C) Alluvial diagram showing the changes of MC clusters, TNM stage and status. (D) Expression comparison of MC ssGSVA score between
cluster 1 and 2 in HCC. (E) Kaplan-Meier curves for OS and PFS of TCGA cohort with the MC clusters in HCC. (F) Unsupervised clustering heatmap
of all MCGs in TCGA cohorts with MC clusters, tumor stage, gender, age, stage, histologic grade, cancer type and status were used as patient
annotations. (G) Expression comparison of Tumor-Related Genes between cluster 1 and 2 in HCC. (*** p < 0.001).
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MCGs with non-zero LASSO coefficients identified three core

prognostic mRNAs: MIIP, TTK, and EIF4E (Figure 4C). The

riskscore formula was: riskscore = (0.2375 × MIIP expression) +

(0.2785 × TTK expression) + (0.4439 × EIF4E expression)

(Supplementary Table S1). ROC curves based on the entire

datasets showed that the MCGs signature riskscore has relatively

stable predictive efficacy for overall survival time (Figure 4D). A

good performance was observed in prediction prognosis at 1 year

(0.778), 3 years (0.760), and 5 years (0.690) (Supplementary Figure

S6A). KM curves showed significantly worse prognosis for high-risk

versus low-risk subgroups (P = 2.968e-6) (Figure 4E). Figure 4F

displays the riskscore distribution, heatmap, and OS status of the

MCGs signature in the TCGA-LIHC dataset.
3.6 The role of MC signature in predicting
benefit from immunotherapy and
other treatments

To compare our MCGs signature with existing HCC signatures,

we analyzed 47 published liver cancer mRNA signatures

(Supplementary Table S2). Our MCGs model ranked highly in

predictive performance in the TCGA-LIHC dataset (Supplementary

Figure S6B). Verification in multiple external datasets (ICGC,

GSE116174, GSE76427) confirmed the MCGs signature’s predictive

ability (Supplementary Figure S6C). While some models
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outperformed our signature, it was selected from 94 MC-related

genes and reduced dimensionally by machine learning, enhancing its

extrapolation potential. Analysis in the GSE104580 cohort showed

lower MCGs riskscore in TACE-responsive HCC patients, with an

ROC AUC of 0.748 for TACE responsiveness prediction

(Supplementary Figure S6D). In the IMvigor210 cohort, patients

with lower riskscores showed better responses to anti-PD-L1

treatment (Supplementary Figure S7A). In GSE202069, anti-PD-L1

treated HCC liver samples had significantly lower MCGs riskscores

than untreated samples, with an AUC of 0.945 for predicting

immunotherapy response (Supplementary Figure S7B). In the

melanoma GSE91061 cohort (treated with anti-PD-L1 and anti-

CTLA4 immunotherapy), patients with PR/CR had a lower risk

score compared to those with SD/PD, although this difference was

not statistically significant (Supplementary Figure S7C). In the

GSE223201 cohort, the MCGs risk score showed a decreasing trend

in lenvatinib-treated HCC liver cancer compared to untreated

patients (Supplementary Figure S7D), which was also observed in

the GSE153203 cohort (Supplementary Figure S7E). We confirmed

that combined lenvatinib and anti-PD-L1 pembrolizumab treatment

significantly reduced the MCGs risk score in HCC liver cancer

(GSE148355) (Supplementary Figure S7F). Additionally, the MCGs

risk score was significantly higher in liver tissue from patients who

underwent partial liver resection or transplant compared to normal

liver tissue, with a significant upward trend from normal to G1-G3

stage liver cancer (Supplementary Figure S7F). In the GSE116174
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FIGURE 4

Construction and validation of prognostic MCGs-based signature for HCC. (A) A total of 50 kinds of prediction models via LOOCV framework and
further calculated the C-index of each model across all validation datasets. (B) Selection of optimal l in LASSO regression. (C) Univariate Cox
regression of 3 core prognostic mRNAs. (D) Time-dependent ROC curves of the MCGs signature based on entire datasets. (E) Kaplan-Meier curves
of high-risk and low-risk subgroups. (F) Risk score distribution, heatmap and survival status in entire HCC datasets.
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cohort, low-risk subtype patients had significantly higher survival

times, although no significant differences were observed in the ICGC

and GSE76427 cohorts (Supplementary Figure S7G).
3.7 Drug sensitivity responses in different
MCGs subgroups

Differential expression analysis showed higher expression of

MIIP, TTK, and EIF4A in tumors versus normal tissues across

various cancers (Supplementary Figure S8A). In TCGA-LIHC,

these genes increased with higher stage (Supplementary Figure

S8B), consistent with our riskscore (except for Stage IV and M)

(Supplementary Figure S8C). Immunohistochemistry confirmed

higher protein expression in liver cancer versus normal liver

tissue (Supplementary Figure S8D). We calculated IC50 values for

common HCC chemotherapies and evaluated drug sensitivity

differences between MC subtypes (cluster 1 and 2) and prognostic

risk subgroups (high and low-risk). Cluster 2 (low-MC) had higher

IC50 values for sorafenib, doxorubicin, and pentofluorouracil

compared to cluster 1 (high-MC), with no difference for cisplatin,

whereas the opposite was true for Cetuximab (Supplementary

Figure S8E). Consistent results were observed between high-risk

and low-risk groups (Supplementary Figure S8F).
3.8 Immune infiltration differences in
MC clusters

The ssGSVA score analysis of 16 types of immune cells and 13

immune-related pathways between MC clusters revealed distinct

immune infiltration patterns (Supplementary Figure S9A).

