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Daniela Pérez-Pérez1,2, Ezequiel M. Fuentes-Pananá3,
José Mizael Flores-Hermenegildo4, Hector Romero-Ramirez4,
Leopoldo Santos-Argumedo4, Manfred W. Kilimann5,
Juan Carlos Rodrı́guez-Alba6,7 and Gabriela Lopez-Herrera2*

1Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico
City, Mexico, 2Immunodeficiency Laboratory, National Institute of Pediatrics, Mexico City, Mexico,
3Research Unit in Virology and Cancer, Children's Hospital of Mexico Federico Gómez, Mexico
City, Mexico, 4Department of Molecular Biomedicine, Center for Research and Advanced Studies of
the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico, 5Department of Molecular
Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany, 6Medicine and
Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico,
7Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery
(NINN), Mexico City, Mexico
Introduction: Lipopolysaccharide-responsive and beige-like anchor (LRBA) is a

scaffolding protein that interacts with proteins such as CTLA-4 and PKA, the

importance of which has been determined in various cell types, including T

regulatory cells, B cells, and renal cells. LRBA deficiency is associated with an

inborn error in immunity characterized by immunodeficiency and autoimmunity.

In addition to defects in T regulatory cells, patients with LRBA deficiency also

exhibit B cell defects, such as reduced cell number, low memory B cells,

hypogammaglobulinemia, impaired B cell proliferation, and increased

autophagy. Although Lrba-/- mice do not exhibit the immunodeficiency

observed in humans, responses to B cell receptors (BCR) in B cells have not

been explored. Therefore, a murine model is for elucidating the mechanism of

Lrba mechanism in B cells.

Aim: To compare and evaluate spleen-derived B cell responses to BCR

crosslinking in C57BL6 Lrba-/- and Lrba+/+ mice.

Materials and methods: Spleen-derived B cells were obtained from 8 to 12-

week-old mice. Subpopulations were determined by immunostaining and flow

cytometry. BCR crosslinking was assessed by the F(ab’)2 anti-m chain. Activation,

proliferation and viability assays were performed using flow cytometry and

protein phosphorylation was evaluated by immunoblotting. The nuclear

localization of p65 was determined using confocal microscopy. Nur77

expression was evaluated by Western blot.

Results: Lrba-/- B cells showed an activated phenotype and a decreased

proportion of transitional 1 B cells, and both proliferation and survival were

affected after BCR crosslinking in the Lrba-/-mice. The NF-kB pathway exhibited

a basal activation status of several components, resulting in increased activation

of p50, p65, and IkBa, basal p50 activation was reduced by the Plcg2 inhibitor
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U73122. BCR crosslinking in Lrba-/- B cells resulted in poor p50 phosphorylation

and p65 nuclear localization. Increased levels of Nur77 were detected.

Discussion: These results indicate the importance of Lrba in controlling NF-kB
activation driven by BCR. Basal activation of NF-kB could impact cellular

processes, such as, activation, differentiation, proliferation, and maintenance of

B cells after antigen encounter.
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1 Introduction

LRBA is a ubiquitous protein whose functions have been

described in immune, kidney, and neuronal cells. Since 2012, over

100 pathogenic variants of LRBA have been associated with

common variable immunodeficiency (1–5)as well as autoimmune

disorders such as neonatal insulin-dependent diabetes mellitus

(IDDM) (6–12), autoimmune lymphoproliferative syndrome

(ALPS)-like syndrome (1, 3, 13), immune dysregulation,

polyendocrinopathy, enteropathy, and X-linked syndrome

(IPEX)-like syndrome (1, 3, 13, 14).

LRBA is a high molecular weight protein that belongs to a

family of proteins containing Beige and Chediak-Higashi (BEACH),

pleckstrin homology (PH)-like proteins, and WD40 repeats, named

BEACH domain-containing proteins (BDCPs). BDCP variants

affect cellular processes, such as apoptosis, lysosome size,

autophagy, granule size, and neuronal synapse formation (15).

Additionally, some of LRBA’s predicted LRBA domains are

related to vesicular trafficking, such as the Concanavalin A

(ConA)-like, vacuolar protein sorting (VPS)-27, hepatocyte

growth factor-regulated tyrosine kinase substrate (Hrs), and

signal transducing adaptor molecule (STAM) VHS domains (16).

Moreover, LRBA functions as an A-kinase-anchoring protein

(AKAP), enabling its interaction with the PKA regulatory subunit

(17) and its substrates. This interaction facilitates the correct

localization of signaling complexes, thereby ensuring their

functionality (16, 18). Recent studies in Lrba-/-knockout mice

indicated that Lrba is involved in the PKA phosphorylation of

aquaporin 2 in kidney cells (19).

Although the molecular functions of LRBA protein have been

described in the recycling of CTLA-4 in T regulatory cells (2), a

significant proportion of patients with LRBA deficiency present

defects in the number of memory B cells, low serum antibodies, and

autoimmunity such as thrombocytopenia and hemolytic anemia

(1), suggesting an additional mechanism of LRBA in the correct

function of B cells.

B cells are essential components of the immune response and

lead to the production of specific antibodies. They respond to

extrinsic signals that activate signaling pathways through different
02
receptors, resulting in proliferation, survival, and differentiation.

The B-cell receptor (BCR) is crucial for B cells; it consists of a

membrane Immunoglobulin (mIg) coupled to the heterodimer Iga/
Igb. Signaling through this receptor depends on the stage of B cell

differentiation; in immature B cells, it promotes cell death, whereas

in mature B cells, it leads to proliferation (20–22).

