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Background: Recent research has found a new way of cell death: disulfidptosis.

Under glucose starvation, abnormal accumulation of disulfide molecules such as

Cystine in Solute Carrier Family 7 Member 11 (SLC7A11) overexpression cells

induced disulfide stress to trigger cell death. The research on disulfidptosis is still

in its early stages, and its role in the occurrence and development of colorectal

malignancies is still unclear.

Method: In this study, we employed bioinformatics methods to analyze the

expression and mutation characteristics of disulfidptosis-related genes (DRGs) in

colorectal cancer. Consensus clustering analysis was used to identify molecular

subtypes of Colorectal Adenocarcinoma (COAD) associated with disulfidptosis. The

biological behaviors between subtypes were analyzed to explore the impact of

disulfidptosis on the tumor microenvironment. Constructing and validating a

prognostic risk model for COAD using diverse data. The influence of key genes on

prognosis was evaluated through SHapley Additive exPlanations (SHAP) analysis, and

the predictive capability of the model was assessed using Overall Survival analysis,

Area Under Curve and risk curves. The immunological status of different patients and

the prediction of drug treatment response were determined through immune cell

infiltration, TMB, MSI status, and drug sensitivity analysis. Single-cell analysis was

employed to explore the expression of genes at the cellular level, and finally validated

the expression of key genes in clinical samples.

Result: By integrating the public data from two platforms, we identified 2 colorectal

cancer subtypes related to DRGs. Ultimately, we established a prognosis risk model

for COAD using 7 genes (FABA4+GIPC2+EGR3+HOXC6+CCL11+CXCL10+ITLN1).

SHAP analysis can further explained the positive or negative impact of gene

expression on prognosis. By dividing patients into high-risk and low-risk groups,

we found that patients in the high-risk group had poorer prognosis, higher TMB,

and a higher proportion of MSI-H and MSI-L statuses. We also predicted that drugs

such as 5-Fluorouracil, Oxaliplatin, Gefitinib, and Sorafenib would bemore effective
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in low-risk patients, while drugs like Luminesib and Staurosporine would be more

effective in high-risk patients. Single-cell analysis revealed that these 7 genes not

only differ at the level of immune cells but also in epithelial cells, fibroblasts, and

myofibroblasts, among other cell types. Finally, the expression of these key genes

was verified in clinical samples, with consistent results.

Conclusions:Our research findings provide evidence for the role of disulfidptosis

in COAD and offer new insights for personalized and precise treatment of COAD.
KEYWORDS
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1 Introduction

Colorectal cancer (CRC) is the third most common malignant

tumor in the world, with a mortality rate ranking second globally

(1).Colon adenocarcinoma (COAD) accounts for 90% of cases (2),

and it is estimated that there will be 3.2 million new cases of COAD

worldwide by 2040 (3). Early-stage COAD patients who undergo

radical resection can achieve a 5-year survival rate of up to 90%.

However, most clinically diagnosed COAD patients are in the

advanced clinical stage, and despite new treatment options such

as targeted therapy and immunotherapy, the 5-year survival rate for

average advanced-stage COAD patients is still not more than 15%

due to the complexity of colorectal cancer and various factors such

as immune escape and drug resistance (4). Therefore, it is important

to explor specific molecular markers related to the prognosis of

colorectal adenocarcinoma patients, identifying different subtypes

of colorectal adenocarcinoma, and guiding treatment using

bioinformatics methods.

A novel and interesting form of cell death that has recently

gained attention is called disulfidptosis, characterized by disulfide

stress. The occurrence of disulfidptosis is triggered by the inhibition

of NADPH synthesis under glucose starvation conditions, which

induces high expression of SLC7A11, leading to an increased influx

of cysteine into the cell, resulting in abnormal accumulation of

intracellular disulfide bonds and subsequent protein misfolding.

Disulfidptosis does not belong to any known type of cell death, such

as ferroptosis, apoptosis, or pyroptosis, and it cannot be inhibited by

conventional drugs used to suppress cell death nor prevented by

knocking out key genes for ferroptosis/apoptosis. Reducing agents

for disulfide stress, such as dithiothreitol, b-mercaptoethanol, and

Tris(2-carboxyethyl) phosphine, can completely inhibit glucose

starvation-induced cell death in SLC7A11 high cells. In addition,

thiol oxidants (diamine and diethyl maleate) promote cell death in

SLC7A11high cells under glucose starvation and lead to a sharp

accumulation of disulfide molecules within cells (5).

