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Eating away cancer: the
potential of diet and the
microbiome for shaping
immunotherapy outcome
Ngoc-Trang Adrienne Nguyen, Yan Jiang
and Jennifer L. McQuade*

Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center,
Houston, TX, United States
The gut microbiome (GMB) plays a substantial role in human health and disease.

From affecting gut barrier integrity to promoting immune cell differentiation, the

GMB is capable of shaping host immunity and thus oncogenesis and anti-cancer

therapeutic response, particularly with immunotherapy. Dietary patterns and

components are key determinants of GMB composition, supporting the

investigation of the diet-microbiome-immunity axis as a potential avenue to

enhance immunotherapy response in cancer patients. As such, this review will

discuss the role of the GMB and diet on anti-cancer immunity. We demonstrate

that diet affects anti-cancer immunity through both GMB-independent and

GMB-mediated mechanisms, and that different diet patterns mold the GMB’s

functional and taxonomic composition in distinctive ways. Dietary modulation

therefore shows promise as an intervention for improving cancer outcome;

however, further and more extensive research in human cancer populations

is needed.
KEYWORDS
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Introduction

The gut microbiome (GMB), defined as the collective genome of microorganisms

inhabiting the intestinal tract, is capable of exerting significant influence in maintaining

health and modulating disease susceptibility. Emerging evidence has illuminated its

potential involvement in cancer development, progression, and therapeutic response (1).

For instance, dysbiosis—characterized by alterations in GMB composition and function—

has been associated with promotion of pro-tumorigenic environments, impairment of

immune surveillance mechanisms, and increased risk and progression of certain cancers,

such as colorectal cancer (1, 2). Moreover, the GMB plays a role in modulating systemic

inflammation, metabolism of dietary components, and production of microbial
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metabolites, all of which are postulated to contribute to cancer

development and progression (3). Mounting evidence also

highlights the bidirectional relationship between the GMB

and cancer treatment outcomes, with microbial communities

potentially shaping drug metabolism, efficacy, and toxicity (2–9).

Understanding the intricate interplay between the GMB and cancer

thus holds immense potential for novel therapeutic strategies in

cancer prevention and treatment. Patient outcomes in many

cancers have improved dramatically with the approval of immune

checkpoint blockade (ICB) (2–7). Immune checkpoints, such as

CTLA-4 and PD-1, are proteins expressed by immune cells, and

they function in promoting self-tolerance to prevent damage to

healthy host tissue. However, in the context of cancer, these

checkpoint pathways can inhibit anti-tumor activity by limiting T

cell function and activation (10). Tumor cells can also exploit

immune checkpoints by expressing partner proteins like PD-L1,

further facilitating cancer immune evasion (11). ICB addresses

these issues by inhibiting the binding of immune checkpoints to

their partner proteins, thereby releasing limits on T lymphocyte

activity and increasing recognition and destruction of cancer cells.

For instance, anti-CTLA-4 (e.g., ipilimumab), anti-PD-1 (e.g.,

nivolumab), and anti-PD-L1 (e.g., atezolizumab) therapies are all

ICB treatments that have demonstrated remarkable efficacy across

various malignancies. By harnessing a patient’s own immune

system and inducing immunologic memory, ICB offers the

potential for long-term, durable response and, in some patients,

cure. Despite this promise, clinical responses remain heterogeneous

(12–16), indicating the complexity of factors influencing treatment

outcomes, and actionable strategies to enhance ICB efficacy are

urgently needed. Prior investigations have predominantly focused

on tumor signaling pathways and the role of the tumor

microenvironment (TME) in shaping ICB response. However,

there is growing recognition of the pivotal role of host-related

factors, including modifiable ones, in shaping systemic and anti-

tumor immunity. Diet is one such factor, with recent research

contributing to its emergence as an intriguing potential modulator

of ICB response.

As well-reviewed in other literature, there are multiple

mechanisms through which diet has been shown to impact

carcinogenesis as well as mucosal and systemic immunity in both

physiologic and pathogenic states (17–20). There is now emerging

preclinical and observational evidence that diet may also impact

anti-tumor immunity, particularly in the context of immunotherapy.

Of particular interest is the interaction between diet, the GMB, and
Abbreviations: GMB, gut microbiome; ICB, immune checkpoint blockade; TME,

tumor microenvironment; DC, dendritic cell; LPS, lipopolysaccharides; SBAs,

secondary bile acids; AhR, aryl hydrocarbon receptor; TME, tumor

microenvironment; SCFAs, short chain fatty acids; TMAO, trimethylamine N-

oxide; IECs, intestinal epithelial cells; UPFs, ultra-processed foods; CMC,

carboxymethyl cellulose; P80, polysorbate 80; GPCRs, G protein coupled

receptors; CTLs, cytotoxic T cells; KD, Ketogenic Diets; 3HB, 3-

hydroxybutyrate; CR, calorie restriction; FMD, fasting-mimicking-diet; HO-1,

heme oxygenase-1; MDSCs, myeloid-derived suppressor cells; NKCs, natural

killer cells.
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immunity, a well-defined interplay that has supported biological

plausibility of how diet could play a major role in shaping immunity

—especially as it is now well-established that the GMB can affect

response to ICB in cancers (2–7).

Diet is a key determinant of GMB structure. The metabolic

output of the GMB (i.e., its function) is also strongly shaped by diet,

and is a key mechanism underlying the GMB’s influence on

immunotherapy efficacy. There is thus a strong rationale for

examining the diet-microbiome-immunity axis as a potential

approach to improve immunotherapy response. Understanding of

interactions between diet, the microbiome, and immunity is gaining

clarity among other populations and settings (21–23), but this was

previously largely unexplored in the setting of cancer outcomes and

in ICB treatment specifically. In this review, we will discuss the

impact of overall dietary patterns (e.g., Mediterranean diet), specific

dietary regimens (e.g., ketogenic diet and fasting-mimicking diets),

and dietary components (e.g., fiber) on the GMB and immunity.

While this review is anchored in the diet/GMB/anti-tumor

immunity interaction, it should be noted that diet is complex, and

that nutrition could shape immune response via both GMB-

dependent and GMB-independent mechanisms. For example,

even within the context of dietary patterns that can shape the

GMB, such as a plant-based diet vs. Western diet, immune-

modulating metabolites can be host-, nutrient-, and/or

GMB-derived.