Specifically, cluster 1 was enriched in immune/inflammatory

pathways (such as human leukocyte antigen (HLA), cytotoxic, type

I/II interferon response) and immune cells (DC, macrophages, NK,

and Treg cells). Wilcoxon testing indicated higher expression levels of

PD-1, PD-L1, CTLA4, HAVCR2, LAG3, and TIGIT in cluster 2

compared to cluster 1 (P<0.05) (Supplementary Figure S9B).

Heatmaps showed significant enrichment in cell cycle pathways

(spliceosome, cell cycle, homologous recombination) and liver

cancer stem cell signaling pathways (Notch, Wnt) in cluster 1, while

cluster 2 exhibited enrichment in metabolism and coagulation

cascades (Supplementary Figure S9C). Using the ESTIMATE

algorithm, cluster 2 demonstrated lower StromalScore,

ImmuneScore, and ESTIMATEScore (Supplementary Figure S9D).

TIDE analysis indicated higher infiltration of myeloid-derived

suppressor cells (MDSCs) and cancer-associated fibroblasts (CAFs)

in cluster 2.Additionally, cluster 2 hadhigherTIDEdysfunction scores

compared to cluster 1, suggesting a greater likelihood of immune

escape and poorer immunotherapy efficacy (Supplementary Figure

S9E). Analysis of immune pathways favored by cluster 1 (HLA,

cytotoxic, type I/II interferon response) showed higher cytokine

expression levels in cluster 1 (Supplementary Figure S10A). GSEA

enrichment analysis revealed significant enrichment for antigen

processing/presentation, NK cytotoxicity, and T cell receptor

signaling in cluster 1 (Supplementary Figure S10B).
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3.9 Immune infiltration and tumor
microenvironment analysis based on
MCGs grouping

Heatmap analysis of immune infiltration percentages in high- and

low-risk groups using six algorithms (TIMER, XCELL,

MCPCOUNTER, EPIC, CIBERSORT, and QUANTISEQ)

showed higher T cell and NK cell proportions in the low-risk group

in most conditions (Figure 5A). Low-risk patients had higher

StromalScore, ImmuneScore, and ESTIMATEScore (Figure 5B).

Immunophenotypic score (IPS) analysis revealed significantly higher

SC-IPS,CP-IPS,EC-IPS,AZ-IPS,MHC-IPS, andglobal IPS in the low-

risk group (Figure 5C).CIBERSORTanalysis showedmoreDCcells, T

follicularhelper cells, andM0macrophages but fewerNKcells,CD8+T

cells, andM1macrophages in the high-risk group (Figure 5D). Tumor

purity score was also significantly higher in high-risk patients

(Figure 5E). The ssGSVA scores of 28 immune cells and 13

pathways indicated lower immune infiltration in high-risk patients

(Figure 5F, Supplementary Figure S11A). KEGG heatmaps revealed

significant enrichment in tumor suppressor pathways (including p53,

Mismatch Repair) and liver cancer stem cell signaling (Notch,Wnt) in

the low-risk group, while the high-risk group was enriched in cancer-

promoting pathways like tryptophan and phenylalanine metabolism

(Figure 5G). Immune checkpoint expression analysis indicated

significantly higher levels of LAG3, CD274, and HAVCR2 in the

high-risk group (Supplementary Figure S11B). CTRP and GDSC drug

sensitivity results identified compounds such as BHG712, AR-42, and

BI-2536 as potential therapeutics (Supplementary Figures S11C, D).

Drug target docking analysis for AR-42 and BI-2536 revealed stable

binding with proteins except for BRCA1 (Supplementary Figures

S12A, B). Lower IC50 values for AR-42 and BI-2536 were observed

in high-risk patients (Supplementary Figures S12C, D).
3.10 Construction of nomogram for
clinical diagnosis

We constructed a nomogram incorporating clinical indicators and

riskscore to improve predictive performance. Candidate variables

included MCGs riskscore, age, gender, Child-Pugh grade, Stage, and

TNM stage. Univariate and multivariate Cox regression suggested age,

M stage, and riskscore as independent prognostic factors for HCC

(Figure 6A). These factors were combined to create a prognostic

nomogram (Figure 6B). The calibration curve indicated the

nomogram’s performance was comparable to the ideal model, with

no significant deviation observed (Figure 6C). Survival ROC curves

showed better overall and 5-year survival prediction with the

nomogram compared to riskscore alone, while 1- and 3-year survival

might be better predicted by MC riskscore alone (Figures 6D, E).
3.11 ScRNA-seq analysis reveals dynamic
MCGs expression profiles in HCC

We obtained scRNA-seq data comprising 74,957 cells from 7

HBV-related HCC tissues from the GSE202642 dataset. The quality
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control results are displayed in Supplementary Figures S13A and B.

We then normalized the data and performed SCTransform analysis

to identify highly variable genes (Supplementary Figure S13C).

Next, we conducted PCA dimension reduction. The PCA

components, eigengenes, and corresponding heatmaps are shown

in Supplementary Figures S13D and E. The Elbow Plot revealed a

clear inflection point at PC=13, so we included the first 13 principal

components for subsequent analysis (Supplementary Figure S13F).