The cross-linking of mIg initiates BCR signaling after contact

with the specific antigen, leading to the phosphorylation of

immunoreceptor tyrosine-based activation motifs (ITAM) in Iga
and Igb proteins, which are then recognized and bound to Lyn

kinase. Subsequently, Syk kinase participates in phosphorylating

Bruton’s tyrosine-kinase (Btk) and the scaffolding B-cell linker

protein (Blnk), allowing the converging signaling activation of

mitogen-activated protein kinase (MAPK) and phospholipase-C

gamma 2 (Plcg2). MAPK kinase signaling culminates in the

activation of transcription factors such as AP-1 and Elk, while

Plcg2 leads to the activation of nuclear factor of activated T-cells

(NFAT) and nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-kB) (23).
NF-kB is a family of proteins with transcriptional activity

involved in immune processes (24). The canonical pathway of

NF-kB culminates in the nuclear translocation of p50/p65 dimers,

allowing the targeting of genes. These proteins typically remain

inactive in the cytosol thanks to the interaction with the inhibitor

kappa B (IkBa). For p50/p65 activation, it is necessary the

phosphorylation and subsequent degradation of IkBa driven by

IKKa/IKKb. When the p65/p50 is released, it is phosphorylated by

IKKa and PKA, a process necessary for entry to the nucleus.

Although NF-kB is a transcription factor broadly expressed in

cells, its specific functions in the development, survival, and

activation of B cells have been described (25).

LRBA human immunodeficiency manifests as substantial

defects in B cells such as diminished B cell counts, reduced

immunoglobulin production, and B cell proliferation. B cells also

show poor survival and reduced autophagy (1), suggesting that

proper LRBA function is crucial for B cell biology.

In this study, we explored B-cell defects in Lrba-/- mice. Peripheral

B cell differentiation in the spleen showed a slightly lower but

significant proportion of Transitional 1 B cells. Additionally, low B
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cell proliferation and altered survival were observed in response to BCR

crosslinking. Additionally, in the absence of Lrba, molecules involved in

BCR signaling are altered, and Btk, Plcg2, IkBa, and p50 are

overexpressed and hyperphosphorylated in basal conditions.

Additionally, the phosphorylation of NF-kB components after BCR

crosslinking showed a reduced response in Lrba-/- B cells, and p65

showed a nuclear localization in basal conditions. Nur77 was

overexpressed, suggesting chronic BCR activation. Our results

indicate that Lrba is essential for controlling the activation of BCR

signaling molecules.
2 Materials and methods

2.1 Reagents and antibodies

Antibodies and reagents used in this work including NF-kB p50

(E-10), phospho NF-kB p50 (Ser336) (A-8), RELA/NF-kB p65 (A-

12), phospho-RELA/NF-kB p65 (Ser536) (27. Ser536), NFKBA/IKb

alpha (H-4), beta Actin (C4), Plcg2 (B-10) and Nur77 (C-5) were

obtained from (Santa Cruz Biotechnology, CA, USA). Phospho-IkBa
(Ser32/36) (5A5) mouse mAb #9246 was procured from (Cell

Signaling Technology, MA, USA). Purified Anti-Human Btk

antibody and BD Pharmingen Purified Mouse anti-Btk (Y551)/

ItkY511 (24a/BTK) was purchased from BD Transduction

Laboratories (NJ, USA), PE anti-Plcg2 Phospho (Tyr759)

Recombinant Antibody (QA20A56) from Biolegend (CA, USA),

and Plcg2 inhibitor U73122 (Merck Millipore, MA, USA).

Additionally, PE anti mouse-Cd21/Cd35 Monoclonal Antibody

(4E3), PerCP/Cy5.5 anti-mouse Cd44(IM7); (eBioscience, San

Diego, CA, USA), goat anti-Mouse IgG (H+L) Secondary

Antibody, Goat IgG anti-mouse Alexa Fluor 594 (Invitrogen), and

Propidium Iodide (Thermo Scientific, MA, USA) were used.

Polyclonal Anti-LRBA/BGL antibody was purchased from Abcam,

Cambridge, UK). PE anti-mouse I-Ab Antibody (AF6-120.1), APC

anti-mouse/human Cd45R/B220 Antibody (RA3-6B2), and PerCP/

Cyanine5.5 anti-mouse Cd24 Antibody (M1/69) were purchased

from BioLegend (CA, USA). AffiniPureTM F(ab’)2 Fragment Goat

Anti-Mouse, m chain specific (referred to as Anti-IgM), secondary

antibodies Peroxidase AffiniPure™Goat Anti-Mouse IgG (H+L) and

Peroxidase AffiniPure™ Goat Anti-Rabbit IgG (H+L) were obtained

from Jackson ImmunoResearch Laboratories Inc®, PA, USA. DAPI
was purchased from Sigma-Aldrich (St. Louis, MO).
2.2 Mice

Lrba-/-mice were kindly donated by PhDManfredW. Kilimann

from the Max Planck Institute, Germany (26, 27). C57BL/6 Lrba-/-

and Lrba+/+ mice were maintained in germ-free installations at the

animal facility of the Centro de Investigacion y de Estudios

Avanzados (CINVESTAV) according to the institutional animal

guidelines for animal care and experimentation (Protocol number

0145-15, UPEAL-CINVESTAV-IPN). These mice have a deletion

in exon four that drives the absence of the protein. For the
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experiments described here, the mice oscillated between 8 and 12

weeks of age. The mice were genotyped before the experiments were

performed as described previously (26).
2.3 Splenocytes

Mice were euthanized by cervical dislocation and spleens were

obtained. The sizes and weights of the spleens were measured. Then,

the spleens were disaggregated, and erythrocytes were lysed using a

homemade solution (NH4Cl 0.15 M, KHCO3 10 mM, EDTA 100

Mm) for 5 min at 25 °C. After cell counting, the samples were

prepared for the assays described below.
2.4 Determination of peripheral B cell
subpopulations and activation markers

B cell subpopulations were determined using flow cytometry.

