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Introduction: Therapeutic antibodies have become a major strategy to treat

oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20

are used to target and elicit cytotoxic responses against malignant B cells.

However, efficacy is often compromised due to a suppressive microenvironment

that interferes with cellular immune responses. To overcome this suppression,

agonists of pattern recognition receptors have been studied which promote direct

cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular

pattern recognition receptor that participates in the detection of peptidoglycan, a

key component of bacterial cell walls. This detection then mediates the activation

of multiple signaling pathways in myeloid cells. Although several NOD2 agonists

are being used worldwide, the potential benefit of these agents in the context of

antibody therapy has not been explored.

Methods: Primary cells from healthy-donor volunteers (PBMCs, monocytes) or

CLL patients (monocytes) were treated with versus without the NOD2 agonist

L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-

TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment

alone and in combination with anti-CD20 antibody.

Results: Treatment of peripheral blood mononuclear cells with L18-MDP led to

activation of monocytes from both healthy donors and CLL patients. In addition,

there was an upregulation of activating FcgR in monocytes and a subsequent

increase in antibody-mediated phagocytosis. This effect required the NF-kB and

p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the
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Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to

phenotypic changes in splenic monocytes and macrophages.

Conclusions: Taken together, these results suggest that NOD2 agonists help

overturn the suppression of myeloid cells, and may improve the efficacy of

antibody therapy for CLL.
KEYWORDS

NOD2 agonists, monocytes, chronic lymphocytic leukemia, antibody-mediated
responses, pre-clinical model
1 Introduction

Antibody therapy has been successfully used to treat oncologic

diseases for more than 20 years. Rituximab, the first therapeutically

available antibody, is directed against CD20, expressed on B cells.

Upon treatment, B cells are directly killed by antibody binding,

complement and engagement of immune effector cells (1, 2). For

effective elimination of the target, the activation of cells capable of

effecting antibody-mediated responses is crucially needed, including

both myeloid cells and natural killer (NK) cells (3, 4), which bear Fc

g receptors (FcgRs) that recognize IgG-bound targets.

The FcgR family contains multiple members that modulate

antibody-mediated responses. In human monocytes and

macrophages, there are three activating receptors: FcgRIa, FcgRIIa
and FcgRIIIa (5, 6). Both FcgRIa and FcgRIIIa are present in the

membrane in association with the common gamma chain (FcϵRIg),
which bears an immunoreceptor tyrosine-based activation motif

(ITAM) (5, 7). FcgRIIa contains an intracellular tail with its own

ITAM. Recognition of IgG-bound targets results in the aggregation

of these activating receptors and phosphorylation of their ITAMs,

ini t ia t ing mult iple s ignal ing cascades , including the

phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein

kinase (MAPKs) and NF-kB pathways (8, 9). This leads to the

production of cytokines and reactive oxygen species, as well as

changes in the membrane to facilitate the phagocytosis and

destruction of targets. Phagocytosis itself is highly coordinated,

with PI3K, RAC1, CDC42 and ARF6 localized to phagocytic cups

where actin polymerization advances the cups around the

opsonized targets (10).

This response is modulated by the presence of different

regulators, including FcgRIIb, the FcgR with an immunoreceptor

tyrosine-based inhibitory motif (ITIM) instead of an ITAM. Thus,

activation of monocytes and macrophages involves a balance between

ITAM and ITIM signaling (11). Modulation of this balance, for

example by favoring the expression of activating receptors, is of great

importance for driving stronger responses to therapeutic antibodies

in vivo (12, 13). Due to its importance, novel therapeutic antibodies

have been widely engineered to enhance the binding to FcgRs and
thus activate cells in a more efficient manner (14, 15).
02
It is known that innate immune responses are broadly suppressed

in cancer. In chronic lymphocytic leukemia (CLL), myeloid cells

express higher amounts of regulatory molecules (16) and show

decreased expression of some molecules related to antibody-

mediated phagocytosis (17). This impedes proper activation upon

antigen binding. More importantly, monocytes can differentiate into

nurse-like cells (NLCs), which are macrophages widely known to

support the survival and drug resistance of CLL cells (18–20). Thus,

addressing the suppressive phenotype of myeloid cells is crucial to

elicit better antibody-mediated responses in CLL.

To increase their anti-tumoral activity, monocytes/macrophages

can be stimulated by various agonists of pattern recognition receptors

(PPRs). The Toll-like receptor (TLR) 7 agonist imiquimod has been

successfully used to induce myeloid cell activity in melanoma (21). The

TLR8 agonist motolimod has been tested against head and neck

squamous cell carcinoma in mice and humans (22, 23), and is

showing preclinical efficacy against acute myeloid leukemia (AML)

(24). Many other PRR agonists are currently being examined (25),

while only three of them (BCG, monophosphoryl lipid A, and

imiquimod) are currently used against oncologic diseases (26–28).

The potential benefits of treating CLL with PRR agonists have

been previously explored. Of note, several reports support an effect

of TLR9 agonists towards CLL-cell phenotypic change, increased

cytokine production, and apoptosis (29–31). However, CpG 7909 in

a phase I clinical trial did not result in a clear response, and testing

of CpG 2006 showed that it may halt T cell proliferation (32, 33).

Thus, further exploration of PRRs for CLL is needed.

The aforementioned TLRs are intracellular sensors that help

detect threats inside the cell (34). Additional PRRs with this

function include the nucleotide-binding oligomerization domain-

containing 1 and 2 (NOD1 and NOD2) receptors, which recognize

peptidoglycans found in both Gram-negative and Gram-positive

bacteria (35). Muramyl dipeptide has been found to be the

minimal unit that can activate NOD2, enhancing the production of

humoral responses (36). Upon activation, NOD2 activates different

signaling cascades including the inflammasome, NF-kB and MAPK

pathways, leading to a variety of responses including cytokine

production (37–39). In myeloid cells, activation of NOD2 has been

linked to the production of TNFa, IL-6 and/or IL-1b (40), increased
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cytolytic activity against tumoral cells (41, 42), enhanced production

of reactive oxygen species (43) and differentiation from classical to

non-classical monocytes (44). The NOD2 agonist muramyltripeptide

phosphatidylethanolamine (MTP-PE, Mifamurtide®) has been used

therapeutically to treat osteosarcoma patients in Europe (45), while

other agonists have been used for different diseases in other parts of

the world (46). This supports the potential of NOD2 agonists as

therapeutic adjuvants to enhance responses in myeloid cells. These

agonists have also been explored for the treatment of other

malignancies including AML (47, 48).