UMAP clustering analysis clustered the total single cell data

(Figure 7A) and EPCAM, MS4A1, CD79A, FGFBP2, CD68,

ACTA2, PECAM1 marker gene plots identified cell types

(Figure 7B, Supplementary Figures S14A, B). Heatmap of key

genes and KEGG pathway in differential clusters of solid cells and

immune cells were shown in Supplementary Figure S14C. Normal

liver cells and tumor cells clusters were extracted for separate

UMAP clustering (Figure 7C) and further classified by AFP,

PTPRC, ALB, GPC3 (Figure 7D). Pseudotime analysis showed

significant temporal sequence from hepatocytes to tumor cells

(Figure 7E) with significant MCGs differences (Figure 7F). Then,

tumor cells were extracted and divided into 6 clusters (Figure 7G).

Marker genes of each cluster were shown in Supplementary Figure

S14D. Tumor cells were divided into high and low MC subgroups

by ssGSVA score. Pseudotime analysis revealed cell differentiation

trend from high to low MC tumor cells (Figure 7H). Among 6

functional and 3 prognostic MCGs, CCNA2, CCNB1, CHEK1,

BRCA1, MIIP and EIF4E significantly increased from hepatocytes
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to HCC (Supplementary Figure S14E). From high/low MC

bifurcation point 2, CCNA2, CCNB1, MIIP and EIF4E

significantly increased (Supplementary Figure S14E). PAGA

analysis visualized data of liver cancer single cells and marker

genes (Supplementary Figures S14F, G). Since PLK1 and TTK

had almost no expression, the remaining 5 functional and 2

prognostic MCGs were compared between high/low MC tumor

cells (Figure 7I). Heatmaps of phase percentages, cycle scores, and

MCGs expression suggested both MC-subtype tumor cells were

mainly in S phase, while low-MC tumor cells had higher G2M

versus G1 percentage, suggesting greater proliferation (Figure 7J,

Supplementary Figure S14H). The PAGA trajectory analysis results

were consistent with the pseudotime analysis (Figure 7K),

indicating that high MC tumor cells differentiate into low MC

tumor cells. Inter-cellular communication analysis revealed

significantly less communication between low-MC tumor cells

and immune cells versus high-MC tumor cells (Figure 7L).
3.12 ST analysis reveals spatial differences
of high and low MC tumor tissue in HCC

ST analysis of this HCC sample showed higher total RNA

expression in the left tumor region (Supplementary Figure S15A).

Data processing included SCTransform normalization and PCA

dimension reduction (Supplementary Figures S15B, C). UMAP
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FIGURE 5

Immune landscape and therapeutic implications of MCGs signature in HCC. (A) Heatmap for immune infiltration based on TIMER, MCPCOUNTER,
QUANTISEQ, XCELL, CIBERSORT, and EPIC algorithms among high and low risk subgroups. (B) Comparison of StromalScore, ImmuneScore and
ESTIMATEScore between the risk subgroups. (C) Comparison of immunophenotypic scores between the risk subgroups. (D) Comparison of Immune
cell proportions by CIBERSORT between the risk subgroups. (E) Comparison of tumor purity scores between the risk subgroups. (F) Comparison of
ssGSVA scores of immune cells and pathways between the risk subgroups. (G) GSVA analyzed the key biological pathways of the two risk subgroups.
(ns, not significant; p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).
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clustering identified 11 clusters (Figure 8A). Gene-set enrichment

analysis based on the XCELL method showed lower immune

pathway scores (HLA, cytotoxic, type I/II interferon response) in

the left tumor region compared to the right region (Supplementary

Figure S15D). The left region was defined as an immune-poor

region (yellow dashed outline) and the right region as an immune-

rich region (black dashed outline) (Supplementary Figure S15E).

Immune-poor regions were represented by ST clusters 4 and 6,

while immune-rich regions were represented by ST clusters 2 and 3

(Figure 8A). MC scores were enriched in the immune-rich region,

and cell cycle scores were enriched in the immune-poor region

(Supplementary Figure S15F).

Using the scRNA-seq dataset (GSE202642) as a reference, we

mapped the distribution patterns of low and high MC tumor cells in

each region. Low MC tumor cells were primarily located in the

upper portion of the immune-poor area, corresponding to ST

cluster 6, while high MC tumor cells were found in ST clusters 2,

3, and 4 (Figures 8B, C). Using the SPATA package, we examined

tumor heterogeneity’s spatial distribution. MC scores decreased,

and cell cycle scores increased from low to high MC regions

(Figures 8D, E). Similar trends were observed for hub and

prognostic MCGs (Supplementary Figures S15G, H).

Spatial signaling flow analysis using the COMMOT package

revealed mitotic signals converging towards the low MC region

(Figure 8F). Tumor proliferation pathways like TGF and TNF were

directed to the low MC region, while the tumor suppressor
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stimulator of interferon genes (STING) pathway flowed to the

high MC region, implicating potential tumor recurrence

(Supplementary Figure S15I). Heatmap analysis of differential

downstream genes of mitotic signals showed increased SPINK1

and HULC expression in the low MC region (Figures 8G, H).