Some studies have provided insights into the potential role of

disulfidptosis in cancer biology. For example, disulfidptosis is

associated with cellular oxidative stress, where cancer cells under
02
oxidative stress conditions lead to the accumulation of disulfide

bonds, a redox state closely related to the survival and proliferation

of cancer cells (6) Furthermore, disulfidptosis, by affecting the

structure of the actin cytoskeleton, increases memne permeability

and disrupts the structural integrity of the cell memne, affecting

cancer cell migration, invasion, and may also induce apoptosis and

other forms of programmed cell death (7). Disulfidptosis may

regulate the activity and function of immune cells, influencing the

tumor immune microenvironment, and thus affecting the outcome

of tumor patients. These findings emphasize the importance of

further exploring the mechanisms of disulfidptosis in various

cancers, including colorectal cancer. The study by Liu et al. also

proposes strategies for targeting disulfidptosis in cancer

treatment (5).

Despite the growing body of research on disulfidptosis, a

comprehensive analysis of the expression patterns, potential

molecular pathways, clinical significance, and immune correlation

of disulfidptosis-related genes in COAD is still required. This study

integrated two sets of COAD data from TCGA and GEO using

bioinformatics analysis methods, investigated the gene expression

and mutation characteristics of DRGs in COAD, identified key

genes and subtypes, and subsequently constructed a risk prognosis

model. The potential clinical applicability and value of the model

for guiding individualized treatment were confirmed through

immune infiltration analysis and drug sensitivity analysis. The

aim is to contribute to the development of new treatment

strategies and the improvement of prognosis for COAD patients.
2 Materials and methods

2.1 Data sources and processing

RNA-seq data and clinical information for colorectal cancer

patients were collected from two sources: GSE39582(http://

www.ncbi.nlm.nih.gov/geo/) and TCGA-COAD (https://

cancergenome.nih.gov/). A total of 969 patients were included in

this study. The clinical variables included age, sex, TNM stage,
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tumor grade, follow-up time, and survival status. Additionally,

downloading simple nucleotide variation (SNV) data for TCGA-

COAD patients from the UCSC Xena database (http://

xena.ucsc.edu/).The FPKM values were transformed into

transcripts per kilobase million (TPM), which were treated as

comparable to transcripts obtained from the GEO microarray.

The measurement of gene expression profiles was achieved by

utilizing TPM estimation, followed by log2-based transformation.

We utilized Strawberry Perl (version 5.26) to perform ID

conversion on the two datasets. Furthermore, we combined and

performed batch correction on mRNA expression data from the

four datasets using the “limma” and “sva” packages, respectively (8).

The twenty-four genes are disulfidptosis-related genes(DRGs)

retrieved from the currently available publications, and they

include SLC7A11, GYS1, NDUFS1, NDUFA11, NUBPL,

NCKAP1, LRPPRC, SLC3A2, RPN1, ACTN4, ACTB, CD2AP,

CAPZB, DSTN, FLNA, FLNB, INF2, IQGAP1, MYH10, MYL6,

MYH9, PDLIM1, TLN1, and OXSM (5, 9). We downloaded

‘GDSC2_Res.rds’ and ‘GDSC2_Expr.rds’ from the Cancer Cell

Line Encyclopedia database (https://sites.broadinstitute.org/ccle/)

for drug sensitivity analysis (10).
2.2 Consensus clustering analysis of PRGs

The R package “Consensus ClusterPlus” was used for consensus

unsupervised clustering analysis to classify patients into different

DRG-related molecular subtypes based on the expression of DRGs

(11). The clustering analysis was performed using the “PAM”

algorithm with Euclidean distance as the distance measure. Eighty

percent of the samples were randomly sampled and repeated 1000

times. The optimal K value was confirmed through the proportion

of fuzzy clustering (PAC) and cumulative distribution function

(CDF), and K was taken as the number of molecular subtypes.
2.3 The relationship between molecular
subtypes and clinical characteristics and
prognosis of colorectal cancer

We compared the clinical features (including age, gender, TNM

stage) among different molecular subtypes using the ‘pheatmap’

package for visualization. Survival time and status were integrated

from two datasets (946 patients), and the overall survival (OS)

differences among different subtypes were evaluated based on the

Kaplan-Meier method. The ‘Limma’ package in R language was

used to screen for differentially expressed genes (DEGs) between

different molecular subtypes in terms of double sulfur death.
2.4 Correlation enrichment analysis

We used the ‘c5.go.symbols.gmt’ and ‘c2.cp.kegg.Hs.symbols’ files

from the MsigDB database (https://www.gsea-msigdb.org/gsea/

msigdb) (12) to perform gene set variation analysis (GSVA) and

gene set enrichment analysis (GSEA) (13),analyzing the biological
Frontiers in Immunology 03
functional differences between high- and low-risk populations and

the biological functional differences associated with DRGs. To

explore the potential biological functions of DEGs, Gene

Ontology (GO) (14) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses (15) were performed using the ‘cluster

Profi ler ’ package (16) with a p-value<0.05 considered

statistically significant.
2.5 Construction of disulfidptosis-related
prognostic signature in colorectal cancer

Firstly, using the ‘limma’ package, a LASSO-univariate Cox

analysis was conducted on the differentially expressed genes (DEGs)

to screen for genes associated with prognosis as subsequent genes15.