The potential for diet as a low-cost, low-risk strategy to improve

outcomes is appealing to both patients and physicians. Much work

remains to be done to further establish causality, mechanism, and to

refine rational therapeutic strategies. In this review, we will

summarize the emerging evidence, current gaps, and future

directions in our understanding of diet and anti-tumor immunity,

with a central focus on the microbiome.
GMB and ICB response

Given the proximity of the GMB to gut-associated lymphoid

tissue, which constitutes the largest component of the human

immune system, it is no surprise that the GMB has the potential

to heavily influence immune (24). The GMB is crucial for

maintaining gut mucosal barrier integrity and homeostasis, and

shapes both innate and adaptive immune response at local and

systemic levels (25). The bidirectional interplay between the

GMB and immunity has been well-studied in the context of

gastrointestinal and autoimmune disorders. More recently, the

GMB has also been implicated in response to cancer therapies,

most notably ICB (2–4, 8, 9, 26, 27). First studied in mice, the

diversity, composition, and function of the GMB have now also

been associated with response to ICB in humans. Importantly, the

GMB is not only a biomarker of response but also a potential

therapeutic target.

Transplantation of favorable/pro-ICB-response microbiota

from either mice or ICB-responding patients into mouse models

can enhance response to ICB, supporting a causal link between the

microbiome and immunotherapy response (2–4, 8). More recently,

two early phase clinical trials of FMT + anti-PD1 in anti-PD1
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refractory melanoma have demonstrated that microbiome

modulation in this setting is feasible, safe, and a promising

approach to overcome immunotherapy resistance (27, 28), though

larger studies powered for disease outcome are needed. However,

there are many challenges with scaling FMT as a therapeutic

approach, including availability, procedural risks, and donor

selection and recruitment (29, 30). Thus, investigation of other

methods to modulate the microbiome are urgently needed. Of

particular relevance is a need for further investigation into diet-

microbiome-immunity axis in the context of immunotherapy as a

scalable, low risk approach to microbiome modulation.

There are various possible mechanisms through which the

GMB can modulate the immune system and consequently

immunotherapy efficacy, many of which are potentially

modifiable by diet (31). In preclinical studies, favorable GMBs

have been shown to promote dendritic cell (DC) and CD8+ T cell

maturation, function, and response; increase frequency of activated

T cells; induce cytokine secretion, and decrease peripheral T

regulatory cells (Tregs) (3, 4, 8, 9). As to how the GMB induces

these immune effects, there are multiple mechanisms. First,

microbial activation of pattern-recognition receptors via

pathogen-associated molecular patterns like lipopolysaccharides

(LPS) and peptidoglycan, can alter the maturation and priming of

immune cells such as DCs and T cells (32). Interestingly, though the

emphasis has been on responder microbial signatures, there are also

non-responder phenotypes shared across cohorts such as LPS-

expressing gram-negative bacteria, which induce innate

inflammatory pathways via TLR4 (6). As such, the reduction of

potentially deleterious taxa may be as important a goal as enhancing

beneficial bacteria, and dietary changes like reducing animal fat

intake may be an avenue to accomplish this (23, 33–35). Another

putative mechanism of GMB-induced immunomodulation includes

molecular mimicry, wherein microbial antigens trigger antigen-

specific immune responses due to resembling other antigens (31,

36). Finally, metabolites produced by the GMB, including

byproducts of the GMB’s role in harvesting host-consumed

nutrients, can have effects on both mucosal and systemic

immunity (31, 36).
Microbial metabolites

Microbial-derived metabolism is intimately connected with our

own dietary intake. For example, riboflavin (vitamin B2)—found in

dairy, meats, cereals and grains, nuts, and green vegetables (37,

38) —is metabolized by the GMB to produce derivatives that can

promote expansion of mucosal-associated invariant T cells, which

are seen to be activated to a greater extent in responders to PD-1

ICB (39). However, while several microbial metabolites have been

linked to improvements in immunity and immunotherapy

response, the same metabolites are often also implicated in cancer

formation. For instance, microbial metabolism of primary bile acids

from the consumption of animal fat/proteins produces secondary

bile acids (SBAs), which have been implicated in hepatocellular

carcinoma carcinogenesis. Despite this, the SBA ursodeoxycholic
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acid has been found to reduce cancer immunosuppression by

inducing TGF-b degradation (40).

The role of microbial tryptophan metabolism is also

controversial, with some studies suggesting indoles can act as aryl

hydrocarbon receptor (AhR) agonists, promoting immune evasion

in the tumor microenvironment (TME), and others showing these

metabolites can promote anti-tumor immunity (41–44). One study

observed that selective antibiotic targeting of Lactobacilli, which are

indole-producers, reduced pancreatic tumor growth and increased

T cell infiltration. Conversely, provision of L. reuteri resulted in

increased tumor growth and reduction in intratumoral CD8+ T cells

(45). On the other hand, other studies have found that microbial

tryptophan metabolites can promote chemotherapy and ICB

efficacy (43, 44). Recently, Bender et al. demonstrated that L.

reuteri was able to translocate from the intestine to the tumor bed

and produce indole-3-aldehyde in situ which promoted antitumor

immunity and ICB response in an AhR-dependent, Tc1-cell-

inducing manner (43, 44). Notably, cruciferous vegetables like

broccoli, cabbage, and brussels sprouts possess dietary indole

compound precursors that can activate AhR yet demonstrate

reduced cancer risk in a potentially dose- and context-dependent

manner (46–51).

However, the GMB metabolites that have garnered the most

attention as potential mediators of ICB response are short chain

fatty acids (SCFAs), which will be discussed in detail below. Many of

the bacteria associated with ICB efficacy and response across studies

are involved in fiber fermentation and the production of SFCAs

and/or support other fiber-fermenting bacteria (2, 3, 6, 7, 52, 53).

Ultimately, further investigation into the function and metabolic

output of the GMB rather than its taxonomical constituents may

overcome some of the lack of concordance observed across studies

of microbiome and ICB response given functional redundancy of

the GMB (6, 7).
Diet, the GMB, and ICB response

Environment plays a much larger role than genetics in

determining GMB composition (33, 54). One of the most

important potentially modifiable factors that shapes the GMB is

habitual diet, which may underlie many of the regional differences

observed in GMB profiles as well as the lack of concordance in

defining pro-ICB response associated taxa around the globe (6, 7,

54). Multiple pre-clinical and interventional trials have reported

that specific nutrients and diet components can impact the GMB (6,

55–58). However, individuals consume foods rather than isolated

nutrients, and the contribution of foods to the post-digestion

substrate received by the GMB may be far more variable than the

nutrient content suggests—thus, examining the impact of dietary

patterns on the GMB, rather than the impact of specific macro/

micronutrients, may provide a better understanding of the

mechanisms of diet-associated health benefits and risk.