Here, we investigated the role of NOD2 activation in monocyte/

macrophage antibody-mediated responses against CLL. We found

that the NOD2 agonist L18-MDP activated CLL-patient monocytes,

promoting the production of cytokines and an increase in the

expression of FcgRs both at the transcript and protein levels. This

was highly correlated to an increase in antibody-mediated

phagocytosis. These effects were mediated by the NF-kB and

MAPK/p38 pathways. Furthermore, we observed that NOD2

agonist treatment led to a decreased leukemic load and a shift in the

phenotype of monocytes/macrophages within the Em-TCL1 mouse

model of CLL. Finally, the agonist significantly enhanced the effects of

antitumor antibody. Collectively, these results suggest that NOD2

agonists may carry potential as adjuvants for antibody therapy in CLL.
2 Methodology

2.1 Cell culture

Healthy-donor (HD) source leukocytes were purchased from

Versiti Blood Services (Columbus, OH, USA). Whole-blood

samples from untreated, low-count (<60,000 cells/mL) CLL

patients were provided by the Leukemia Tissue Bank of The Ohio

State University Comprehensive Cancer Center, obtained according

to the Declaration of Helsinki and under protocols approved by the

Institutional Review Board at The Ohio State University. Peripheral

blood mononuclear cells (PBMCs) were isolated from each sample

using lymphocyte separation medium (Corning, Corning, NY,

USA), followed by density gradient centrifugation, and then

washed with RPMI (Gibco, Thermo-Fisher Scientific, Whaltham,

MA, USA). For PBMC experiments, cells were counted using the

Cellometer Auto 2000 (Nexcelom Biosciences, Lawrence, MA,

USA) and resuspended in RPMI media supplemented with 10%

FBS (VWR, Radnor, PA, USA), 2 mM L-glutamine (Gibco) and 100

U/mL Penicillin-Streptomycin (Gibco) at 10x106 cells/mL.

To obtain HD or CLL-patient monocytes (CD14+ cells), as well

as CLL cells (CD19+), PBMCs were incubated with magnetic CD14+

or CD19+ selection beads (Miltenyi Biotec, Waltham, MA, USA) for

15 minutes on ice. Following this, cells were centrifuged and

resuspended in MACS buffer (Miltenyi Biotec) and added to an

LS selection column. After three washes, cells were recovered from

the column, washed with incomplete RPMI, counted, and

resuspended at 3x106 cells/mL in supplemented RPMI media.

For stimulation, cells were plated and treated with L18-MDP

(MDP) (InvivoGen, San Diego, CA, USA). A concentration of 1 µg/

mL was selected after testing a concentration-response curve in isolated
Frontiers in Immunology 03
monocytes, and is similar to a previous report (49). Cells were

incubated at 37°C, 5% CO2, for 24 hours unless indicated otherwise.

For inhibition experiments, monocytes were treated with DMSO (as

inhibitor vehicle control) or: Bay 11-7085 at 5 µM (Millipore Sigma, St.

Louis, MO, USA), trametinib at 10 nM (Selleck Chemicals, Houston,

TX, USA), or SB202190 at 1 µM (Selleck Chemicals) for 30 minutes

before MDP stimulation. Dimethyl sulfoxide (DMSO; Sigma Aldrich,

St. Louis, MO, USA) was used to prepare stock solutions and the final

concentration of DMSO was under 1 mL/mL.
2.2 Quantitative real-time PCR

Cultured cells were collected and then mRNA extracted using the

Norgen Total RNA extraction kit (Norgen Biotek, ON, Canada),

according to the manufacturer’s instructions. Collected mRNA was

quantified using the nanodrop ND100 (Thermo-Fisher Scientific), and

then reverse transcribed using the high-capacity reverse transcriptase

kit (Applied Biosystems, Thermo-Fisher Scientific) into cDNA. Then,

quantitative real-time PCR (qPCR) was done using SYBR green

(Applied Biosystems) and the QuantStudio™ 3 machine (Life

Technlologies). RCN (relative copy number) values were calculated

for each target, normalizing to a GAPDH housekeeping control

according to the equation RCN = 2 (-DCt) x 100, where DCt =

Ctproblem – CtGAPDH) (50). Primers used are shown in Table 1.
2.3 Immunoblot analysis

Cells were collected and lysed using 70 µL TN1 lysis buffer for

every 1 x 106 cells, as previously described (51). Protein was

quantified using the DC Protein Assay according to

manufacturer’s instructions (Bio-Rad, Hercules, CA, USA).

Samples were boiled with 5x SDS sample buffer (150 mM Tris;

11.5% SDS; 0.05% bromophenol blue; 50% glycerol; 1% 2-

mercaptoethanol). Samples were then size-separated using SDS-

PAGE. Proteins were transferred to a nitrocellulose membrane

using the Trans-Blot Turbo Transfer System (Bio-Rad).

Membranes were blocked with the LI-COR blocking solution (LI-
TABLE 1 Quantitative real-time PCR primers used.