Total splenocytes were stained with anti-B220-APC, anti-Cd21-PE,

and anti-Cd23-PerCP/Cy5.5 and anti-IgM APC-Cy7 antibodies,

incubated for 30 min, and washed once with PBS. For analysis using

FlowJo (Becton Dickinson), B220-positive cells were gated among

lymphocytes, and Cd23, Cd21, and IgM levels were used to

determine the proportions of T1 (Cd23-Cd21lowIgM+), T2 (Cd23

+Cd21hiIgM+), follicular B cells (Cd23+low Cd21lowIgMlow) and

Marginal zone (MZ) B cells (Cd23+low Cd21highIgM+). Finally,

absolute numbers for each subpopulation were calculated based on

the percentages obtained for each B cell subpopulation. Data were

acquired on a Northern Lights spectral flow cytometer (Cytek

Biosciences, Fremont, CA, USA).

Splenocytes were incubated with anti-mouse PerCP/Cy5.5-

Cd44, PE anti-mouse I-Ab, and APC anti-B220 (Biolegend) for 30

minutes to detect activation marker expression, then washed once

with PBS. Data were acquired using a FACs Aria I flow cytometer

(Beckton Dickinson). Median fluorescence intensities (MFI) for

Cd44 and I-Ab were obtained using FlowJo software.
2.5 Proliferation assays

Proliferation assays were conducted using CellTrace™ CFSE

(Life Technologies, Carlsbad, CA, USA). The splenocytes were

harvested at a final concentration of 1 × 106 cells and stained with

CFSE at 0.5 mM. The stained splenocytes were then cultured in RPMI

medium supplemented with 10% fetal bovine serum (FBS) (Gibco,

NY, USA), penicillin-streptomycin 1X (Sigma-Aldrich®, MO, USA),

and 100 ng/mL of recombinant murine IL-4 (Biolegend, CA, USA).

Cells were plated in 24-well cell culture plates at a concentration of

2.5 × 105 cells per well and stimulated with anti-IgM at a final

concentration of 10 mg/ml. After 96 h of incubation, the cells were

stained with anti-B220-APC and data acquisition was performed

using a FACs Aria instrument (Becton Dickinson). Proliferation was

analyzed from viable (propidium iodide negative) B220+ B cells.
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2.6 Viability assays

Total splenocytes (5 × 105 cells/ml) were cultured in 24-well cell

culture plates for 4, 12, or 20 h. Anti-IgM stimuli were added at a

concentration of 10 mg/mL. After incubation, cells were stained with

anti-B220-APC and propidium iodide to evaluate cell viability.

Analysis was performed using FlowJo software (Becton Dickinson).
2.7 B cell activation for
phosphorylation assays

B cell assays were conducted using samples enriched for B cells

through negative selection with magnetic beads, employing the

MojoSortTM Mouse Pan B Cell Isolation Kit and following the

manufacturer’s instructions (Biolegend®, CA, USA). Briefly, cells
were resuspended at a concentration of 1.5 × 108 cells/mL in a

handmade buffer for sorting B cells, consisting of PBS with 0.1%

bovine serum albumin and 0.5 mM EDTA. Subsequently, 10 ml of the
Biotin-Antibody cocktail from the MojoSortTM Mouse Pan B Cell

Isolation Kit (Biolegend®, CA, USA) was added, and the mixture was

incubated on ice for 15 min. After incubation, the cells were washed

once and Streptavidin Nanobeads were added and incubated for

another 15-min incubation. The cells were washed again, and B cells

were isolated by incubating the cell suspension three times for 10 min

each in a MojoSort™ Magnet (Biolegend®, CA, USA). The purified
B cells were then resuspended in PBS at a concentration of 10 × 106

cells/mL and stimulated with Anti-IgM (10 mg/mL) for 10 and 20min

at 37°C. For inhibition assays, cells were treated similarly, however,

they were preincubated with 0.25 mM U73122 for 2 h, and p50

phosphorylation was determined.
2.8 BCR signaling proteins detection by
Western blot

After stimulation, the cells were centrifuged and pellets were

obtained. Whole-cell lysate was prepared by adding 100 ml of Cell
Lysis Buffer 1× (Cell Signaling Technologies®, MA, USA) along

with the complete ULTRA tablets’ protein inhibitor cocktail

(ROCHE®, Switzerland). The cells were centrifuged at 17200 × g

at 4°C for 10 min, and supernatants were collected. Protein

concentration was determined using a DC™ Protein Assay Kit II

(Bio-Rad, Hercules, CA, USA). The lysates were then mixed with 20

ml of Laemmli buffer 6X added with 5% b-mercaptoethanol was

added, and the mixture was boiled at 95°C.

To evaluate the expression and/or phosphorylation of signaling

proteins after BCR activation, samples were separated on a 12%

acrylamide gel, and electrophoresis was performed for 3 h at 80V.