Healthy dietary patterns emphasizing plant-based foods

support favorable GMB profiles with a higher abundance of

species capable of carbohydrate fermentation and an increase in
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SCFA producers, which in turn have been linked to improved host

metabolic profile and lower cancer risk (59). In addition to

stimulating production of favorable metabolites, dietary fiber can

also influence cancer processes by binding with and/or absorbing

carcinogenic bile acids (60, 61). Conversely, “unhealthy” diets,

such as those enriched in red meat, saturated fats, processed

carbohydrates, added sugars, and lower fiber, may promote the

outgrowth of inflammatory bacteria implicated in carcinogenesis

and encourage microbial expression of genes encoding pro-

inflammatory cytokines and transcription factors associated with

worse cancer outcome, including with ICB (7, 62).

Diets high in animal protein are associated with higher

abundance of harmful Bacteroides spp. and lower abundance of

beneficial species like E. rectale and microbes in the Lactobacillus

and Roseburia genera (33). Consumption of red and/or processed

meat also introduces carnitine and choline into the GMB, whose

eventual metabolic product trimethylamine N-oxide (TMAO) has

been linked to inflammation, type II diabetes, and obesity (63, 64).

However, it should be noted that TMAO abundance has been found

to be associated with improved immunotherapy response in triple-

negative breast cancer, indicating a need for deeper exploration of

TMAO’s oncologic impact (65). Consumption of excess animal

and/or saturated fats also increases LPS that promote a colonocyte

pro-inflammatory gene signature (7, 23, 34, 35, 66, 67). However,

high-fat diet patterns should be distinguished from ketogenic diets,

which may have very different effects on the GMB and immunity as

discussed in the corresponding section.

Significant intake of ultra-processed foods (UPFs) has also been

associated with GMB disruptions and increased cancer risk. Made

from substances extracted or derived from whole foods, UPFs are

typically high in sugar, unhealthy fats, and salt, but low in protein,

fiber, vitamins, and minerals. UPFs usually also contain artificial

substances like sweeteners, emulsifiers, and preservatives (68, 69).

The low vitamin, mineral, and fiber content of UPFs have been

shown to decrease GMB diversity, richness, abundance of fiber-

fermenting bacteria, and SCFA production (70–74). Moreover,

emulsifiers found in UPFs, such carboxymethyl cellulose (CMC)

and polysorbate 80 (P80), may promote bacterial translocation

across the mucosal barrier, increase LPS synthesis, and enhance

colon carcinogenesis (75–77). Observational studies have also

found correlations between high UPF intake and overall cancer

risk, as well as risk of specific conditions like breast, colorectal, and

pancreatic cancer. Thus, while the direct, negative impact of UPFs

on immunity has yet to be decisively proven, their consumption has

been shown to be associated with dysbiosis and metabolome

perturbations, which may thereby affect anti-cancer immunity.

While habitual diet is a major determinant of the microbiome,

an important question is whether diet change can change the

microbiome, i.e., whether it can be used therapeutically. In a

landmark study by David et al, participants consumed one of two

diets ad libitum over the course of 5 days: an animal-based diet,

which consisted of meats, eggs, and cheeses, or a plant-based diet,

which was based on grains, legumes, fruits, and vegetables (78).

After the study, those in the animal-based diet arm were found to

have increased abundance of bile-tolerant microbes, potentially

increasing the carcinogenic burden of compounds like SBAs. The
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animal-based diet also increased bacterial gene expression for

microbial bile salt hydrolases, which are prerequisites for the

production of deoxycholic acid by the GMB, a potentially

carcinogenic metabolite. In contrast, participants who consumed

a plant-based diet had higher abundance of beneficial fiber-

fermenting Firmicutes bacteria, such as Roseburia spp., E. rectale,

and R. bromii (78).

Similar to the study by David et al, O’Keefe et al. performed a 2-

week diet exchange between African-Americans and rural Africans.

The African-American diet generally consisted of high fat, high

animal protein, and low fiber content, while the rural African diet

was plant-based, low fat, and high fiber content. Upon switching to

the African-American diet, rural African participants displayed

increased mucosal epithelial proliferation rates and greater

inflammatory markers in tissue (e.g. CD68+ lamina propria

macrophages). Increased SBA synthesis was also observed, with

fecal SBAs increasing by almost 400% in African participants after

consuming the African-American diet. Meanwhile, African-

American participants consuming the rural African diet exhibited

an almost 70% decrease in fecal SBAs, lower colonic mucosal

inflammation and proliferation rates, and increased saccharolytic

fermentation and butyrogenesis. Study participants’ reciprocal

changes in mucosal/gut metabolome cancer risk biomarkers as a

result of the diet swap suggest that the diet-microbiome interaction

may play a key role in the higher rates of colorectal cancer found in

industrialized countries (79).
Fiber, SCFAs, and immunity

A common feature shared by plant-based diets is the possession

of high amounts of dietary fiber, which is defined as nondigestible

carbohydrates and lignin that are intrinsic and intact in plants (80–

82). In preclinical models, fiber deprivation lowers microbial

diversity (83) and decreases the abundance of beneficial fiber-

fermenting bacteria such as F. prausnitzii (bacteria associated

with response to ICB). Insufficient fiber can also cause some

bacterial taxa to begin degrading host mucin glycans, thus

thinning the mucus layer; promoting inflammation, bacterial

translocation, and oncogenic signaling pathways; and inducing

greater tumor development as a result (83, 84).

SCFAs, i.e., butyrate, acetate, and propionate, are the product of

dietary fiber fermentation by gut microbiota and a major mediator

of the effects of plant-based diets. SCFAs serve as the main energy

source for intestinal epithelial cells (IECs) (85), ensuring mucosal

barrier integrity and preventing bacterial translocation (86–89), and

also have both indirect and direct effects on immunity. In vitro

administration of SCFAs to IECs activates G protein coupled

receptors (GPCRs), increases the production of anti-inflammatory

cytokines like IL-10 (85), and can also abrogate neutrophil

recruitment, regulating the production of inflammatory mediators

like TNF-a and IL-17 and thus playing an important role in

recruiting leukocytes and activating T lymphocytes (88). SCFAs

can also induce plasma cell production of IgA, blocking virulence

and bacterial adherence to epithelial cells (90, 91). Perhaps most

relevant for ICB response is that SCFAs can also enhance T cell
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activity. For example, acetate has been shown to enhance IFN-g
production from CD8+ and intratumoral cytotoxic T cells (CTLs)

via the mammalian target of rapamycin pathway (92) as well as

memory CD8+ T cell responses via GAPDH enzyme activity and

glycolysis (93). Meanwhile, the role of the SCFA butyrate in

suppressing carcinogenic pathways, such as the Wnt signaling

pathway, has been well-studied in colonocytes (94, 95). More

recent studies have demonstrated that butyrate can also impact

immune cell function via histone deacetylation inhibition (88),

which upregulates IFN-g and granzyme B expression while

suppressing IL-17A production in CTLs, thus facilitating an

increase in the switch of Tc17 cells to a CTL phenotype (92).