Forward Reverse

GAPDH ACTTTGGTATCGT
GGAAGGACT

GTAGAGGCAGGGATG
ATGTTCT

FcgRIa GGCAAGTGGACAC
CACAAAGGCA

GCTGGGGGTCGAGG
TCTGAGT

FcgRIIa TTGCTGCTGCTGG
CTTCTGC

GTAGCTGGGCTGCG
TGTGGG

FcgRIIb TGACTGCTGTGCT
CTGGGCG

AGCCTTTGGGGGA
GCAGGTGT

FcgRIIIa CCTCTCCACCCTCA
GTGACCCG

TGGAGCAACAGCCA
GCCGAT

FcϵR1g CAAGCAGCGGCC
CTGGGAG

TTCCTGGTGCTCA
GGCCCGT
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COR Biotechnology, NE, USA) and incubated with primary

antibodies overnight at 4°C in LI-COR antibody diluent. The

following primary antibodies were utilized: phospho-p42/44

(polyclonal, product #9101; or clone D13.14.4E; Cell Signaling

Technology), phospho-MAPKAPK2 (polyclonal, product #3041;

Cell Signaling Technology), phospho-p38 (clone D3F9; Cell

Signaling Technology), phospho-p65 (clone 93H1; Cell Signaling

Technology) mouse anti-human GAPDH (clone D4C6R; Cell

Signaling Technology), rabbit anti-human FcϵRIg (product 06-

727; Upstate, Sigma-Aldrich), and mouse anti-human calreticulin

(clone FMC 75, Enzo Life Sciences, Farmingdale, NY, USA). After

probing with the corresponding fluorescently-conjugated secondary

antibody (IRDye 800CW goat anti-rabbit, or IRDye 680RD goat

anti-mouse antibodies; LI-COR) for 1 hour at room temperature,

membranes were developed using the Odyssey CLx (LI-COR). For

densitometry analysis, Fiji was used (52).
2.4 Flow cytometry

After PBMC or monocyte stimulation, cells were collected and

washed with PBS. Then, cells were transferred into v-bottom

plates and incubated with whole human IgG (Jackson

ImmunoResearch Labs, West Grove, PA, USA) at 10 µg/mL in

PBS for 15 minutes on ice. After Fc block, the specific antibody

cocktail was added (Table 2). Samples were acquired using the

LSR-Fortessa (BD Biosciences) at the Flow Cytometry Shared

Resource at The Ohio State University Comprehensive Cancer

Center and analyzed using FlowJo version 10.7.2 (Ashland, OR,

USA). Supplementary Figure 1 shows an example of the gating

used in monocyte analysis.
2.5 ELISA

Cultured cells were centrifuged, and cleared supernatants

collected and used for ELISA with the Human TNFa DuoSet

ELISA kit (R&D Systems, Minneapolis, MN, USA) according to

manufacturer’s instructions. For acquisition, the BioTek Synergy

HTX plate reader was used (Agilent, Santa Clara, CA, USA).
2.6 Antibody-mediated binding (rosetting)

To determine antibody-mediated binding of targets, opsonized

sheep red blood cells (sRBCs; Colorado Serum Company, Denver,

CO, USA) were prepared as previously described (53). sRBCs where

washed with PBS until the supernatant appeared clear. Then, 2 mL
of PKH26 Red Fluorescent Dye (Sigma-Aldrich), diluted in Diluent

C, were added to the cell pellet and thoroughly mixed. The reaction

was stopped with a 1:1 volume of FBS, and sRBCs were washed with

PBS until clear. Fluorescent sRBCs were then opsonized with rabbit

anti-sheep antibody (Sigma-Aldrich) on ice for 2 hours

before washing.

Upon monocyte stimulation with MDP at 1 mg/mL for 24

hours, cells were used for rosetting analysis, as previously described
Frontiers in Immunology 04
(53). Briefly, monocytes were divided and incubated with 1 uL of

packed, opsonized or non-opsonized, fluorescent sRBCs. Cells were

mixed and spun down, then incubated on ice for 1 hour. After

incubation, cells were fixed with 1% paraformaldehyde in PBS for

15 minutes before analysis. The number of bound targets per

100 monocytes, as well as the percent of active cells (monocytes

with bound sRBCs) were counted through microscopy using

the Olympus BX41 (Olympus Lide-Science/Evident, Tokyo,

Japan). Samples were counted in a blinded fashion by two
TABLE 2 Flow cytometry panels.

Panel Cocktail

Panel 1: Monocyte activation CD14 Alexa Flour 647 (clone HCD14,
BioLegend)
CD38 FITC (clone HIT2, BioLegend
CD163 PeCy7 (clone GHI/61, BioLegend)
CD86 PE (clone BC96, BioLegend)
HLA-DR PercP (clone L243, BioLegend)
Live/Dead Blue (Thermo-Fisher Scientific)

Panel 2: T cell activation CD3 Pacific Blue (clone OKT3, BioLegend)
CD4 Brilliant Violet 711 (clone RPA-T4,
BioLegend)
CD8 PercP (clone SK1, BioLegend)
CD69 Alexa Fluor 488 (clone FN50,
BioLegend)
CD25 PeCy7 (clone BC96, BioLegend)
CD86 APC (clone IT2.2, BioLegend)
Live/Dead Blue

Panel 3: B and NK cell activation CD19 PeCy7 (clone HIB19, Invitrogen)
CD69 Alexa Flour 488
CD86 APC
CD56 Super Bright 600 (clone NCAM,
Invitrogen)
CD107a PE/Dazzle (clone H4A3,
Invitrogen)
Live/Dead Blue

Panel 4: FcgRs CD64 (FcgRIa) PercP Cy5.5 (clone 10.1,
BioLegend)
CD32a (FcgRIIa) FITC (clone IV.3,
StemCell Technologies, Vancouver,
Canada)
CD32b (FcgRIIb) PeCy7 (clone S18005H,
BioLegend)
CD16 (FcgRIIIa) Brilliant Violet 711 (clone
3G8, BioLegend)
Live/Dead Blue

Panel 5: CLL cells (Mouse model) CD45 Brilliant Violet 421 (clone 30-F11,
BioLegend)
CD19 PE (clone 1D3/CD19, BioLegend)
CD5 Alexa Fluor 647 (clone 53-7.3,
BioLegend)
Live/Dead Blue.