To further understand spatial interactions within liver cancer

tissues, unsupervised clustering of regions by cell type composition

identified nine representative spot microenvironments, named

NICHES (Figure 8I). Contrasted with NICHES 1, 7, 9, 10 and 11,

which contained high MC tumor cells and macrophages. NK cells

were abundant in NICHES 10 and 11, while CD8+ T cells were more

prevalent in NICHES 7 and 9 (Figure 8J). The low MC region had

minimal adjacent immune cells, whereas the high MC region had

significant NK cell abundance (Figure 9A, Supplementary Figure

S16A). The MIA method indicated significant overlap between

specific genes of low MC tumor cells and CAFs with the cancer

region-specific genome of ST cluster 6. In contrast, low MC tumor

cells and immune cells (NK cells, CD4+ T, CD8+ T) overlapped

significantly with ST clusters 2 and 3 (Figure 9B).

Using the stLearn SCTP algorithm, unsupervised analysis

uncovered significant immune escape-related ligand-receptor (LR)

interactions within the low MC region and between the low MC

region and the stromal region, with CD96-PVR showing the most

significant difference (Supplementary Figure S16B). The cell-cell

interaction chord map revealed minimal immune escape-related LR

interactions in the high MC region (Figure 9C). LAG3-CLEC4G,
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FIGURE 6

Construction and validation of prognostic nomogram based on MCGs signature for HCC. (A) Univariate and Multiple Cox regression of riskscore and
traditional indicators in predicting HCC survival. (B) Nomogram based on MCGs signature in predicting prognosis of HCC patients. (C) Calibration
chart valuating the survival probability of nomogram at 1, 3, and 5 years. (D) Time-dependent ROC curves of the nomogram based on entire dataset.
(E) Time-dependent ROC curves of the nomogram at 1, 3, and 5 years.
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LAG3-FGL1, LAG3-LGALS9, and TIGHT-NECTIN2 were

enriched in the low MC region (Figure 9D). Mitotic LRs were

also enriched in the low MC region (Supplementary Figure S16C).

Considering tumor recurrence after CABO/NIVO treatment

may relate to genetic mutations, subclonal CNV mapping revealed

differences between low and high MC regions (Figure 9E,

Supplementary Figure S16D). Among major CABO/NIVO

immune pathway genes (PD1/PD-L1, VEGF, PDGF, MET),

PDGFRA, PDGFRB, VEGFB, and MET exhibited significant

deletions/amplifications between low and high MC regions

(Supplementary Figure S16E, Figure 9F). Spatial signaling analysis

indicated VEGF and PDGF signaling towards low MC areas

(Figure 10A), while HGF/MET and PD1/PDL1 pathways did not

(Supplementary Figure S16F). PDGFRB deletion/amplification was

associated with reduced survival in liver hepatocellular carcinoma

patients (Figure 10B). Heterozygous CNV mapping showed

frequent PDGFRB amplification (Figure 10C). Analysis of

PDGFB/PDGFRB, and PDGFD/PDGFRB pathway differential

downstream genes revealed increased FGL1 expression but

decreased CPR, TF, and HLA-DRA expression (Figure 10D),

consistent with spatial region differential expression (Figure 10E,

Supplementary Figure S16G). PDGFRB and FGL1 exhibited similar

spatial vector field trajectories (Figure 10F).
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4 Discussion

In this study, we verified that the MC pathway plays a pivotal

role in HCC progression and has potential in regulating the TME

(6). Six MC hub genes and three MC prognostic genes exhibited

significant temporal and spatial differences during HCC

development. Single-cell and ST analysis revealed the distribution

of tumor cells/regions with varying MC levels in specific clusters or

tissue regions, with immune deserts in the low MC region

potentially triggering immune escape. Targeting the MC pathway

may be a promising HCC treatment approach. The constructed

nomogram combining MC riskscore and clinical indicators enables

personalized clinical decision-making. Top-scoring MC drug-

sensitive small molecules like BI-2536 and AR-42 were identified

to inhibit HCC progression by targeting MCGs via protein

molecular docking.

MC represents a precursor to apoptosis or necrosis, where

improper cell division causes DNA damage and abnormal

chromosome segregation, ultimately inducing MC as a tumor

suppression mechanism (6, 8). While some chemotherapy drugs

effectively prompt MC at low doses (e.g., fluorouracil, doxorubicin)

(11, 12, 55), few studies have bioinformatically evaluated the

immune effect of MC due to the high HCC heterogeneity and
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FIGURE 7

Single-cell characterization of cellular heterogeneity of MCGs in HCC. (A) UMAP clustering of diverse cell types and percentages in GSE202642.
(B) Bubble plot of diverse cell types marker expression. (C) UMAP clustering of diverse tumor and liver cell types and percentages. (D) Violin plots of
diverse tumor and liver cell types marker expression. (E) Pseudotime trajectory plot of single cells colored by pseudotime order and cell types.
(F) Expression comparison of hub and prognostic MCGs between liver and tumor cells. (G) UMAP clustering of diverse tumor cell types and
percentages. (H) Pseudotime trajectory plot of single cells colored by pseudotime order and high/low MC cell types. (I) PAGA feature plots of MCGs
expression. (J) PAGA plot of single cells with cycle phase proportion, stratified by cell types. (K) Trajectory inference of single cells grouped by high/
low MC type. (L) Inter-cell communication network between high/low tumor cells and immune cells.
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complex escape mechanisms. We aimed to explore specific

mechanisms of MC in HCC via high-throughput sequencing and

identify MC-related protein targets for drug development.