Proteins were transferred to PVDF membranes for 25 min at 25V

using a Trans-Blot Turbo Transfer System (Bio-Rad). The PVDF

membranes were blocked for 30 min in a solution of 3% fat-free

milk in TBS-Tween 0.1%. Primary antibodies including Btk, Plcg2,
p50, pSer336 p50, p65, pSer536, p65, IkBa, and pSer32/36 IkBa,
diluted at 1:500, and b-Actin, diluted at 1:2000, were incubated

overnight. Secondary antibodies (anti-mouse IgG-HRP or anti-
Frontiers in Immunology 04
rabbit IgG-HRP, diluted 1:3000) were added and incubated for 90

min. The membranes were washed three times after incubation with

1% TBS-Tween 0.1% in 5% fat-free milk for 10 min.

For protein detection, SuperSignal™ West Femto Maximum

Sensitivity Substrate (Thermo Scientific®, MA, USA) was used, and

membrane visualization was performed using the ChemiDocTM

XRS+ imaging system, densitometric analysis was performed using

the ImageLab™ Software (Bio-Rad®, CA, USA).
2.9 Intracellular staining for pY759
Plcg2 detection

Splenocytes were stained with APC anti-B220 for 30 minutes,

fixed, and permeabilized with BD Phosflow™ Fix Buffer I and Perm

Buffer III (Becton Dickinson), and following manufacturer’s

instructions. After permeabilization, the cells were incubated

overnight with PE anti-pY759 Plcg2. The cells were then washed

with PBS containing 1% FCS and acquired using a flow cytometer.

MFI was calculated for each sample, and an index of expression was

obtained by dividing the MFI of pY759 Plcg2 positive cells by the

MFI of negative cells.
2.10 Intranuclear staining for p65 detection

For p65 staining, 5 × 105 splenocytes were stimulated with anti-

IgM (10mg/mL) for 5 and 15 min, as described previously. After

washing with PBS, cells were fixed with 4% paraformaldehyde in

PBS for 15 min at 4°C. Then, cells were permeabilized with 0.2%

Triton X-100 for 10 min at room temperature and blocked with

10% goat serum in PBS for 30 min at 37°C. Subsequently, cells were

incubated with anti-p65 antibody diluted 1:150 and incubated for 1

h at 4°C. After incubation, cells were stained with anti-mouse IgG

Alexa Fluor 596 (1:750) and DAPI (1:1000) for 30 min at 4°C.

Cells were mounted on coverslips previously coated with 0.01%

Poly L-lysine (Sigma-Aldrich®, MO, USA) and incubated for 1 h at

37°C. The coverslips were then washed with PBS and mounted on

slides using the Vectashield mounting medium (Vector Laboratories

Inc., CA, USA).
2.11 Nur77 detection

For Nur77 detection, enriched B cells were lysed as described

previously, and protein extracts were loaded into 12% acrylamide/

bis-acrylamide gels and transferred onto nitrocellulose membranes.

Procedures for Western blotting and protein detection were

described in section 2.8.
2.12 Confocal microscopy

An LSM 710-Live Duo Scan confocal microscope (Zeiss,

Germany) was used to visualize the cells. Subsequently, images were

analyzed using FIJI software (28). The co-localization test and

Colocalization Finder Plugin were used to determine the nuclear

localization of p65 and Pearson’s correlations.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1409434
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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2.13 Statistical analysis

Subpopulation proportions, proliferation, and viability were

statistically analyzed using the Mann–Whitney U test.

Densitometric data from the immunoblots were obtained using

ImageLab™ software (Bio-Rad). The amount of total or

phosphorylated proteins was normalized by calculating the ratio

of total protein or phosphorylated protein to housekeeping

proteins. Statistical differences were determined using the Mann-

Whitney U test.

For nuclear localization of p65, colocalization with DAPI was

determined, and Pearson’s coefficient was obtained using the FIJI

software (28), where a coefficient close to one indicates strong

nuclear localization of p65. Statistical analysis of variance

(ANOVA) was performed to compare the nuclear localization of

p65 in basal and BCR-crosslinked cells from both wild type (WT)

and Lrba-/- mice. All statistical analyses were conducted using

GraphPad Prism software version 8.0 for Windows (GraphPad

Software, San Diego, CA, USA; www.graphpad.com).
3 Results

3.1 Lrba-/- mice presented splenomegaly
and defects in activation and
peripheral differentiation

In humans, LRBA deficiency results in an extended phenotype that

includes recurrent infections, autoimmunity, lymphoproliferation, and

splenomegaly. Although Lrba-/- mice appeared to have a healthy

phenotype, evidence of splenomegaly was observed in this study. The

weights of the spleens were measured (Figure 1A). The spleen weight of

Lrba-/-mice was higher (0.1048 ± 0.009 g) than Lrba+/+mice (0.0715 ±

0.0178 g), suggesting splenomegaly. Total splenocytes were obtained as

previously described. In addition to the macroscopic data of the spleen

(size and weight), the total splenocyte count was higher in Lrba-/- mice

(179.9 ± 50.6 × 106 cells) than inWTmice (127.5 ± 25.04 × 106 cells) as

shown in Figure 1A.

Splenocytes were immediately stained with anti-Cd23, anti-Cd21,

anti-IgM, and anti-B220 antibodies. There were no differences in the

B cell proportion or total counts (Supplementary Figure 1A). The

proportions of transitional 1 (T1), transitional 2 (T2), marginal zone

(MZ), and follicular B cell subpopulations were determined by flow

cytometry (Figure 1B). T1 cell proportions were lower in Lrba-/- mice

(10.26 ± 2.93%) than in WT mice (23.98 ± 6.69%), which was

statistically significant. T2 cell proportions were similar between both

strains, with values of (14.24 ± 1.55%) for Lrba-/- and (12.56 ± 3.97%)

for Lrba+/+. Follicular B cell proportions were similar in Lrba-/- mice

(44.31 ± 10.35%) Lrba+/+ mice (32.37 ± 8.3%). Finally, there MZ cells

are higher in Lrba-/- mice (9.37 ± 2.07%) versus Lrba+/+ mice (5.01 ±

3.44%), Figure 1B.