Panel 6: Monocyte/macrophage
phenotype (Mouse model)

CD45 Brilliant Violet 421
CD11b Brilliant Violet 711 (clone M1/70,
BioLegend)
Ly6G PerCP (clone 1A8, BioLegend)
Ly6C PeCy7 (clone HK1.4, BioLegend)
F4/80 Brilliant Violet 605 (clone BM8,
BioLegend)
IA-IE Brilliant Violet 785 (clone M5/
114.15.2, BioLegend)
iNOS PE (clone CXNFT, Invitrogen)
EGR2 APC (clone Erongr2, Invitrogen)
Live/Dead Blue
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different subjects. The number of bound non-opsonized targets in

control samples was subtracted from the number of bound

opsonized targets.
2.7 Antibody-mediated phagocytosis

sRBCs were stained with the pH sensitive Protonex Red 600 dye

(AAT Bioquest, Pleasanton, CA) at 4 mM in Hanks Buffered Saline

Solution (HBSS; Gibco). The staining was done for 30 minutes at

37°C and then sRBCs were washed 3 times with PBS. sRBCs were

then opsonized with antibody as stated above.

For measuring phagocytic activity, monocytes were treated

with DMSO or pathway inhibitors for 30 minutes before

stimulation with MDP at 1 mg/mL for 24 hours. Then, cells

were washed and stained for contrast with carboxyfluorescein

succinimidyl ester (CFSE, Thermo-Fisher Scientific) at 0.5 mM in

PBS for 10 minutes at room temperature; the reaction was

stopped with FBS and cells spun down. Cells were resuspended

in complete media to perform the assay. Monocytes were

mixed with 1 mL of packed, fluorescently-labeled, opsonized

sRBCs for 45 minutes at 37°C, then washed and fixed with

paraformaldehyde at a final concentration of 1%. The amount

of phagocytosed sRBCs was counted per 100 cells under the

microscope, and the number of cells with ingested events was

also recorded as active phagocytes. The counts were done
Frontiers in Immunology 05
independently by two or three different subjects in a blinded

fashion and averages calculated. As control, phagocytosis of non-

opsonized, fluorescent sRBCs was checked for negativity.

Some donors and results are shared among different

phagocytosis assays.
2.8 Mouse model

Mice were housed in a vivarium at The Ohio State University,

following all institutional guidelines. All experimental procedures were

approved by The Ohio State University Institutional Animal Care and

Use Committee.. An adoptive transfer Em-TCL1 mouse model of CLL

was used (54, 55). Briefly, 1x107 splenocytes from CLL-burdened Em-
TCL1 mice were used to engraft C57BL/6 mice. After 2 weeks of

disease development, treatments (5 mg/kg of MDP and/or 1 mg/kg

aCD20 (Invivogen, San Diego, CA, USA, catalog #mcd20-mab10 -)

were delivered intraperitoneally three times weekly, for 2 weeks.

Engrafted C57BL/6 mice, left untreated, and nongrafted C57BL/6

mice served as controls. Mice were euthanized using a CO2 chamber,

followed by cervical dislocation. Spleens and peripheral blood were

collected. For spleens, the tissue was weighed and disrupted using a 100

mm cell strainer (Corning); erythrocytes from both blood and

disaggregated spleens were eliminated by centrifugation using

lymphocyte separation medium. Cells were washed, resuspended in

PBS and used for flow cytometry staining.
B

C D

A

FIGURE 1

NOD2 agonists enhance monocyte FcgR-mediated phagocytosis. (A) HD PBMCs were treated with MDP at 1 mg/mL for 24 hours. Cells were
collected, and the indicated markers were evaluated in CD14+ cells by flow cytometry (n=3). Top graphs show the expression levels by geometric
mean of fluorescence intensity (GMFI); lower panels show representative histograms. (B) Isolated monocytes were treated with MDP at 1 mg/mL for
24 hours; supernatants were obtained and production of TNFa was quantified by ELISA (n=10). (C, D) Monocytes were treated with MDP at 1 mg/mL
for 24 hours. Then, antibody-mediated functions were analyzed: (C) Rosetting (n=3) and (D) Phagocytosis (n=7). In both cases, the index indicates
the number of sRBCs bound/engulfed by 100 monocytes, while the number of active monocytes indicates the percent of active cells (having surface
bound or engulfed sRBCs). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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For flow cytometry staining, cells were placed in a v-bottom

plate and stained as above using the antibodies listed for Panels 5

and 6 (Table 2). For monocyte and macrophage phenotyping (Panel

6, iNOS and EGR2), we used the Foxp3 Intracellular staining kit

(Thermo-Fisher Scientific) according to the manufacturer’s

instructions, as described previously (56–58). For acquisition,

Absolute Count Beads (BioLegend) were used.
2.9 Statistical analysis

Graphs were prepared using Excel (Microsoft Corporation,

Redmond, WA). For two-group comparisons, a one-tailed t-test

analysis for paired samples was performed using Excel. For multi-

group comparisons, data were analyzed with the mixed effects

model using SAS 9.4 (SAS Institute, Cary, NC, USA). Statistical

analyses included only the engrafted groups (vehicle, MDP, aCD20
and combination) for mouse experiments, nongrafted controls were

not compared. Data in graphs is shown as mean + standard

deviation (S.D.).
3 Results

3.1 NOD2 agonists influence the
phenotype of monocytes and enhance
FcgR-mediated phagocytosis

Monocytes and macrophages are well-known responders to

NOD2 agonists (40–42). To confirm this, we first treated PBMCs

from HDs with MDP at 1 mg/mL for 24 hours. Flow cytometry was

then used to measure different activation markers in monocytes and

lymphocytes to determine which populations show an efficient

response to NOD2 agonists. As shown in Figure 1A, monocytes

showed a significant increase in CD86 and HLA-DR. Concurrently,

there was a significant decrease in the M2-associated marker CD163.

These results suggest that monocyte activation was skewed toward a

proinflammatory phenotype. In T cells, we found that NOD2 agonist

treatment increased CD86 in CD4+ T cells, which may suggest a

slight activation of this population, as has been suggested previously

(59) (Supplementary Figure 2A). B and NK cells were also examined,

but only a reduction in NK-cell CD107a was observed

(Supplementary Figures 2C, D, respectively). Since changes on

monocytes were significant, we decided to further test the effects of

NOD2 in isolated monocytes. 24 hours following stimulation of

NOD2, monocytes produced robust levels of TNFa, measured in the

supernatants (Figure 1B). These results confirm earlier reports that

monocytes are activated by NOD2 agonists (40, 49).