The American Joint Committee on Cancer (AJCC) staging

system has long been used to evaluate tumor progression and

guide treatment but is limited by tumor heterogeneity and

individual differences. HCC treatments have diversified (TACE,

anti-angiogenics, PD-L1 inhibitors, multi-kinases), yet reliable

predictive biomarkers are still lacking (56–59). This study

integrated 10 single and 50 combination machine learning models

to test six HCC bulk RNA-sequencing datasets (40). The LASSO

+MultiCOX model showed great predictive value, especially for

TCGA-LIHC data. ROC analysis revealed that the MC prognostic

model has high accuracy and stability. Although past clinical

practice utilized TNM staging and AJCC staging reliability (60),

our MC features are independent with better performance, ranking

well cross-datasets compared to 47 other cancer features. MCGs

protein overexpression, as per the Human Protein Atlas (HPA) and

GSCA databases, associates with poorer prognosis. A model

combining age, M stage, and MC riskscore better predicted 5-year

survival than individual signatures, potentially serving as a new

clinical evaluation indicator.

This study confirmed that high-risk HCC patients with low MC

demonstrate higher sensitivity to three chemotherapy drugs

(sorafenib, doxorubicin, fluorouracil). Sorafenib is the classic first-
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line unresectable HCC drug (13, 59), selectively inducing apoptosis

via Bcl-2/caspase-3 while inhibiting normal liver cell cycle (13).

Drugs inactivating p53, like doxorubicin, also rapidly prompt MC

(61, 62). P53 exhibited the highest mutation level among all our

MCGs here. In summary, integrating MC status with existing

clinical indicators may better guide precision treatment. Further

exploration of spatial MC heterogeneity mechanisms could yield

immunotherapeutic targets against HCC immune escape.

Cancer immunotherapy, represented by immune checkpoint

inhibitors (ICIs) like PD-L1 inhibitors (nivolumab) and anti-

angiogenics (bevacizumab), has transformed solid tumor

treatment as a new strategy (63, 64). With proven efficacy, the

former received FDA approval as a second-line advanced liver

cancer therapy. The CheckMate 040 trial showed that the PD-L1

inhibitor nivolumab achieved promising first-line advanced liver

cancer results, although the phase III trial did not significantly

improve overall survival (65). We found that anti-PD-L1

monoclonal antibodies alone or combined with lenvatinib can

significantly reduce HCC patient MC riskscore. Studies suggest

that ICI response in mismatch repair deficient/microsatellite

unstable colorectal cancer may result from decreased CD8+

resident memory T cell (Trm) mitosis and increased proportions

of immune-activated cells (CD8+ effector memory T cells (Tem),

CD4+ helper T cells (Th), CD20+ B cells) (66). However, one study

showed heightened high mitosis level and metastasis/spread risk
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FIGURE 8

Spatial transcriptomic analysis reveals intratumor heterogeneity of MCGs in HCC. (A) Spatial UMAP clustering of liver parenchyma region and
localization of cell clustering patterns. (B) Integration with low and high MC scRNA-Seq cell annotations. (C) Spatial localization of high MC and low
MC tumor spots. (D) Change of z-scored cell cycle and MC score along the Horizontal spatial trajectory. (E) Change of z-scored cell cycle and MC
score along the vertical spatial trajectory. (F) Mitotic signaling direction in human liver cancer tissue. (G) Identification of the differentially expressed
genes due to the total amount of received signal in the Mitotic signaling pathway. (H) Identification of the differentially expressed genes due to the
total amount of received signal in the Mitotic signaling pathway. (I) Schematic of cell-type niche definition and UMAP of spatial transcriptomics spots
based on cell-type compositions. (J) Scaled median cell-type compositions within each niche.
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FIGURE 9

Spatial transcriptomic analysis reveals immune escape-related signaling and intra-cellular LP interactions in HCC. (A) Median importance of cell-type
abundance in the prediction of abundances of other cell types within a spot. (B) The MIA map of all scRNA-seq-identified cell types and ST-defined
regions. (C) Inter-cell communication network of immune escape signaling between high/low MC tumor spots and stromal spots. (D) ligand-
receptor scores of LAG3_FGL1, LAG3_CLEC4G1, LAG3_LGLS92 and TIGHT_NECTIN2 in human liver cancer tissue. (E) CNV analysis for low and high
MC spots. (F) Proportion of CNV amplification and deletion of specific genes.
B C D

E
F

A

FIGURE 10

Spatial transcriptomic analysis reveals PDGFRB signaling and Genomic Alterations in HCC. (A) VEGFA/FLT1_KDR, VEGFB/FLT1_KDR, VEGFC/
FLT4_KDR, PDGFA/PDGFRA_PDGFRB, PDGFB/PDGFRA_PDGFRB, PDGFC/PDGFRA, PDGFD/PDGFRB signaling direction in human liver cancer tissue.
(B) OS of PDGFRB CNV in TCGA LIHC. (C) Heterozygous amplification and deletion of specific genes CNV in TCGA LIHC. (D) Identification of the
differentially expressed genes due to the total amount of received signal in the Mitotic signaling pathway. (E) The level of FGL1 received signal.
(F) Vector fields consisting of the aligned gradients of spatial shifts in gene-expression levels.
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after TACE (67), suggesting a complex underlying mechanism

given our model’s accurate TACE response prediction.