However, although multiple studies have demonstrated the

potential benefits of fiber and SCFAs for cancer immunity, there

is also evidence for their negative impact. For instance, one study

found that incorporating the fiber inulin into mice’s diets induced

hepatocellular carcinoma via a microbiota-dependent mechanism

(96). Another experiment detected an increase in mouse colonic

tumor load when the amount of fiber—consisting of either inulin,

cellulose, or brewers spent grain—was increased in their diets (97).

Other studies, both human and preclinical, have also found an

association between fiber/SCFAs and aggravation of factors

promoting cancer risk/development, such as greater production of

cancer-associated cytokines (88, 98–101). These seemingly

discrepant results may be driven by the specific sources of dietary

fiber incorporated, types of fiber, and differences in study

populations, including cancer type (102). Isolated fiber may also

have different effects than whole-food-derived fiber, i.e., it is

possible that the combination of fiber and the micronutrients

found in whole-food/natural dietary fiber sources is required in

order for patients to reap the potential cancer-inhibiting benefits of

a high-fiber diet. Furthermore, specific types of fiber may elicit

differential biological effects (97, 103, 104), with one murine study

observing a significantly lower tumor load in inulin-fed mice than

in mice fed cellulose or brewers spent grain (97). It thus remains to

be seen how we may optimize fiber-related dietary interventions

targeted at improving cancer immunity in a microbiota-dependent

manner. However, given the enormous amount of data supporting

the health benefits of a whole-food, high-fiber diet and the context-

dependent factors that may have led to the negative effects observed

in other studies, it is reasonable to recommend increasing fiber

consumption through natural sources while continuing to research

its impact on cancer immunity.

Given the existing literature on the immunomodulatory role of

SCFAs and the known role in fiber fermentation of many pro-ICB-

response bacteria, there was a strong rationale to examine the

potential l ink between dietary fiber consumption and

immunotherapy response. Indeed, a 2021 study by Spencer et al.

incorporated dietary screener questionnaires into their observational

microbiome cohort and found that habitual higher dietary fiber

consumption was associated with significantly improved

progression-free survival in melanoma patients undergoing ICB

(105). Similarly, a 2022 multicenter cohort study observed that a

Mediterranean diet pattern—which features high intake of plant-

based fiber alongside omega-3 fatty acids and various micronutrients
Frontiers in Immunology 05
—was positively associated with ICB response, progression-free

survival, and less immunotoxicity among patients with advanced

melanoma (106). As expected, dietary fiber intake is positively

correlated with pro-ICB-response, fiber-fermenting bacteria (58).

These findings were recapitulated in murine melanoma models,

where high-fiber diet fed mice displayed improved treatment

response to anti-PD-1 ICB—with increased CD4+ T cell infiltration

in tumors, and greater expression of genes linked to T-cell activation

and interferon response in CD45+ TILs —compared to anti-PD1

low-fiber fed mice (105).

Rapid shifts in the GMB and lower stool concentrations of the

SCFA propionate are also observed with fiber deprivation in

preclinical models. Importantly, synergy between ICB and dietary

fiber were not seen in germ-free mice, supporting that the effects

were indeed microbiome-mediated. In another preclinical study, a

high-fiber diet modulated the GMB in a manner that triggered this

intratumoral IFN-1/natural killer cell (NKC)/DC axis, improving

ICB efficacy and programming TME mononuclear phagocytes

toward immunostimulatory phenotypes (107). Given these

observational and preclinical data supporting the role of fiber in

modulating the microbiome and immunity, human interventional

studies (NCT03950635 and NCT04645680) are now ongoing

that investigate high-fiber diet as a GMB-focused strategy

to improve anti-cancer immunity. Be that as it may, future

microbiome-centered dietary interventions will likely require

tailoring to individual patients. Recent findings suggest that GMB

compositions associated with high fiber intake—namely, high-

diversity GMBs with high relative Ruminococcaceae, butryogen,

and methanogen abundance—are associated with ICB response, but

that modulating taxa composition alone may not be enough to

improve outcome. For instance, having higher relative abundance

of merely one putatively beneficial taxon, such as F. prausnitzii, may

be insufficient to induce response, and was in fact observed to pose

no further advantage for ICB outcome in patients already

possessing high-fiber-associated GMBs prior to ICB (58).

Employing high-fiber diets in the context of immunotherapy may

thus be an intervention better suited for patients with a GMB

composition shaped by habitual low-fiber intake [i.e., low-diversity,

Bacteroides-dominated microbiomes (58)], but even then, tumor-

intrinsic, systemic, and other factors also need to be considered.
Dietary probiotics

Probiotics are live microorganisms with putative health benefits

when consumed. They are found in fermented foods such as kimchi,

kefir, sauerkraut, etc., which are “produced through controlled

microbial growth … and the conversion of food components

through enzymatic action” (108). As such, probiotic foods contain

both live microorganisms and food sources for said microorganisms,

such as non-digestible carbohydrates like inulin-type fructans and

galacto-oligosaccharides (109, 110). This allows probiotic foods to

support a beneficial GMB composition by encouraging the growth of

bacteria like F. prausnitzii while pulling resources from and thus

suppressing the growth of pathogenic bacteria.
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These naturally occurring dietary probiotics, however, stand in

contrast to commercial probiotic supplements, which are generally not

targeted/rationally designed, but instead frequently composed of only

aerobic, easy-to-culture bacteria in order to minimize production costs

(111, 112). Commercial probiotics also lack the beneficial nutrients

inherent to probiotic foods, such as essential amino acids, polyphenols,

different types of fibers, and other fermentable bioactive compounds

(113, 114). In fact, over-the-counter probiotic supplements have been

shown to lower overall GMB diversity and worsen ICB response in

preclinical models and were also associated with worse outcomes with

ICB in an observational study (105). The negative impacts of

unselected probiotics on GMB homeostasis has also been

demonstrated after antibiotic use, wherein probiotics inhibited the

restoration of normal gut ecology after antibiotics (105, 111). Thus, the

use of probiotics outside the context of a clinical trial should be

discouraged at this time.