We next tested whether NOD2 stimulation would increase the

phagocytic ability of monocytes, specifically in the context of FcgR-
mediated responses. For this, we treated monocytes with MDP at 1

µg/mL for 24 hours and then incubated them with fluoresceinated,

antibody-opsonized sRBCs. Here, cells were subjected to rosetting

(initial binding stage of phagocytosis) and ingesting assays.

Rosetting was done by incubating monocytes with the sRBCs at

4°C while incubation at 37°C was done in parallel to measure
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ingestion. As shown in Figure 1C, there was a significant increase in

antibody-mediated binding (rosetting) in agonist-treated

monocytes compared to controls, which is also reflected in the

number of cells with bound sRBCs. Likewise, the number of

ingested, opsonized sRBCs was significantly higher in treated

monocytes (Figure 1D). There was also a significant increase in

the number of actively phagocytosing monocytes. Taken together

these results indicate that NOD2 stimulation leads to an increase in

FcgR-mediated phagocytosis.
3.2 NOD2 stimulation modulates
FcgR expression

To test whether the increase in phagocytosis could be accounted

for by a change in FcgR expression, we isolated monocytes from HDs

and treated for 24 hours with vehicle or MDP at 1 µg/mL. Following

this, RNA was isolated and transcripts for FcgRIa, FcgRIIa, FcgRIIIa,
FcϵRIg and FcgRIIb (the inhibitory FcgR) were evaluated by qPCR.

Results (Figure 2A) showed that there was a significant increase in the

expression of FcgRIIa and FcgRIIIa. Contrary to our expectation,

however, RNA expression of FcgRI was significantly lower in MDP-

treated monocytes. Transcripts of FcϵRIg were significantly increased

by MDP treatment (Figure 2B, upper panel). Changes in FcgRIIb
expression were not significant (Supplementary Figure 3A).

We also measured surface expression of FcgRs by flow cytometry.

Consistent with an increase in transcripts, there was a significant

increase in surface expression of FcgRIIa and FcgRIIIa in isolated

monocytes after 24 hours with NOD2 agonist treatment (Figure 2C).

Surprisingly, the surface expression of FcgRI was also significantly

increased despite the observed reduction in transcript (Figure 2C). In

addition to the increase in the geometric mean of expression of the

activating FcgRs, we also observed a slight but significant increase in the
percent of monocytes positive for FcgRI, as well as an increase of the

monocyte population expressing FcgRIIIa (Supplementary Figure 4).

This indicates a phenotypic change into intermediate or non-classical

monocytes after NOD2 stimulation (60).

Because surface expression of FcgRI depends on FcϵRIg (7, 61),
we also measured protein levels of FcϵRIg using immunoblot analysis

under the same stimulation conditions. Of note, we detected two

bands whenmeasuring FcϵR1g, which has been seen by other authors
previously and may correspond to either dimers or phosphorylation

of the protein (7, 62); thus, densitometry analysis was done for both.

As shown in Figure 2B (middle panel and lower-panel graph), MDP

significantly increased protein levels of FcϵRIg. Hence, despite

reducing the transcript of FcgRI, MDP treatment led to greater

surface expression of all three activating FcgRs on monocytes.
3.3 NF-kB and p38 are required for
NOD2-mediated effects on FcgR

Previous studies have demonstrated that NF-kB, MEK and p38 are

activated downstream of NOD2 (37–39). We therefore explored which

of these pathways was required for MDP-mediated changes in FcgR
expression and function. For this, HDmonocytes were isolated and each
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of these three pathways was inhibited using pharmacologic inhibitors

prior to treating the monocytes with MDP. To verify efficacy of the

inhibitors, immunoblot analysis was performed with phospho-specific

antibodies for NF-kB, ERK and MAPKAPK2 (downstream of p38),

measured at 24 hours post-treatment (Supplementary Figure 5). [Of

note, no visible activation of p38 was detected at this time point after

MDP stimulation, which may be due to p38 activity peaking earlier after

stimulation (63–65)]. qPCR and flow cytometry were done to measure

FcgR expression. As shown in Figure 3A and quantified in

Supplementary Figure 6, MDP-driven increases in FcgR surface

expression were prevented by inhibition of NF-kB and p38 but not

by inhibition ofMEK. Changes in transcript afterMDPwere also largely

prevented by inhibition of NF-kB and p38 (Supplementary Figure 7).

Consistent with the effects of these inhibitors on changes in FcgR
expression, the MDP-mediated increase in phagocytosis was prevented

with NF-kB and p38 inhibition (Figure 3B). Taken together, these data

demonstrate that NF-kB and p38 are required mediators for enhancing

FcgR expression and function downstream of NOD2.
3.4 NOD2 regulates FcgR function in
CLL-patient monocytes

CLL-patient monocytes are known to have altered phenotype

compared to HDs (17). Thus, to test whether the effects of NOD2

stimulation seen in HD monocytes were reproducible in CLL-patient

monocytes, we isolated monocytes from deidentified peripheral blood

samples obtained from CLL patients and measured NOD2 expression
Frontiers in Immunology 07
using qPCR. As shown in Figures 4A, B, NOD2 was expressed in CLL-

patient monocytes at similar transcript levels to HDmonocytes. As with

HD monocytes, CLL-patient monocytes were able to respond to MDP

by producing TNFa after 24 hours of stimulation. Further, MDP

treatment of CLL-patient monocytes also enhanced surface expression

of FcgRI and FcgRIIIa, observed by flow cytometry (Figure 4C), and

expression of FcϵRIg, measured by immunoblot (Figure 4D). In addition,

the transcriptional levels of FcgRIIb in CLL-patient monocytes remained

unchanged after NOD2 stimulation (Supplementary Figure 3B).

However, in contrast to HD monocytes, MDP treatment did not

increase surface expression of FcgRIIa in CLL-patient monocytes after

MDP treatment (Figure 4C, middle graph). However, consistent with an

overall increase in activating FcgRs, MDP treatment of CLL-patient

monocytes led to a significantly higher level of phagocytosis (Figure 4E).