Interestingly, MC also mediates acquired drug resistance.

Chemotherapy activates pro-survival pathways causing resistance.

Continued DNA damage repair inhibition combined with therapy

can counter this. While several chemotherapeutic drugs (inhibitors

of Aurora kinase, CHK1, Polo-like kinases (PLKs), survivin, and

kinesin-related proteins) induce MC at lower doses, the resulting

tetraploid or aneuploid tumor cells are resistant to mitotic

abnormalities. Mutational sensitivity also contributes to increased

drug sensitivity (6, 68). Small molecules have attracted attention

due to diverse chemical properties and biological activities.

Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer

Therapeutics Response Portal (CTRP) analysis revealed MC hub/

prognostic genes show highest sensitivity towards two compounds -

BI-2536 (PLK1 inhibitor) and AR-42 (histone deacetylase (HDAC)

inhibitor). Clinical trials found most elderly relapsed/refractory

acute myeloid leukemia (AML) patients treated with BI-2536

displayed characteristic mitotic arrest with increased G2/M bone

marrow cells. We evaluated MCG binding to BI-2536/AR-42,

finding hydrogen bonds and electrostatic interactions enable

stable binding. The combination of low binding energy and

stability explains the prediction of high sensitivity among high

MC risk patients to these drugs.

Increasing evidence shows that mitotic differences in tumor

cells are regulated by immune infiltration, in turn affecting the TME

immune status (55, 69). Studies have shown high-proliferative

triple-negative breast cancer can prompt homologous

recombination defects and genomic instability, while low-

proliferative tumors enrich for mitosis-related genes (70).

Tetraploidy from MC imbalance can induce DNA damage

responses, destabilize genomes, and lead to aggressive tumors

with immune evasion and drug resistance (55). Our results

demonstrate that HCC patients with low MC show reduced

immune infiltration and poorer prognosis. Further analysis

revealed lower MC expression significantly associates with lower

NK and T cell levels.

MC is a complex cellular event regulated by multiple factors and

may be affected by heterogeneity and batch effects in batch

sequencing. Single-cell and ST analysis can effectively analyze

TME mutual regulation. We utilized these technologies to study

MC-related gene expression in liver cancer and connections with

tumor cells and TME. MCGs demonstrate temporal and spatial

distribution heterogeneity. Meanwhile, low MC tumor cells appear

to malignantly proliferate from high MC tumor cells. Consequently,

communication with immune cells was significantly reduced,

aligning with previously reported MC roles in driving

proliferation and impacting the TME (16, 45, 69). We then

deeply analyzed the complex TME-MC relationship. The MC

distribution in liver cancer tissues highly coincides with

previously reported immune-rich/immune-depleted regions (48),

highlighting an important MC-immune connection. Meanwhile,

mitotic signal enrichment in low-MC regions suggests a potential

regulatory role for MC in cell cycle progression. Each signaling

pathway also exhibited specific distribution patterns in the spatial
Frontiers in Immunology 15
microenvironment, with mitotic signals, tumor necrosis factor-

gamma (TNG-g), and transforming growth factor-beta (TGF-b)
pathways showing consistent spatial flow directionality towards low

MC areas. In contrast, the STING pathway preferentially localized

to high MC regions. Activating cyclic GMP-AMP synthase (cGAS)-

STING signaling may alleviate DNA damage and induce MC and

innate immune activation, improving responses to immune

checkpoint blockade (ICB) in solid tumors (71).

We found immune cells and pathways (HLA, cytotoxic, type I/

II interferon response) were significantly reduced in low MC

regions, with significantly different immune cell compositions

between high and low MC regions. Niche clustering and

proximity analysis revealed CAFs enrichment with low MC

tumor cells, while almost no CD4+ T cell distribution. CAFs can

promote tumor cell mitotic proliferation via PDGFC/PDGFRA/

SLUG, achieving metastasis and immune escape by regulating E2F,

signal transducer and activator of transcription 5 (STAT5), etc. (72,

73). The niche with high MC tumor cells exhibited diverse immune

infiltrates. MistyR analysis further supports these conclusions, with

almost no adjacent immune cells in low MC regions yet abundant

proximate NK cells adjacent to cancer cells in high MC regions,

which reveals potential MC signaling, immune microenvironment,

and HCC recurrence interactions. The spatial distribution of

immune escape-related genes in liver cancer reveals low MC

tumor areas may exhibit immune escape by activating such

pathways. Combined with CNV hypervariable gene and

COMMOT signal flow analysis of key CABO/NIVO targets, we

found PDGFRB amplification mutations may be a key factor

triggering downstream signaling cascades. PDGFRB mutations

associate with tumor immune evasion (74). Dermawan et al. also

reported PDGFRB mutations and diffuse overexpression in

undifferentiated malignant epithelioid tumor clinical samples

(75). The enrichment of PDGFRB mutations in low MC density

regions suggests a potential mechanistic link, revealing MC-induced

regulation of PDGFRB alterations. The PDGF/PDGFRB signaling

we observed in the low MC region activates the downstream

lymphocyte-activation gene 3 (LAG3)/fibrinogen-like protein 1

(FGL1) immunosuppressive axis, adding complexity to liver

cancer immune evasion analysis. LAG3 combined with liver-

derived FGL1 can inhibit T cell activity, with FGL1 knockout

enhancing T cell responses (76). LAG3/FGL1 signaling also

associates with reduced immunotherapy sensitivity and acquired

resistance in tumors (76, 77). Therefore, activation of this axis in

low MC areas indicates region-specific immune regulation and may

partially explain the role of spatial MC heterogeneity in driving

tumor recurrence.