Absolute numbers of T1 B cells were lower in Lrba-/- mice (4.16

± 1.86) than in Lrba+/+ mice (12.96 ± 5.33). Also, the numbers of
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MZ cells were higher in Lrba-/- mice (4.68 ± 1.63) than in Lrba+/+

mice (2.27 ± 1.63). No differences were observed with the total

number of T2 (7.31 ± 2.85) in Lrba-/- mice and (6.04 ± 3.2) in

Lrba+/+ mice; follicular B cells (23.66 ± 12.02) in Lrba-/- mice and

(15.52 ± 7.22) in WT mice (Figure 1B).
3.2 Defective B cell proliferation and
survival in Lrba-/- B cells after
BCR activation

When immature B cells enter the spleen, a second negative

selection occurs in T1 cells. Therefore, BCR signaling at this stage

of differentiation drives cell death. Following this line of thought, the

differences in T1 proportions in the absence of Lrba suggest a possible

altered response to BCR cross-linking. Proliferation was measured to

determine if Lrba-/- B cells responded to BCR stimulation.

Interestingly, the proportion of proliferating B cells stimulated with

anti-IgM was lower in Lrba-/- B cells (22.56 ± 12.8%) than in WT

mice (40.34 ± 15.88%). These differences were significant (Figure 2A).

In contrast, Ki67 expression was measured as a marker for in situ

proliferation, interestingly increased Ki67 expression was observed in

Lrba-/- B cells (Supplementary Figure 1B).

Increased expression of activation markers, as CD44 and I-Ab

were detected in B cells from Lrba-/- mice. In the case of CD44, MFI

was 409 ± 73.3 for Lrba-/- and 296 ± 66.86 for Lrba+/+ B cells, while

for I-Ab expression, MFI was 1768 ± 506.6 for Lrba-/- and 542.8 ±

230.9 for Lrba+/+ B cells (Figure 2B).

Lower proliferative responses detected in Lrba-/- mice could be

the result of altered cell survival, as previously reported for B cells

from LRBA-deficient patients (1). Therefore, B cell survival assays

were performed on unstimulated and BCR-stimulated cells over

time. The proportion of Propidium Iodide (PI)-negative cells was

calculated within the B220+ gate (Figure 2C). At time 0 or under

unstimulated conditions, B cells from both mice showed similar

survival proportions (85.54% ± 1.9 for Lrba-/- and 86.57% ± 2.96 for

WT). After 4 h of culture and BCR crosslinking, survival was

significantly higher in Lrba-/- mice (93.27% ± 2.55) compared to

that (85.55% ± 5.23) in WT mice. A similar trend was observed at

12 h of BCR activation: the proportion of viable B cells in Lrba-/-

mice was 84.07% ± 7.65 compared to 71.46% ± 7.48 observed in B

cells from the WT counterpart. Interestingly, after 20 h of

stimulation, Lrba-/- B cell survival drastically decreased (62.26% ±

5.84) compared to WT B cell survival (69.21% ± 2.64) (Figure 2C).

These data suggested that the low proliferative response after 96 h of

stimulation may be due to reduced cell survival in response to BCR

activation in B cells from Lrba-/- mice.
3.3 Altered basal expression of BCR
signaling molecules in Lrba-/- B cells

The inadequate proliferative and survival responses to BCR

crosslinking suggested an inadequate response in this pathway. BCR
frontiersin.org
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signaling begins with the phosphorylation of ITAM motifs and

activates kinases such as Syk and Lyn. Following this, Btk is

phosphorylated, leading to the activation of Plcg2. The evaluation

of proximal BCR signaling protein expression revealed increased

basal expression of Btk and Plcg2; these results were statistically

significant when densitometric analysis using b-actin as a control

was performed (Figure 3A).

Diacylglycerol production after Plcg2 activation has a direct

impact on NF-kB activation. NF-kB is composed of IkBa, p50, and
p65. Expression of IkBa and p65 was similar between Lrba-/- and

Lrba+/+ B cells. However, p50 expression increased in Lrba-/- B cells

(Figure 3A). The expression of IkBa, p50, and p65 was similar in

total splenocytes (Supplementary Figure 2). Increased expression of

proximal BCR signaling molecules suggests that this signaling
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pathway is altered. Therefore, we explored the phosphorylation

status of NF-kB.
3.4 Altered basal activation of NF-kB in the
absence of Lrba

Plcg2 phosphorylation was explored; however, as shown in

Figure 3B, a tendency towards increased phosphorylation for

Plcg2 was observed (14.4 ± 3.69 for Lrba-/-, and 8.41 ± 4.72 for

Lrba-/-), but the differences were not significant (Figure 3B), similar

data was obtained for Btk phosphorylation, Figure 3C.