In contrast to HD monocytes, the same increase in rosetting was not

seen in patientmonocytes (Figure 4F), althoughmonocytes from 3 of the

4 donors showed higher levels with MDP treatment. This suggests that

despite a lower overall response than that seen in HD monocytes, CLL-

patient monocytes are capable of responding toMDP by increasing FcgR
expression, cytokine production and phagocytic ability.

In addition to monocytes, the effect of MDP on CLL cell

activation and proliferation in patient samples was examined, as

this could be a potential and undesirable side effect. PBMCs from

CLL patients were treated with MDP for 24 hours, then expression

of CD86 in CLL cells was measured using flow cytometry. Although

there was some increase in CD86, it was not significant

(Supplementary Figure 8A). We next isolated B/CLL cells and

treated with vehicle or MDP, counting cell numbers and viability
B

C

A

FIGURE 2

NOD2 stimulation modulates FcgR expression. Monocytes were treated for 24 hours with MDP at 1 mg/mL. Cells were collected to analyze (A) transcripts (n=5)
and (B) surface expression (n=6) of the FcgRs by qPCRor flow cytometry, respectively. Bottom histograms show a representative donor. (C)mRNA and total protein
level of the common gamma chain (FceRIg) were evaluated through qPCR and western blot (n=5). *p ≤ 0.05, **p ≤ 0.01.
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at different time points. As shown in Supplementary Figures 8B, C,

the viability of CLL cells was not affected by MDP. These results

suggest that NOD2 activation does not affect CLL cell viability.

Taking cell number and percent viability together, results also

suggest that MDP did not directly affect CLL-cell proliferation.
3.5 NOD2 activation enhances effects of
antitumor antibody in vivo

To test the effects of NOD2 stimulation on FcgR function in

vivo, we used a mouse model that mimics human CLL (66, 67). C57/

BL6 mice were engrafted with splenocytes from diseased Em-TCL1
mice, as described in the methodology. Disease was allowed to

develop for 2 weeks. Animals were either treated with vehicle,

treated with MDP, treated with a suboptimal dose of aCD20
antibody or treated with MDP plus aCD20 antibody in

combination. Mice were sacrificed after 2 weeks of treatment.

Healthy, nonengrafted mice were included as controls. CLL loads

in peripheral blood and in the spleens were assessed. Results showed

that white blood cell (WBC) counts in peripheral blood were

significantly reduced by each single treatment, and dual treatment

led to greater reduction than either single treatment (Figure 5A).

There was also a significantly lower percentage of CD5+/CD19+

CLL cells after antibody treatment, and dual treatment led to a

lower percentage than either single treatment (Figure 5B).
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In addition to the leukemic load in the blood, we analyzed the

spleen, as CLL cells tend to accumulate in this organ (68). Spleen

weights were also significantly lower in mice treated with antibody,

but MDP plus antibody led to spleen weights significantly lower

than those for untreated or for either single treatment (Figure 5C).

The number of CLL cells per milligram of spleen weight (Figure 5D)

was also significantly lower with dual treatment compared to either

single treatment or vehicle control. Furthermore, this was also

observed in the percent of CD19+CD5+ cells from the viable

CD45+ population (data not shown). An image of the spleens is

shown in Figure 5E. These results suggest that the combination of

NOD2 agonist plus therapeutic antibody may be more effective than

antibody alone.
3.6 NOD2 agonists shift monocyte/
macrophage phenotype in vivo

In addition to the leukemic burden, we tested whether MDP

combined with antitumor antibody could modulate the phenotypes

of monocytes and macrophages in vivo. For this, cells from the

spleen were obtained and stained for flow cytometry to detect M1-

and M2-related markers on monocytes and macrophages. Cells

were gated as CD45+CD11b+Ly6G- and further classified by

expression of MHC-II and/or F4/80 as previously done (56).

Percentages of cells expressing iNOS (M1) or EGR2 (M2) (58)
B

C D

E F

A

FIGURE 3

NF-kB and p38 are required for NOD2-mediated effects on FcgR. Monocytes were treated with inhibitors against (A, B) NF-kB, (C, D) MEK, (E, F) or p38 for 30
minutes, before stimulation with MDP for 24 hours. Following incubation, (A, C, E) expression of the FcgRs was measured through flow cytometry (representative
histogram of n ≥ 4 is shown); (B, D, F) antibody-mediated phagocytosis was evaluated (n ≥ 3). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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were measured to assess M1 or M2 polarization. Results from

nonengrafted, healthy control mice were also collected.

In MHC-II+ populations either negative or positive for F4/80

(mainly monocytes or macrophages, Figures 6A, B, respectively)

there was a significant upregulation of iNOS with either single

treatment, and dual-treatment led to significantly higher M1

marker iNOS than either single treatment or vehicle. Neither

single treatment significantly downregulated the percent of

myeloid cells expressing the M2 marker EGR2, but dual-

treatment significantly reduced EGR2 compared to vehicle control

and compared to either single treatment. In the F4/80+ group

(Figure 6C), all treatments led to significantly higher iNOS versus

vehicle, and combination treatment led to significantly higher iNOS

than antibody-alone treatment.. Taken together, these data suggest

that MDP/antibody combination treatment not only decreases CLL

burden but also shifts myeloid phenotypes towards a more

proinflammatory, and potentially M1-like state.
4 Discussion

In the present study, we report for the first time the potential for

NOD2 agonists to offset the suppressive leukemic microenvironment

and enhance antibody-mediated responses in CLL. MDP led to

enhanced responses in vitro in monocytes from CLL patients,

although these responses do not entirely mimic the observations
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seen in HD cells. This may be related to the overall altered phenotype

of myeloid cells seen in CLL, and the role they have as leukemia-

supportive cells (16–20, 56). Of note, MDP significantly enhanced the

activity of aCD20 antibody in vivo, leading to lower tumor burden

and a shift towards a proinflammatory phenotype in monocytes

and macrophages.