Our study has some limitations. First, our cohort was derived

from different sequencing platforms and databases with inevitable

differences in gene annotation and tumor heterogeneity. Second, the

complex TME-tumor cell interaction mechanisms in high/low MC

region contexts need further elucidation through extensive

fundamental research. Finally, all our samples were retrospective

and therefore the prognostic efficacy and immunotherapy response

of MC in HCC should be prospectively evaluated in a

multicenter cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1409448
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mao et al. 10.3389/fimmu.2024.1409448
5 Conclusions

In summary, our integrated transcriptomics analysis reveals

that MC heterogeneity significantly impacts HCC progression and

therapeutic response. We identify an MCGs prognostic signature in

HCC. Spatial mapping further associates low MC tumor regions

with immune escape, mediated by PDGFRB signaling activating the

downstream immunosuppressive LAG3/FGL1 axis. Elucidating the

interplay between aberrant MC and immunity provides context to

bulk sequencing interpretation and resistance mechanisms.
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SUPPLEMENTARY FIGURE 1

Study design and analytical workflow.

SUPPLEMENTARY FIGURE 2

Examination of genomic variants of MCGs. (A), TMB distribution across cancer

types. (B), Mutual exclusivity and co-occurrence analysis of the top 20
mutation MRGs. (C), Visualization of MCGs variant allele frequencies in

HCC. (D), Signaling pathways enrichment analysis of the mutation MCGs in
HCC. (E), Summary of the survival difference between WT and mutation

MCGs in the Pan-cancer.

SUPPLEMENTARY FIGURE 3

Impact of MCGs genomic status on prognosis and tumor microenvironment.

(A), Summary of the difference of immune infiltration between MCGs SCNA

groups. (B), Summary of the difference of immune infiltration between MCGs
mutation groups. (C), OS, DSS, DFI, PFS survival curve between MCGsWT and

mutation in HCC. (D), OS, DSS, DFI, PFS survival curve between MCGsWT and
SCNA in HCC. (E), Summary of the survival difference between WT and

mutation MCGs in the Pan-cancer.

SUPPLEMENTARY FIGURE 4

Transcriptomic profiles of MCGs in cancer pathways and prognosis. (A)
Summary of effect from MCGs mRNA on cancer pathway activity. (B)
Summary of the survival difference between low and high MC groups in the
Pan-cancer. (C) Box plot comparing the MCGs ssGSVA score between tumor

and normal samples in the Pan-cancer. (D) Summarized association between
MCGs ssGSVA score and activity of cancer related pathways in HCC. (E)
Association between MCGs ssGSVA score and immune cells infiltrates in

HCC. (F) GSEA enrichment analysis of MCGs in HCC.

SUPPLEMENTARY FIGURE 5

Validation of prognostic value of MCGs clusters. (A), Kaplan-Meier curves for

DSS and DFI of TCGA cohort with the MC clusters in HCC. (B), Kaplan-Meier
curves for OS, DSS, DFI, PFS of TCGA cohort with the low/high MCGs ssGSVA

score in HCC. (C), Kaplan-Meier curves for OS of ICGC cohort with the low/

high MCGs ssGSVA score in HCC. (D), Hierarchical clustering dendrogram of
genes based on gene co-expression analysis. (E), Correlation of gene

significance for MC and membership in blue module. (F), Correlation of
blue module membership with gene significance for MC. (G), GO

enrichment of mRNAs in blue module. (H), KEGG enrichment of mRNAs in
blue module.

SUPPLEMENTARY FIGURE 6

Validation of predictive performance of MCGs signature in multiple datasets.

(A), Time-dependent ROC curves of the MCGs signature at 1, 3, 5 years. (B),
Comparison of prediction performance of MCGs signature with published

signatures in TCGA. (C), Comparison of prediction performance of MCGs
signature with published signatures in multiple validation datasets. (D),
Comparison of prediction of MCGs signature in the GSE104580 cohort.
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SUPPLEMENTARY FIGURE 7

Relevance of MCGs signature to tumor drug response and progression. (A),
Comparison of prediction of MCGs signature in anti-PD-L1 response, and

Kaplan-Meier curves of high-risk and low-risk subgroups in the IMvigor210

cohort. (B), Comparison of MCGs ssGSVA score in anti-PD-L1 response in the
GSE202069 cohort. (C), Comparison of prediction of MCGs signature in anti-

PD-L1/CTLA4 response in melanoma in the GSE91061 cohort. (D),
Comparison of prediction of MCGs signature in Lenvatinib response in the

GSE223201 cohort. (E), Comparison of prediction of MCGs signature in anti-
PD-L1 and Lenvatinib response in the GSE153203 cohort. (F), Comparison of

MCGs ssGSVA score in differential stage of HCC tissue in the GSE5148355

cohort. (G), Kaplan-Meier curves of high-risk and low-risk subgroups in the
GSE116174, ICGC, GSE76427 cohort.