NF-kB is a family of transcription factors broadly expressed in

different cell types, and importantly, in immune responses with
B

A

FIGURE 1

Peripheral B cell differentiation in Lrba deficient B cells. (A) Splenomegaly in Lrba-/- mice. Representative image of the spleen in Lrba-/- and Lrba+/+

mice (left). Spleen weight in Lrba-/- and Lrba+/+ mice, (n=4, middle). Total splenocytes in Lrba-/- and Lrba+/+ mice (right). (B) Peripheral B cells
differentiation. Representative plots of Transitional 1 (T1), Transitional 2 (T2), Marginal Zone (MZ), and Follicular (Fo) B cells in the spleen from Lrba-/-

and Lrba+/+ mice evaluated by Cd21 and IgM expression. Representative zebra plot of T1, T2, Fo, and MZ B cells in a Cd23+ or Cd23- gate (left).
Proportions from total B cells and number of cells are indicated in Graphs (right, n=4). * = p<0.05.
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significance in BCR signaling. Following the finding that proximal

BCR signaling molecules were overexpressed, the impact of such high

expression on the phosphorylation status of NF-kB components was

explored. Notably, higher levels of phosphorylated p50 and IkB
proteins were detected in basal conditions in Lrba-/- B cells,

Figure 3C. These data indicated an exacerbated activated state

without BCR crosslinking. However, p65 phosphorylation under

basal conditions was similar to Lrba+/+ B cells. IkBa, p50, and p65

phosphorylation were similar in total splenocytes (Supplementary

2B), suggesting that the abnormalities are exclusive to B cells.
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Treatment with the Plcg2 inhibitor U73122 notably reduced the

levels of p50 phosphorylation (Figure 3D).
3.5 Absence of NF-kB phosphorylation
after BCR crosslinking in Lrba-/- B cells

We next explored whether NF-kB components could be further

activated when the BCR is cross-linked. Purified B cells were obtained

by negative selection and activated for 10 or 20 min with anti-IgM.
B

C

A

FIGURE 2

Proliferation, survival, and activation of B cells. (A) Representative histograms of CFSE staining of B cells cultured for 96 h with anti-IgM (left).
Proportions of proliferating B cells activated through BCR and IL-4 (right). Results were gated from B220+ and Propidium iodide (PI) negative cells
and analyzed by flow cytometry, n=5. (B) Basal activation of B cells. Cd44 and I-Ab expression were assessed by flow cytometry in B220+ cells. MFI
were compared. Cd44 n=6; I-Ab n=4. * = p<0.05; ** = p<0.01. (C) B cell viability after BCR activation at 4, 12, and 20 (h) Representative plots were
analyzed by flow cytometry (left). B cell viability at 4, 12, and 20 h of BCR stimulation (n=4, right).
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Pérez-Pérez et al. 10.3389/fimmu.2024.1409434
Consistent with previous results, in unstimulated cells (Figure 4A),

IkBa and p50 were over phosphorylated in Lrba-/- B cells under basal

conditions. Importantly, after 10 min of stimulation with anti-IgM,

no increase in the levels of phosphorylation of IkBa, p50, and p65
Frontiers in Immunology 08
was detected, in contrast to the observed response in Lrba+/+ B cells

(Figure 4A). When the phosphorylation of IkBa, p50, and p65 was

explored after 20 min of activation with anti-IgM, the

phosphorylation remained at similar levels in Lrba-/- B cells than
B C

D

A

FIGURE 3

Btk, Plcg2, IkBa, p50, and p65 expression in B cells. (A) Representative immunoblot of Btk, Plcg2, IkBa, p50, and p65 expression in B cells in basal
conditions (left). GAPDH or b-Actin were used as loading controls. Densitometric analysis of Btk, Plcg2, IkBa, p50, and p65 in basal conditions (right,
n=4 to 6). (B) Phosphorylated Plcg2 expression in B cells assessed by Flow Cytometry (top). Index of MFI from positive divided by negative phospho-
Plcg2 in Lrba-/- and Lrba+/+ mice (bottom, n=4). (C) Representative immunoblot showing phosphorylated components of NF-kB, IkBa, p50, and p65
in B cells. (left). Densitometric analysis of phosphorylated components of pSer32/36 IkBa, pSer336 p50, and pSer536 p65 compared to the loading
control. Phosphorylated residues are indicated (right), n=5. * = p<0.05; ** = p<0.01. (D) Plcg2 inhibition assays with U73122, representative blot (left);
densitometric analysis of Plcg2 inhibition (right).
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the unstimulated conditions; meanwhile, the levels of

phosphorylation of these molecules in the Lrba+/+ B cells returned

to basal values (Figure 4A). These data suggest that Lrba deficiency

correlates with spontaneous B cell activation; however, such cells are

unable to respond appropriately to BCR stimulation.
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3.6 p65 is constitutively located in the
nuclei of Lrba-/- splenocytes

NF-kB activation culminates in the entry of the transcription

factor formed by p50/p65 into the nucleus, inducing transcription
A

B

D

C

FIGURE 4

Activation of NF-kB in B cells after BCR crosslinking in vitro (A) B cells stimulated through BCR at 10 and 20 min, representative blot (left).
Densitometric analysis of IkBa, p65, and p50 phosphorylation after BCR crosslinking (right). Phosphorylated residues are indicated. n=3. (B) Nuclear
localization of p65. Representative images of p65 (red) in the nuclei (blue) in Lrba-/- and Lrba+/+ splenocytes analyzed by confocal microscopy.
Merged fluorochromes and nuclear localization representation are indicated. (C) Pearson’s coefficient of nuclear localization of p65 in splenocytes
from Lrba-/- and Lrba+/+ cells. n=50 cells per condition (top right). Increased nuclear p65 localization after 5 min of activation with anti-IgM (bottom
right). (D) Representative blot for Nur77 expression in B cells from Lrba-/- and Lrba+/+ mice (left). Densitometric analysis for Nur77 expression (right,
n=3). * = p<0.05; ** = p<0.01,*** = p<0.001.
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of genes important for survival, proliferation, and activation of B

cells. Until now, IkBa and p50 have shown increased basal

phosphorylation levels, and no further activation is observed in

BCR-crosslinked B cells. However, p65 does not exhibit this

behavior as it has low phosphorylation levels in unstimulated or

BCR-crosslinked B cells. We wondered whether the high levels of

p50 phosphorylation, the cellular location of p65 was affected. To

investigate this, the nuclear localization of p65 in splenocytes was

explored using confocal microscopy. Interestingly, higher nuclear

colocalization of p65 was observed in Lrba-/- cells under

unstimulated conditions. After five min of BCR crosslinking,

nuclear p65 significantly increased in both Lrba-/- and WT mice.