The activation of monocytes in both HD and CLL-patient

samples after NOD2 stimulation led to a significant increase in

the expression of activating FcgRs. Previously, it has been shown

that NOD2 promotes a phenotypic change from classical to non-

classical monocytes, which involves an increase of FcgRIIIa (44).

This observation is in line with ours and, in addition, we also saw a

significant increase in the surface expression of FcgRIa, likely being
stabilized by the common gamma chain (61). In combination with

our observations of increased expression of HLA-DR and CD86,

along with lower expression of CD163, these results suggest a shift

towards an intermediate phenotype of monocytes after NOD2

stimulation (60). The increase in expression of activating FcgRs in
the membrane is of importance, since patients with active CLL have

a dominance of FcgRIIb signaling, which can lead to decreased

antibody-mediated activity (5, 69, 70). In addition, FcgRs are crucial
for aCD20 antibody efficacy in vivo (69, 71). Thus, using a NOD2

agonist in combination with a therapeutic antibody may overcome

resistance to the antibodies. This is supported further by the

increase in phagocytosis seen in both HD and CLL-patient

monocytes, which is one of the main mechanisms for elimination
B

C D

E F
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FIGURE 4

NOD2 regulates FcgR expression function in CLL-patient monocytes. (A) Levels of NOD2 expression in HD and CLL-patient monocytes were measured by
qPCR (n=5 donors each). CLL-patient monocytes were stimulated for 24 hours with MDP at 1 mg/mL and (B) production of TNFa was evaluated in the
supernatant (n=8); (C) levels of FcgRs were measured by flow cytometry (n=6) or (D) FcϵRIg abundance was observed by western blot (representative blot,
n=3 donors). (E) Antibody-mediated phagocytosis (n=3), or (F) Rosetting (n=4) were also measured. *p ≤ 0.05, **p ≤ 0.01.
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of aCD20-opsonized targets by myeloid cells, and has been

observed in vivo in B cell lymphoma (72). Further experiments

are ongoing to elucidate the effects of NOD2 stimulation in NLCs

from CLL patients.

We also observed that NOD2 stimulation may not only

influence antibody-mediated responses, but also myeloid

cells within the microenvironment. Using the adoptive transfer
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Em-TCL1 mouse model, we saw a significant decrease of the disease

burden in mice treated with the combination, in comparison with

either single treatment, both in circulation and in the spleen. Most

importantly, we also observed an increase of the percent of

monocytes or macrophages that expressed iNOS. This effect was

even greater when mice were treated with both MDP and aCD20
antibody, compared with either treatment alone. In addition, the
B

C

D

E
A

FIGURE 5

NOD2 activation enhances effects of antitumor antibody in vivo. Mice were engrafted with splenocytes from a diseased Em-TCL1 mouse and disease was
allowed to develop for two weeks. Mice were treated with MDP, aCD20 antibody or a combination three times per week for two weeks. Mice were then
euthanized, and blood and spleen samples obtained. (A) White blood cell counts were taken as explained in the methods. (B) Percent CD19+CD5+ cells
in CD45+ peripheral blood was measured by flow cytometry and graphed. (C) Spleen weights were taken, and (D) number of CD45+CD19+CD5+ cells
per milligram spleen weight was measured (n=3 for nonengrafted, n=6 for all others). (E) Picture depicting the spleens from the indicated groups is
shown. *p ≤ 0.05, ***p ≤ 0.001, ****p ≤ 0.0001.
B
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DA

FIGURE 6

NOD2 agonists shift monocyte/macrophage phenotype in vivo. C57BL/6 mice were engrafted with splenocytes from a diseased Em-TCL1 mouse and the
disease was allowed to develop for two weeks. Mice were treated with MDP, aCD20 antibody or a combination three times a week for two weeks. Then,
mice were sacrificed, and spleen samples obtained. Cells were stained for flow cytometry and monocytes/macrophages were identified as CD45+CD11b
+Ly6Gcells and divided by F4/80 and/or MHC-II expression. (A) MHC-II+, (B) MHC-II+F4/80+ and (C) F4/80+ cells were then characterized as M1 by iNOS
expression, or as M2 by EGR2 expression. Percents of M1 or M2 in the different populations are shown. (D) Representative dot plots from one mouse per
group for iNOS/EGR2 expression are shown (n=3 for unengrafted, n=6 for all others). **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
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combination treatment was the only one that reduced the percent of

EGR2+ monocytes and macrophages, suggesting that dual

treatment was needed to overcome the suppressive environment.

Of note, NOS2 or iNOS have been widely attributed to M1-related

IFNg stimulation, while higher EGR2 expression is highly correlated

with M2-like responses (57, 58). Thus, the iNOS response to dual

treatment suggests an active switch in the phenotype of

myeloid cells.

There are different mechanisms that may play a role in the

change in monocytes’/macrophages’ phenotypic differences, as

well as the reduced leukemic burden, which are observed in the

combination treatment. First, the combination may result in

an increase in FcgRs as seen in human patient samples, or

perhaps other factors involved in downstream signaling

cascades are shared between the two processes. For example,

the downstream mediator RIP2 has been shown to be common

between NOD2 and FcgR, although knockout of RIP2 did not

lead to defects in IgG2a-driven FcgR signaling (73), and the

mouse aCD20 antibody used in the current study was based on

IgG2a. In addition, signals like NF-kB or MAPK happen through

activation of FcgRs or NOD2, while an increase in IFNg
production has been suggested for NOD2 mediated stimulation

(74). Further research is currently in progress to delineate the

mechanism of action of the combination.

It has been previously suggested that NOD2 activation may

result in a variety of outcomes in myeloid cells, depending on the

agonists used (42). Mifamurtide® has been shown to induce

monocyte activation in treated patients, (reviewed in (45)), which

involved production of cytokines and direct cytotoxicity against

tumoral cell lines (75–77). In addition, macrophages polarized in

vitro with GM-CSF and further activated with MTP-PE and IFNg
are capable of inhibiting osteosarcoma growth by producing soluble

factors, although independent of TNFa or IL-1b (78). Dieter et al.

showed that MTP-PE could induce TNFa and nitric oxide from

liver macrophages and that MTP-PE-stimulated macrophages

showed direct cytotoxic effects against the P815 mouse

mastocytoma cell line (79). Our observation of TNFa production

following MDP treatment further supports these observations,

while translating our observations to other diseases and

potentially other diseases may be carefully considered.