SUPPLEMENTARY FIGURE 8

Expression of prognostic MCGs in tumor progression and drug sensitivity.
(A), Comparison of mRNA expression of prognostic MGCs between normal

and tumor in the Pan-cancer. (B), Comparison of mRNA expression of

prognostic MGCs in differential HCC stage. (C), Comparison of risk score
of MCGs signature of differential TNM staging, T staging, N staging, M

staging and Child_Pugh staging. (D), Comparison of protein expression of
prognostic MGCs between normal and tumor tissue. (E), The estimated half-

maximal inhibitory concentration (IC50) of Sorafenib, Doxorubicin,
Cetuximab, 5-Fluorouracil, and Cisplatin for response between the two

clusters. (F), The estimated half-maximal IC50 of Sorafenib, Doxorubicin,

Cetuximab, 5-Fluorouracil, and Cisplatin for response between the two
risk subgroups.

SUPPLEMENTARY FIGURE 9

Association of MCGs clusters with tumor microenvironment and immune
profiles. (A) enrichment scores of 16 types of immune cells and 13 immune-

related pathways between the two clusters. (B) The expression of immune

checkpoint molecules in the two clusters. (C) GSVA analyzed the key
biological pathways of two clusters. (D) Comparison of StromalScore,

ImmuneScore and ESTIMATEScore between the two clusters. (E)
Comparison of TIDE Score between the two clusters.

SUPPLEMENTARY FIGURE 10

Examination of immune characteristics of MCGs clusters. (A), Gene

expression in cytotoxic, HLA and type I/II interferon response pathway gene
sets between two clusters. (B), GSEA of immune-associated biological

processes in the TCGA-LIHC cohort.

SUPPLEMENTARY FIGURE 11

Examination of immune and drug sensitivity association of MCGs signature.

(A), enrichment scores of 13 immune-related pathways between the two risk

subgroups. (B), The expression of immune checkpoint molecules in the risk
subgroups. (C, D) Drug sensitivity analysis of compound targeted prognostic

MGCs in the GDSC and CTRP.
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SUPPLEMENTARY FIGURE 12

Prediction of MCGs-targeted therapy response by molecular docking. (A),
Binding mode of BI-2536 to TTK, EIF4E, PLK1, CDK2, BRCA1 and CHEK1 by

molecular docking. (B), Binding mode of AR-42 to TTK, EIF4E, PLK1, CDK2,

BRCA1 and CHEK1 by molecular docking. (C, D) The estimated half-maximal
IC50 of BI-2536 and AR-42 for response between the two risk subgroups.

SUPPLEMENTARY FIGURE 13

Quality control and preprocessing of single-sell data. (A), Violin plots of quality
control metrics in GSE202642. (B), Scatter plot between RNA counts and

percentage of mitochondrial genes. (C), Variable feature ranking plot after

selection based on variance. (D), PCA dimension loading plots showing top
contributing genes for the first 4 principal components. (E), Heatmap of PCA

dimensions showing contributionsof top genes to the first 4 principal components.
(F), Elbow plot showing percent variance explained by principal components.

SUPPLEMENTARY FIGURE 14

Analysis of single-Cell MCGs expression patterns. (A), Bubble plot of diverse

solid cells types marker expression. (B), Bubble plot of diverse immune cells
types marker expression. (C), Heatmap of key genes and KEGG pathway in

differential clusters of solid cells and immune cells. (D), Heatmap of key genes
in differential clusters of tumor cells. (E), MCGs expression dynamics along

branched pseudotime trajectory colored by high/low MC cells and
pseudotime trajectory heatmap. (F), PAGA feature plots showing high/low

MC cell types. (G), PAGA feature plots showing tumor-related gene

expression. (H), Combined heatmap of MCGs expression, phase
proportions, and cycle score between high/low cell types.

SUPPLEMENTARY FIGURE 15

Quality control and tumor spatial heterogeneity analysis. (A), Violin andspatial plotsof
numberof expressedgenesper spot reveal broad rangeofexpressionprofiles across

tissue. (B), Group correlation plot of SCTransform and log normalization. (C), PCA
elbow plot and dimensionality reduction plot indicate optimal PCA dimensions for
downstreamanalysis. (D), X-cell scores of specific immune pathway in Spatial tumor

spots. (E), Definitionof immune-rich region (blackdashed) and immune-poor region
(yellowdashed). (F), X-cell scoresofMCandCell cyclepathway inSpatial tumorspots.

(G), Changeof z-scoredMCGsexpressionalong theHorizontal spatial trajectory. (H),
Change of z-scored MCGs expression along the vertical spatial trajectory. (I), TNF,
TGF, STING signaling direction in human liver cancer tissue.

SUPPLEMENTARY FIGURE 16

Immune escape-related ligand and receptor signaling analysis in HCC spatial
transcriptome. (A), Visualization of cell-type abundance correlation. (B), Scatter
plot highlighting the top predicted LR pair by stLearn SCTP. (C), ligand-receptor
scores of CCNA2_CDK1, CCNA2_CDK2, CCNB1_CDK1 and CCNB2_CDK1 in

human liver cancer tissue. (D), Line Plot Visualization of CNV Analysis. (E), The
volcanomapshowingdifferences ingeneCNVamplificationanddeletion. (F),HGF/
MET signaling and PD1/PDL1 signaling direction in human liver cancer tissue. (G),
The level of received signal are shown for CRP, TF and HLA-DRA signaling.
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