However, 15 min after activation, nuclear p65 levels remained

unchanged in both mice (Figures 4B, C). The Pearson’s

correlation analysis confirmed that these results were significant

(Figure 4C). This data is consistent with the increased

phosphorylation status of NF-kB in non-BCR activated Lrba-/-

B cells.

In addition, BCR crosslinking after 5 and 15 min induced p65

nuclear localization in WT splenocytes; however, in Lrba-/- mice,

the increase in the nuclear localization of p65 was less

pronounced (Figure 4C).
3.7 Nur77 is overexpressed in B cells Lrba-/-

Chronic B cell stimulation by BCR has been associated with

Nur77 induction. Here, we evaluated Nur77 expression to show that

the spontaneous activation of BCR signaling in Lrba-/- mice

originates from a chronic process. As shown in Figure 4D, Nur77

was overexpressed in B cells from these mice.
4 Discussion

LRBA deficiency is one of the most frequent monogenic causes

of CVID (29) and is classified as a group of primary

immunodeficiencies involving antibodies (30). Patients with

LRBA deficiency exhibit hypogammaglobulinemia, splenomegaly,

autoimmune disorders, reduced levels of total B-cells, and

diminished peripheral differentiation into memory phenotypes

(1–4, 31, 32). These findings suggest defects in B-cell function,

which have been poorly explored in LRBA deficiency.

Here, we investigated possible defects in the function of Lrba-/-

B cells in a previously described murine model in which the

functions of Lrba in olfactory cilia, cochlear hair cells, and T

regulatory cells have been described (26, 27, 33). Lrba-/- mice

showed no defects in the number and response to stimuli as LPS

in B2 cells. Other findings included elevated IgA and IgG2b levels

and reduced numbers of B1 cells (13). However, some data from

humans, such as splenomegaly, reduced circulating B cell counts,

and poor differentiation of memory B cells (1–4, 32) led us to

hypothesize that possible defects in response to BCR may occur.

To explore this hypothesis, we first evaluated the size and

weight of the spleens in mice, as well as the total number of

splenocytes (Figure 1A). In Lrba-/- mice, signs of splenomegaly
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were observed despite a healthy phenotype. These findings suggest

lymphocyte expansion in the absence of infection, similar to that

observed in patients with human LRBA deficiency. In addition, we

evaluated the splenic stages of B cell differentiation. Naive B cells

that egress from the bone marrow toward the spleen can be

distinguished using cellular markers. These were categorized as

transitional type 1 (T1) and T2 B cells (34, 35). Upon encountering

antigens, T1 B cells undergo apoptosis. This process helps to deplete

autoreactive B cells through apoptosis. T2 B cells respond positively

to BCR crosslinking and proliferate to differentiate into mature B

cells (35, 36). When T1, T2, and follicular B cells were examined, a

slight yet significant reduction in the proportion of T1 cells was

observed in Lrba-/-mice (Figure 1B). Similar data was obtained after

the total counts of T1, T2, MZ and follicular B cells were calculated

(Figure 1B) (13). Analysis of MZ B cells showed slightly increased

proportions and total numbers in Lrba-/-mice. MZ B cells are

important for immunity to encapsulated bacteria, and their

development has been suggested to depend on BCR signaling

strength (37, 38).

Because T2 and follicular B cells showed a proliferative response

after BCR crosslinking (36), in vitro assays were conducted to

determine the proliferative capacity of B cells in Lrba-/-mice after

activation with anti-IgM. B cells from the Lrba-/- mice showed a

lower proliferative response after 96 h of BCR activation

(Figure 2A). Previous studies with Lrba-/- mice showed normal

proliferation; however, under different conditions, such as LPS

stimulation for 72 h (26), a defective proliferative response to

BCR stimulation may be observed owing to an absent response to

the stimuli, which may consequently lead to cellular death.

Therefore, cell survival was evaluated for more than 20 h.

Interestingly, Lrba-/-B cells showed higher survival after 4 and 12

h of activation than their WT counterparts; however, at 20 h, B cell

survival decreased dramatically in Lrba-/-mice (Figure 2B). Reduced

survival at 48 h was even more dramatic (Supplementary Figure 3).

Expression of activated markers in basal conditions was also

explored, CD44 and I-Ab were measured in B cells, both markers

were observed in higher levels in Lrba-/-mice, indicating a basal

activation status of these cells; both CD44 and MHC-II (I-Ab) are

expressed in BCR-primed B cells, while I-Ab, Figure 2C (39, 40).

Increased Ki67 expression was observed in Lrba-/- B cells indicating

in situ B cell proliferation (Supplementary Figure 1C). Importantly,

B cells depend on additional signals for a proper antibody response,

such as T cell co-stimulation and activation through TLRs (41, 42).

The survival and proliferative response improved in the presence of

these signals in Lrba-/- B cells, suggesting that these pathways

function properly (Supplementary Figure 3). Data regarding the

reduced proliferation and survival of Lrba-/-B cells in response to

BCR suggest defects in BCR signaling, which have not been

described previously.