Conversely, observational data suggests a beneficial impact of

dietary probiotics on the GMB and immunity. Natural yogurt

consumers have been found to display healthier metabolic

profiles, with lower levels of inflammation and serum lipid

peroxidation and higher fecal concentrations of Akkermansia

(115, 116). In a preclinical study by Woo et al., mice with DSS-

induced colitis were fed with a fermented barley and soybean

mixture which led to increased intestinal barrier function and

decreased levels of inflammatory cytokines in colonic tissue. The

fermented mixture was also found to suppress bacterial

translocation to mLNs and promote growth of the anti-

inflammatory bacterial genera Lactobacilli and Bacteroides, the

latter of which has been demonstrated to be an important

contributor to anti-CTLA-4 ICB efficacy (9, 117).

A recent human interventional study substantiated these

health-promoting effects of dietary probiotics. Wastyk et al.

conducted a high-fermented-food diet intervention in healthy

individuals targeting consumption of 6 servings of fermented

foods daily. Post-intervention, participants exhibited increased

GMB diversity; importantly, beneficial taxa that were enriched

were in large part not derived from the microbes found in the

fermented foods consumed, suggesting that dietary probiotics can

influence the GMB composition both directly and indirectly and

seem to support the overall ecosystem. They further examined the

effects of this diet on circulating immunocytes, finding increased

effector memory CD4+ T cells with decreased non-classical

monocytes and circulating inflammatory cytokines in the post-

intervention specimens (21).
Ketogenic diets

Ketogenic Diets (KD), characterized by low carbohydrate and high

fat content, aim to reduce carbohydrate intake to the point of ketosis,

where ketone bodies are produced andmetabolized as an energy source

rather than glucose, the usual main source of energy. The premise of

using the ketogenic diet in cancer is based on the “Warburg effect”, an

observation that cancer cells rely primarily on aerobic glycolysis rather
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than mitochondrial oxidative phosphorylation (118). However, it has

subsequently been shown that cancer cells are much more

metabolically plastic than originally thought (119). Nonetheless, the

ketogenic diet has been shown to limit cancer growth in many

preclinical models via lowering of insulin and IGF-1, and

intriguingly has shown synergy in combination with cancer therapies

that disrupt the insulin/IGF-1/PI3K axis in host organs (120).

Recent studies have examined the impact of the KD on anti-tumor

immunity and on the GMB. Inmurine models, Ferrere et al. found that

KD inhibited tumor growth and cancer progression and promoted ICB

efficacy, at least in part via the ketone body 3-hydroxybutyrate (3HB) in

a T-cell dependent manner (121). Notably, systemic administration of

3HB mimicked the antitumor effects of KD, enhancing ICB efficacy

and promoting CXCR3+ T cell expansion. In terms of the effects on the

microbiome, KD led to an increased abundance of A. muciniphila and

other immunogenic bacteria. The tumor-suppressive effects of KD and

3HB were attenuated by antibiotics, indicating that the microbiome

may mediate the KD’s anti-cancer effects (121). Other murine

studies have similarly found that KD can increase potentially

beneficial bacteria like A. muciniphila and Lactobacillus while

decreasing putative inflammatory taxa, such as Desulfovibrio and

Turicibacter (122).

However, implementation of KD in humans, especially cancer

patients, requires close supervision by registered dietitians, as

hypoglycemia, weight loss, and electrolyte imbalances may occur

(123). Further, KD limits fruit, vegetables, whole grains, and fiber

ingestion, and thus the effects of this diet on the human microbiome

need to be carefully considered. Even so, clinical data has shown

some promise. In a human diet intervention study by Link et al,

participants sequentially consumed KD and vegan diets for 2 weeks

each and in randomized order. Both KD and vegan diet induced

differential changes on host immunity and GMB composition: the

KD increased activated Treg and CD16+ NKC abundance as well as

T cell activation; meanwhile, the vegan diet increased activated T

helper and NKCs and upregulated innate-immunity-associated

pathways (124). Further investigation is needed to elucidate the

potential implications for anti-cancer immunity.
Calorie restriction/fasting-mimicking diet

Calorie restriction (CR) is defined as consuming 50-90% of

usual ad libitum calorie intake without going to the extent of

malnutrition. On the other hand, a fasting-mimicking-diet (FMD)

reduces calorie intake to a lesser extent and is specifically low in

protein and sugar yet high in unsaturated fat content (125–129).

Multiple preclinical studies have demonstrated that CR and/or

fasting-like conditions reduce cancer risk, incidence, progression,

and mortality, though data in humans remains limited (107, 130–

133). Like the KD, a major target of CR and FMD is insulin and

IGF-1 levels. High serum IGF-1 has been associated with increased

risk of multiple cancers (134). In rodents, long-term CR reduces

serum IGF-1 concentration by 30-40%, and fasting in humans

markedly decreases serum IGF-1 concentration provided that
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protein intake is not excessively high (135). In terms of immune

effects, preclinical studies have found that CR alters NKC

maturation and function; meanwhile, fasting-like conditions have

been shown in pre-clinical models to increase cytotoxic CD8 T cell

frequency and reduce Treg tumors in the TME while also impacting

NKC maturation (107, 136–138).

FMD has been shown to enhance chemotherapy efficacy in

murine breast cancer models by promoting T-cell-mediated tumor

immunogenicity and cytotoxicity (107, 136–138). More specifically,

FMD administration induced greater cytotoxic CD8+ T cell

recruitment, greater levels of common lymphoid progenitor cells

and circulating/tumor-infiltrating CD8+ lymphocytes, and

decreased activation and frequency of Treg cells. These effects

were mediated at least in part by a decrease in expression of the

heme oxygenase-1 (HO-1) enzyme in cancer cells. This

downregulation of HO-1 expression served to selectively sensitize

cancer cells to chemotherapy while bypassing normal cells, whose

HO-1 expression levels were not impacted (137, 139, 140).

Similarly, preclinical studies have shown that FMD elevates

IFN-g levels, increases CTLs and NKCs, promotes switching of

CD8+ T cells to an activated/memory phenotype, and decreases

immunosuppressive myeloid-derived suppressor cells (MDSCs)

and Tregs (107). A periodic FMD has also been shown sensitize

cancer cells to ICB, increasing anti-PD-L1 and anti-OX40 ICB

efficacy against triple-negative breast tumors. In these murine

subjects, FMD cycles were found to reactivate and expand early

exhausted effector T cells and induce cancer cells to switch from

respiratory to glycolytic metabolism (141). Meanwhile, human

studies found that fasted cancer patients who adhered to a 5-day

FMD (700 kcal consumed on day 1; 300 kcal consumed days 2-5)

every 21-28 days displayed greater amounts of activated T cells and

cytolytic NKCs in peripheral blood (142). In another study of

heterogeneously treated (not ICB) cancer patients, FMD

augmented intratumoral Th1/cytotoxic responses and reduced

immunosuppressive MDSCs and Tregs. The study also noted

greater amounts of CTLs and NKCs in patient blood; increased

intratumoral populations of CD8+ T cells, DCs, NKCs, and effector

memory T lymphocytes; a heightened switch of CD8+ cells toward a

memory/activated phenotype; and increased levels of T cell

stimulating cytokines (107). Another clinical trial observed that

administration of hydroxycitrate, a CR mimetic, lead to depletion of

Tregs and thus heightened anticancer immunosurveillance and

decreased tumor burden (143).