There is concern that MDP may have effects apart from

promoting myeloid-cell activation. A previous report showed that

MDP increased activation and survival of CLL cells in a specific

group of patients, which may be an undesired side effect (80).

However, we did not see a substantial activation of B cells in HD or

CLL patients (as measured by CD86 expression), either as isolated

cells or in PBMC cultures. In line with these observations, MDP

alone does not increase the leukemic load in vivo. Although results

may differ due to the use of different stimulation approaches, our

observation suggests that the use of NOD2 agonists for CLL

treatment does not result in leukemic progression.

Along with this, the benefits of NOD2 agonists seem to

outweigh such potential unwanted effects when used against other

types of cancer. Mifamurtide® has been used for the treatment of
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osteosarcoma in Europe. In 2009, the European Medicines Agency

granted Takeda marketing approval, based on the INT-0133 clinical

trial (45). The trial examined the effects of MTP-PE with

chemotherapeutic agents, finding that MTP-PE plus a four-drug

chemotherapy regimen (doxorubicin, ifosfamide, cisplatin and

methotrexate) showed the best event-free survival (81). Further

studies have been done to complement observations from the INT-

0133 trial (82). The use of this NOD2 agonist is approved for youth

populations (2 to 30 years of age) as follow-up treatment after

surgical removal of the main affected tissue (45).

In conclusion, the present study provides evidence that

combination therapy of aCD20 antibody and NOD2 agonists

may be useful to overcome antibody resistance and to promote

the elimination of leukemic cells in CLL. This may also be of benefit

for patients who acquired resistance to BTK inhibitors or to other

therapies. Further research is required to elucidate the specific

mechanisms by which NOD2 agonists reverse suppression in

myeloid cells, especially in combination with FcgR activation.
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SUPPLEMENTARY FIGURE 1

General gating strategy for HD or CLL-patient monocytes. For evaluating the
expression of the FcgRs in monocytes by flow cytometry, viable cells were

selected by (A) first cleaning up doublets (singlet selection). (B) Then, gating
was done to exclude debris in the SSC vs FSC dot plot. (C) All cells were
stained for viability, so nonviable cells were excluded following SSC vs FSC

gating. For monocytes, the geometric mean fluorescence or selection of
FcgR-positive populations were done with this sub-gate, subtracting the

isotype control signal. A similar strategy was used for evaluation of
activation-related proteins in PBMCs, where selection of monocytes, T, B

and NK cells was done after (C), staining for population-specific proteins.

Depicted is an example healthy-donor monocyte sample.

SUPPLEMENTARY FIGURE 2

Effects of NOD2 stimulation in other immune-cell populations. Isolated

PBMCs were treated with MDP at 1 µg/mL for 24 hours. Then, samples
were collected, and the indicated markers were analyzed by flow cytometry

in viable (A)CD3+CD4+, (B)CD3+CD8+, (C)CD19+, and (D)CD56+ cells (n=3).

*p < 0.05, **p ≤ 0.01.

SUPPLEMENTARY FIGURE 3

MDP treatment does not significantly affect FcgRIIb expression. Monocytes

from HD (A; n=5) or CLL patients (B; n=7) were treated with MDP at 1 mg/mL
for 24 hours. Then, levels of FcgRIIb expression were measured by qPCR.

Results are shown as relative copy numbers (RCN).

SUPPLEMENTARY FIGURE 4

NOD2 agonists increase the expression of activating FcgRs. HD monocytes
were treated with MDP at 1 mg/mL for 24 hours. Then, cells were collected

and evaluated for surface expression of FcgRs. Percentages of positive cells
for (A) FcgRIa, (B) FcgRIIa, and (C) FcgRIIIa are shown (n= 6). Top graphs show

averages +S.D., while histograms in the bottom panels show a representative

donor. *p ≤ 0.05, **p ≤ 0.01.

SUPPLEMENTARY FIGURE 5

Verification of inhibitor activity. Monocytes were treated with inhibitors against

(A)NF-kB, (B)MEK or (C) p38. To ensure appropriate blocking, the activation of
downstream targets was assessed by western blot. Of note, cells were collected

to measure levels of protein phosphorylation 24 hours after stimulation with

MDP. Figure shows a representative blot for each inhibitor (n ≤ 3). GAPDH was
used as loading control.

SUPPLEMENTARY FIGURE 6

Inhibition of NF-kB and p38 affects monocyte FcgR transcriptional responses to
NOD2. Healthy-donor monocytes were treated with inhibitors for (A) NF-kB,
(B) MEK and (C) p38 before stimulation with NOD2 agonist for 24 hours. Cells

collected, and total RNA obtained. The expression of FcgR was evaluated through
qPCR. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 (n ≤ 3).

SUPPLEMENTARY FIGURE 7

Inhibition of NF-kB and p38 affects NOD2-mediated changes in FcgR surface
expression in monocytes. HD monocytes were treated with inhibitors for (A)
NF-kB, (B) MEK and (C) p38 before stimulation with NOD2 agonist for 24

hours. Cells were collected and the expression of FcgRwas evaluated through
flow cytometry. Expression was calculated by the geometric mean; the

percent of FcgRIIIa positive population is also shown. *p ≤ 0.05, **p ≤ 0.01,
***p ≤ 0.001, ****p ≤ 0.0001 (n ≥ 3).

SUPPLEMENTARY FIGURE 8

MDP stimulation does not induce CLL cell activation and survival in vitro.
(A) PBMCs from CLL patients were isolated and stimulated with 1 mg/mL MDP

for 24 hours. Then, cells were collected and the expression of CD86 in B cells
was evaluated by flow cytometry (n=3). Isolated B cells from CLL patients

were treated once with MDP at 1 mg/mL; then, the number of (B) viable cells
and the (C) percent viability was evaluated at the indicated time points (n=3).
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