The first events following BCR crosslinking include the activation

of Lyn, Syk, and Btk kinases. Then, the phosphorylation of Blnk

allows its binding to Btk kinase and Plcg2. Once activated Plcg2
produces second messengers from membrane phospholipids, such as

inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). DAG

leads to activation of (NF-kB) (22). Here, we first explored the

expression of proximal components. Notably, Lrba-/- B cells
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Pérez-Pérez et al. 10.3389/fimmu.2024.1409434
showed higher levels of Btk and Plcg2 expression (Figures 2B, C),

additionally, a tendency towards increased levels of phosphorylated

Btk and Plcg2 was detected, but not significant differences were

observed (Figures 3B, C).

NF-kB component expression was also evaluated. NF-kB is a

transcriptional factor expressed ubiquitously, but in lymphocytes, it

is important for the response of antigen receptors (TCR and BCR)

(25). The NF-kB complex is composed of p50, p65, and IkBa and

its activation in B cells after BCR crosslinking drives the

transcription of genes important for progression in the cell cycle

and induces pro- and anti-apoptotic proteins as Bcl-2 and Bcl-xL

(43). Importantly, p50 was also overexpressed in the Lrba-/- B cells,

while p65 and IkBa showed similar levels of expression between

both WT and Lrba-/- B cells (Figures 2C–E). These data confirmed

altered BCR signaling in Lrba-/-B cells.

To determine if NF-kB is properly activated, the phosphorylation

of NF-kB components was evaluated in non-stimulated or BCR-

stimulated cells. Increased levels of phospho Ser32/36 IkBa and

phospho Ser336 p50 were detected even in unstimulated Lrba-/- B

cells (Figure 3C); phospho ser536 p65 levels were similar between

Lrba-/- andWTmice (Figure 3D). Interestingly, Plcg2 inhibition assays
with U73122 notably reduced the levels of p50 phosphorylation

indicating that the increased NF-kB activation is due to

spontaneous BCR activation (Figure 3D). These data suggest that

Lrba is important for controlling the expression and activation of

downstream BCR signaling components. These findings coincide with

a study conducted on a B cell line deficient in LRBA, where

phosphorylation and activity of NF-kB showed higher levels than

WT cell line. This study proposes a regulatory role for LRBA in NF-kB
activation (44). Altogether, these data mean that in the absence of

Lrba, spontaneous activation of BCR occurs.

Upon BCR crosslinking, no increase in the phosphorylation

levels of IkBa, p50, and p65 was detected (Figure 4A), indicating

that the exacerbated phosphorylation in IkBa and p50 at basal

condition prevents a proper response in the Lrba-/- B cells to BCR

crosslinking. Of note, p65 phosphorylation behaves differently than

IkBa and p50 in Lrba-/- B cells, as p65 expression was similar

between Lrba-/- and WT B cells and did not show increased levels of

phosphorylation in basal conditions. Importantly, it did not

increase phosphorylation levels after BCR crosslinking (Figure 4A).

Finally, we detected the presence of p65 in the nuclei of Lrba-/-

splenocytes. Interestingly, p65 nuclear localization was significantly

higher in Lrba-/- cells than in WT cells (Figure 4B). Upon BCR

crosslinking p65 nuclear localization increased in both WT and

Lrba-/- splenocytes, however, the increased proportion of nuclear

p65 after 5 min of activation was much higher in the WT

splenocytes (Figures 4B, C). These data agree with a higher

activation of p65 in basal conditions but with a poor response of

NF-kB upon BCR cross-linking. Importantly, BCR activation also

induces the activation of additional branches of signaling, such as

NF-AT and ERK (45), such pathways may also be affected, defects

in the activation of these branches in the Lrba-/- B cells should be

explored in future studies.

Basal activation of NF-kB may lead to B cell exhaustion.

Chronic overactivation of B cells linked to HIV infection leads to
Frontiers in Immunology 11
a state of exhaustion characterized by the loss of CD21 expression in

mature B cells and a lower capacity for proliferation (46). Other

manifestations of B cell exhaustion include a decreased antibody

response preceded by hypergammaglobulinemia provoked by initial

polyclonal activation due to acute infection (47). However, B cell

exhaustion is not exclusively caused by HIV infection; there are

reports of B cell exhaustion in individuals who have had contact

with the parasite Plasmodium falciparum (48). Additionally, B cell

exhaustion could be significant in the development and progression

of non-infectious diseases, such as chronic graft-versus-host disease

(49) and colorectal cancer (50). Altogether, our results provide a

new perspective, in which defects in the functions of B cells

observed in patients with LRBA deficiency may stem from a poor

response after chronic activation of B cells, which ultimately leads to

the induction of B cell death or cessation of proliferation.

Chronic BCR activation has been correlated with increased

Nur77 expression. This nuclear orphan receptor was significantly

expressed at higher levels in Lrba-/- B cells (Figure 4D), suggesting

that the increased basal activation observed in Lrba-/- mice is

constant. The function of Nur77 in B cells is currently under

investigation; it is known that its expression is high in anergic B

cells, correlates with self-reactivity, and may be involved in apoptosis

or anergy induction (51). The consequences of increased Nur77

expression in Lrba deficiency should be further explored.

This study provides new insights into the importance of Lrba in

B cell function via BCR activation. The perspectives for this work

are widely open to elucidating how this overactivation affects the

expression of surviving and proliferation-associated genes, the

mechanism by which Lrba interacts with components of BCR

signaling, and to prove whether these phenomena are similar

in humans.
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