In terms of the GMB, murine studies on CR/FMD have

observed an increase in populations of putative protective/

beneficial bacteria, such as SCFA-producing Bifidobacterium and

Faecalibaculum as well as immunogenic A. muciniphila (144–147).

In the same vein, preclinical models have noted a decrease in

reputed inflammatory taxa, such as Helicobacter, Streptococcaceae,

and Desulfovibrionaceae (144, 145, 148). Therefore, FMD and CR

lead to marked systemic changes in the GMB, metabolism, and

immunity in ways that substantiate the further investigation of

FMD/CR. However, these types of diet interventions in patients

with cancer should only be utilized under physician supervision and

in the context of a clinical trial.
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Conclusion

There is now a substantial body of evidence demonstrating that

the GMB can impact both cancer risk and development as well as

ICB response. However, mechanisms as well as the most effective

and scalable strategies to modulate the microbiome to improve ICB

outcomes remain to be active areas of investigation. Diet is a key

determinant of the GMB and can impact immunity via both GMB-

mediated mechanisms as well as GMB-independent pathways

(78, 149).

Cohort studies support that a habitual high dietary fiber intake

is associated with improved response to ICB (58, 105, 150), and that

in preclinical models, dietary fiber manipulation can modulate ICB

response via the GMB. However, it is unclear in humans whether

the epidemiological association between dietary fiber and ICB

response is truly from fiber specifically vs. from other beneficial

nutrients found in a fiber-rich diet. Meanwhile, although diet

patterns such as a plant-based vs. Western diet are captured in

epidemiological dietary assessments, more “radical” diets such as

the ketogenic diet and calorie restriction cannot be, yet they are

much easier to study in rodent models. Thus, while there is ample

literature supporting the anti-cancer effects of these diets

in preclinical models, human data in cancer populations

remain limited.

While diet is a relatively inexpensive, low-risk, scalable

approach to potentially modulate the microbiome and improve

ICB response, there are also several challenges. The exact

mechanisms by which “beneficial” vs. “detrimental” dietary

interventions produce their respective effects on cancer/

immunotherapy need to be further defined (29). It also remains

unclear if such effects are divided by tumor type: studies are limited

by what model was used, and so it cannot be said with certainty that

any observed effects of diet on immunity are tumor-specific.

Therefore, until evidence emerges that a dietary intervention

induces anti-tumor immunity in one cancer type but not another,

future research should endeavor to study a diet’s effects across

tumor models and patient populations to determine what effects are

tumor-specific vs. agnostic. Another key question is whether the

focus should be on specific nutrients/food components or on larger

dietary patterns. For specific food components such as fiber, the

“dose” needed to induce GMB changes has not been defined.

Patient selection for microbiome-directed dietary interventions is

another key question—should this be based on microbiome

profiling, diet assessment, or a combination of the two? Then

there is the heterogeneity and complexity of the GMB: the host

factors and exposures that shape this ecosystem include ethnicity,

body composition, metabolic phenotype, comorbidities, medication

use, and still other lifestyle factors. In terms of timing, does the

microbiome need to be primed prior to ICB initiation, and/or do

diet changes need to be sustained throughout treatment? To begin

addressing these questions, what is needed are rigorously

and rationally designed interventional human studies with

microbiome and disease endpoints. However, in addition to these

questions regarding mechanism and mode, there is the additional

challenge that behavior change is difficult, and supporting patients
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to make these changes will require provider education, increased

access to dietitians or health coaches with a focus on diet

optimization, tools such as apps and recipes, and ultimately

public health measures.
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In short, diet influences the GMB, which is potentially associated

with clinical cancer outcomes and efficacy in ICB responses

(Figures 1–3) via various possible mechanisms (Table 1). Although

data is still emerging, based on published preclinical and human
FIGURE 1

Influence of high-fiber diet and SCFAs on immunity and immunotherapy responses. SCFAs, short chain fatty acids; GMB, gut microbiome; LPS,
lipopolysaccharides; SBAs, secondary bile acids; IL, interleukin; TC, T cell; IFN-g, interferon gamma; IgA, immunoglobulin A; TNF-a, tumor necrosis
factor alpha; IFN-1, type 1 interferon; NKC, natural killer cell; DC, dendritic cell. Created with BioRender.com.
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studies (Table 2), we recommend avoiding broad-spectrum antibiotic

treatment before and during ICB and advise against therapies

employing untargeted commercial probiotic supplements. We also

recommend incorporating professional dietary assessments and

counseling in patient consultations, and we encourage patients to

consume a diverse diet rich in natural probiotics, plant species/plant-
Frontiers in Immunology 09
based foods, and dietary fiber. However, we advise patients to

consider that more investigation is needed on dietary interventions

such as KD and FMD, and that these diets should only be pursued

under clinical supervision. The interactions between food

components, gut microbes, the host immune system, and the

genetic/immune characteristics unique to different cancers are
FIGURE 2

Influence of ketogenic diet on immunity and immunotherapy responses. GMB, gut microbiome. Created with BioRender.com.
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FIGURE 3

Influence of calorie restriction/fasting-mimicking diet on immunity and immunotherapy responses. FMD, fasting-mimicking diet; GMB, gut
microbiome; IGF-1, insulin-like growth factor 1; IFN-g, interferon gamma; CTL, cytotoxic T lymphocyte; NKCs, natural killer cells; MDSCs, myeloid-
derived suppressor cells; Treg cells, regulatory T cells; HO-1, heme oxygenase 1. Created with BioRender.com.
TABLE 1 Dietary pattern/ingredient effects on the GMB and possible immunomodulatory mechanisms.

Dietary Pattern/Ingredient GMB Effects Possible Immunomodulation
Mechanisms & Immune Effects

Dietary Pattern/Ingredient
(Potentially Detrimental)

Animal-based diet ↑bile-tolerant microbes (151)
↑putative detrimental bacteria (152)

(e.g. Bilophila wadsworthia)
↓putative beneficial bacteria (78)

(e.g. Roseburia spp., Lactobacillus
spp., E. rectale)

↑inflammatory metabolic products/cytokines
(23, 153)

(e.g. LPS, SBAs, TMAO)
↑mucosal barrier breakdown (67)
↑proteolytic fermentation (22)
↑platelet hyperresponsiveness (154)
↓SCFAs (23)

Western-based diet (high fat, sugars, & additives) ↓GMB diversity (155)
↑putative pathogenic taxa (35, 156)

(e.g. Proteobacteria, LPS-producing
Enterobacteriaceae, Bilophila)

↓putative beneficial taxa (23, 151, 157)
(e.g. Bifidobacteria)

↑insulin resistance (158)
⇨ ↓macrophage response to

pathogens (159)
⇨ ↑cancer cell IR-A expression (160)

↑dyslipidemia (161)
⇨ ↓CD8a(–) DCs (162)
⇨ ↓Th1-type immunity (162)
⇨ ↓DC migration to lymph nodes

(163)
↑gut myeloperoxidase activity (164)
↑Th2 differentiation (165)

(Continued)
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TABLE 1 Continued

Dietary Pattern/Ingredient GMB Effects Possible Immunomodulation
Mechanisms & Immune Effects

Dietary Pattern/Ingredient
(Potentially Detrimental)

↑inflammatory cytokines (166, 167) (e.g. GM-
CSF, TNF-a, IL-2, IL-1B, IL-17)

↑microbial encroachment (86, 164, 168)
↓intestinal barrier integrity (155, 169)

↓mucus thickness + release into lumen
↓Th1 differentiation (165)
↓IL-10-producing Tregs (155)

High (saturated) fats ↑LPS-containing microbes (23)
↑putative pathogenic bacteria (170, 171)

(e.g. Proteobacteria, B. wadsworthia)
↓fiber-fermenting Firmicutes

(e.g. Ruminococcaceae)

↑inflammatory metabolites/cytokines
(23, 67, 172–174)

(e.g. LPS, SBAs, IL-1B, TNF-a, CCL1,
CCL2)

↑immunosuppressive cytokines (175)
(e.g. IL-1Ra, IL-10)

↑b -catenin + PPAR-d signaling (176)
↑intestinal permeability (168, 172, 173)

↑bacterial metabolite translocation
↓tight junction proteins

↑TLR4 activation (177, 178)
↑endoplasmic reticulum stress (179)
↓SCFAs (168)
↓phagocytosing granulocytes
↓goblet cells (180, 181)
↓hematopoietic stem cells in bone marrow (182)
↓hematopoietic reconstitution potential

High (processed) sugar ↑putative inflammatory bacteria (156, 183)
(e.g. Enterobacteriaceae)

↓putative beneficial taxa, especially fiber-fermenting
bacteria (23, 151, 183–185)

↑inflammatory cytokines (169)
↑Th17 differentiation (186)
↑Treg (187)
↓WBC phagocytosis (188, 189)

Dietary Pattern/Ingredient (Poten-
tially Beneficial)

GMB Effects Possible Immunomodulation Mecha-
nisms & Immune Effects

Plant-based diet ↑GMB diversity (190–192)
↑putative beneficial bacteria, including fiber-fermenters/
SCFA- and butyrate-producers (193–197)

(e.g. Firmicutes, Bifidobacterium)
↓putative pathogenic taxa (102, 196)

(e.g. Proteobacteria, Bacteroidetes)

↓inflammatory metabolites/cytokines
(191, 196–199)

↓LPS, SBAs
↓IL-6, IL-2, TNF-a

↓triglycerides (200)
↑anti-inflammatory compounds (201, 202)

(e.g. flavonoids, urolithins)
↑SCFAs (193–195, 203) (e.g. butyrate)
↑IFN-g secretion (196)
↑IL-10, TLR2, and/or TLR4-expressing DCs
(204)
↑epithelial barrier function (196)
↓fecal + intestinal pH (205)
↓colorectal proliferation (196)
↓dyslipidemia (102)

High fiber ↑GMB diversity (57, 83, 206)
↑putative health-promoting bacteria (194, 207)

(e.g. fiber-fermenting Firmicutes,
Bifidobacterium, F. prausnitzii, A.
muciniphila, Roseburia spp.)

↓pathogenic bacteria (208, 209)
(e.g. E.coli, Clostridium)

(NOTE: CONTEXT-DEPENDENT)
↓carcinogenic Wnt-signaling pathways (22)
↑butyrate + SCFA production (194, 210)
⇨ modulation of IEC/immune cell

production, development, survival,
function, + recruitment (211–215)

↑mucosal barrier integrity/function (83, 85, 86,
92, 209)

(Continued)
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TABLE 1 Continued

Dietary Pattern/Ingredient GMB Effects Possible Immunomodulation
Mechanisms & Immune Effects

Dietary Pattern/Ingredient (Poten-
tially Beneficial)

GMB Effects Possible Immunomodulation Mecha-
nisms & Immune Effects

↑mucus production
↑tight junction proteins
↓bacterial encroachment
↓gut-mucus depletion
↓mucosal proliferation + inflammation

↑colonocyte exfoliation + differentiation
(216, 217)
↑CAZyme abundance (21)
↑TC activation + interferon response (105)
↑activated CD8+ TC memory potential (92)
↓neoplastic cell growth (105, 218–221)

↑cancer cell apoptosis + tumor
angiogenesis restriction
↑TC tumor infiltration

Dietary probiotics ↑GMB diversity (21)
↑anti-inflammatory bacteria (116, 117)

(e.g. Akkermansia)

↓inflammatory molecules/cytokines (21, 117)
↓serum lipid peroxidation (116)
⇨ modulation of innate immune cell

response (222)
↑effector memory CD4+ TCs (21)
↑intestinal barrier function (117)

Ketogenic diet ↑immunogenic bacteria (123)
(e.g. A. muciniphila)

↓putative inflammatory taxa (123)
(e.g. Desulfovibrio, Turicibacter)

↓tumor growth/cancer progression
↓tumor cellular proliferation
markers (223)
↓tumor stearoyl-CoA desaturase
activity (136)

↑cICB-induced Type 1 CD8+ TC splenocytes
(121)
↑patrolling activated monocyte circulation (121)
↑systemic TC activation length (121)
↑CXCR3+ TC expansion (121)

Calorie Restriction/Fasting-Mimicking Diet ↑putative protective/beneficial taxa (144–147)
(e.g. Bacteroidaceae, Bifidobacterium,
Faecalibaculum, Actinobacteria,
Lactobacillus, A. muciniphila)

↓putative pathogenic/inflammatory taxa (144, 145, 148)
(e.g. Proteobacteria, Helicobacter,
Bacteroidetes,
Streptococcaceae, Desulfovibrionaceae)

↓immunosuppressive cells (107, 137)
↓Treg presence + activation in
tumors
↓MDSCs

↓tumor growth/cancer progression (136, 137,
224–226)

↑TME acidification
↑TC-mediated tumor
immunogenicity +
cytotoxicity
↓cancer cell HO-1 expression
↓tumor glycolysis
↓tumor lipid availability + harnessing
capacity
↓tumor stearoyl-CoA desaturase
activity
↓tumor MUFA/SFA ratios

Alteration of immune cell maturation, activation,
function, + abundance (138, 227)

↑cytotoxic CD8 TC frequency +
recruitment (137)
↑activated TCs + NKCs (227)
↑common lymphoid progenitor
cells–(137)
↑circulating/tumor-infiltrating CD8+
lymphocytes (137)
↑CD8+ TC → activated/memory
phenotype (107)

(Continued)
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TABLE 1 Continued

Dietary Pattern/Ingredient GMB Effects Possible Immunomodulation
Mechanisms & Immune Effects

Dietary Pattern/Ingredient (Poten-
tially Beneficial)

GMB Effects Possible Immunomodulation Mecha-
nisms & Immune Effects

↓blood glucose + serum IGF-1 concentration
(107, 136, 227)
⇨ ↓anti-apoptotic signaling (228)
⇨ ↑intratumoral CD8/Treg ratio

production (with PD-1) (227)
⇨ ↑antitumor CD8 TC response

(with PD-1) (227)
↑IFN- g (107, 227)
↑autophagy (143, 229)
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↑, increased; ↓, decreased; GMB, gut microbiome; LPS, lipopolysaccharides; GMB, gut microbiome; LPS, lipopolysaccharides; SBAs, secondary bile acids; TMAO, trimethylamine N-oxide;
SCFAs, short chain fatty acids; IR-A, insulin receptor isoform A; DCs, dendritic cells; GM-CSF, Granulocyte macrophage colony-stimulating factor; TNF-a, tumor necrosis factor alpha; IL,
interleukin; CCL1, C-C motif chemokine ligand 1; CCL2, C-C motif chemokine ligand 2; IL-1Ra, interleukin-1 receptor antagonist; PPAR-d, Peroxisome proliferator-activated receptor-delta;
TLR4, toll-like receptor 4; Treg, regulatory T cells; WBC, white blood cells; IFN-g, interferon gamma; TLR2, toll-like receptor 2; IEC, intestinal epithelial cell; CAZyme, carbohydrate-active
enzyme; TC, T cell; cICB, combined immune checkpoint blockade; MDSCs, myeloid-derived suppressor cells; TME, tumor microenvironment; HO-1, heme oxygenase 1; MUFA/SFA,
monounsaturated fatty acids/saturated fatty acids; NKCs, natural killer cells; IGF-1, insulin-like growth factor 1; PD-1, programmed cell death protein 1.
TABLE 2 Recommendations from published clinical studies investigating the role of diet/dietary components on immunotherapy in cancer patients.

Study Cancer Aim Results Reference

Abstract by Spencer et al Melanoma Explore correlation between
lifestyle factors (dietary
patterns, probiotic use,
antibiotic use), the GMB
(structure, diversity), and
ICB response

Probiotics may negatively
impact the GMB in
melanoma patients.
Dietary manipulation may
be able to reshape the GMB
into a pro-ICB-response
signature (↑whole grains,
↑fiber intake, ↑overall diet
quality, ↓added sugars,
↓processed meat).

(230)

NCT05083416 Head and neck cancer Investigate effects of
randomized TRE
(circadian-aligned, 14-hour
nightly fast without caloric
reduction) administration
on GMB alteration and
ICB response

TRE is a safe, feasible, and
effective strategy to improve
ICB response, potentially
via GMB-mediated
pathways (e.g., lower
microbial
immunosuppressive
metabolites).

(231)

NCT02977052 (ongoing) Melanoma Stage III Study associations between
baseline GMB, diet, ICB
response, and immune-
related adverse events

Native GMB signatures and
diet shape ICB response
and toxicity.
GMBs dominated by
Ruminococcaceae
(associated with higher
consumption) demonstrated
greater response than
Bacteroidaceae-dominated
GMBs.
Lower fiber and omega-3
fatty acid intake (associated
with lower GMBD and
SCFA production) is
associated with poor
ICB response.

(58)

UMIN000023303 Various (melanoma, head
and neck, GI,
genitourinary, etc.)

Evaluate fecal SCFA in solid
cancer patients treated with

anti-PD-1

Higher fecal SCFAs
(associated with higher fiber
intake) are associated with
greater GMB diversity,
improved ICB response,
and longer progression-
free survival.

(232)

(Continued)
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complex and heterogeneous. Nevertheless, findings on the GMB-

mediated effects of dietary interventions to improve antitumor

immunity and ICB response support the pursuit of further, large-

scale research to develop new interventions that could synergize with

existing immunotherapy regimens to hopefully improve outcomes.
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TABLE 2 Continued

Study Cancer Aim Results Reference

Spencer et al., 2021 Melanoma Assess the connection
between GMB composition,
dietary fiber intake, and
commercial probiotic use
and their influence on
ICB response

Habitual higher dietary
fiber consumption and
avoidance of commercial
probiotic use are associated
with improved antitumor
immunity and
ICB response.

(105)

Bolte et al., 2023 Melanoma Examine dietary patterns in
association with
ICB response

Mediterranean diet pattern
(high intake of plant-based
fiber, omega-3 fatty acids, &
micronutrients) is positively
associated with ICB
response, progression-free
survival, and
less immunotoxicity.

(106)

NCT03340935 Various Investigate safety and effects
of cyclic, 5-day FMD
combined with standard
antineoplastic therapies

Cyclic FMD is safe, feasible,
and potentially beneficial
for patients receiving
concomitant cancer
treatments.
FMD can enrich response-
associated immune
signatures, reducing
immunosuppressive cell
populations and improving
immunosurveillance
(greater amounts/activation
of CD8+ TCs and NKCs).

(142)
GMB, gut microbiome; ICB, immune checkpoint blockade; TRE, time restricted eating; GMBD, gut microbiome diversity; SCFA, short chain fatty acids; PD-1, programmed cell death protein 1;
FMD, fasting-mimicking diet; TCs, T cells; NKCs, natural killer cells.
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