Based on the expression levels of the candidate genes, cluster

analysis was performed to classify patients into different subtypes

for further analysis. Subsequently, multivariate Cox analysis was

conducted to further screen the candidate genes and obtain the

target gene. Remove samples with missing expression of target

genes, and finally include 920 patients to construct the model. The

patients were divided into training set and validation set at a ratio of

1:1. The risk score was calculated using the following formula:

score = “o (Expi ∗ coefi) ”, where S denotes the sum from i=1

to N, and N is the number of selected genes.

The median cut-off value of the risk score was used to divide

patients into high and low-risk groups. The ‘pheatmap’ package in R

was used to draw risk curves and heatmap, and the ‘survival’ package

was used to draw survival curves and ROC curves to evaluate the

clinical predictive value of the model.We also performed a drill-down

analysis on the impact of each gene on the prognosis model using

SHAP value dependence analysis based on single features. SHAP

values can quantify the impact of the expression levels of each gene

on the patient’s prognosis, thereby making this model more effective

in guiding medical practice and medical diagnosis (16). We use the

“rms” package to construct a nomogram, which is used to predict the

OS of patients at 1 year, 3 years, and 5 years.
2.6 The analysis of tumor
microenvironment and immune-
related factors

By downloading the source code “CIBERSORT.R” and reference

data files from the CIBERSORTwebsite (https://cibersort.stanford.edu/)

and combining the gene expression data from two datasets,

CIBERSORT R was used to analyze the samples, resulting in an

input sample file “CIBERSORT-Results.txt” (showing the

infiltration of 22 types of immune cells in each tumor sample).

Using the “limma” package, we investigated the differences in 22

immune-infiltrating cells between high and low-risk groups (17).

Additionally, based on the gene matrix, the “estimate” package was

used to evaluate the stromal, immune, and tumor purity of the

tumor tissue (17, 18). Finally, we utilized TISCH (http://tisch.comp-

genomics.org/) to investigate the impact of 7 prognostic markers on

the tumor microenvironment at the single-cell level.
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2.7 Mutation data processing and tumor
mutation burden

Using SNV data from 359 Colorectal cancer patients in the TCGA

database, the tumor mutation burden (TMB) was calculated for each

patient, where TMB = the number of non-synonymous mutations/

exome chip size (approximately 38Mb) (19, 20). A Perl script was used

to obtain the number of non-synonymous mutations in the sequencing

data for each patient, which was then adjusted using the above formula.

The “GenVisR” package was used to draw gene mutation waterfall

plots for the high and low-risk groups separately. The “survival”

package was used to analyze the relationship between the high and

low-risk groups, TMB levels, and survival prognosis.
2.8 Drug sensitivity analysis

Using the ‘oncoPredict’ package, sensitivity scores for 198 drugs were

calculated for 909 patients, allowing for a comparison of the therapeutic

effects of targeted biologics between the high and low-risk groups.
2.9 Statistical analyses

All data analyses were performed using the following software:

R language (version 4.3.0) and Strawberry Perl (version 5.30.0). A p-

value less than 0.05 was considered statistically significant.
2.10 Analysis of quantitative reverse
transcription polymerase chain reaction

Both colorectal cancer and adjacent non-cancerous tissues used

in this study were derived from patients with colorectal cancer after

surgery in the Shunde Hospital, during 2022-2023. The acquisition

and use of clinical samples used in this study were approved by the

Medical Ethics Committee of Shunde Hospital of Southern Medical

University (KYL20220125).

We extracted RNA from the specimen using a TRlzol reagent

(Ambion, USA) and then reverse-transcribed it into cDNA using a

quantitative reverse transcription kit (Promega, USA). Quantitative

PCR (qPCR)is a technique for measuring DNA content in sample in

real time. Real-time fluorescence quantitative qPCR assay was

performed with the help of SYBR-Green (Vazyme, China) and

expression levels were standardized to -actin levels. The primers are

shown in Supplementary Table S5.
3 Results

3.1 Basic information of colorectal
cancer patients

This study included two datasets with a total of 969 patients

with rectal cancer (Table 1). Clinical data on survival time and

survival status were available for all patients (Table 2).
Frontiers in Immunology 04
3.2 Expression and mutation of 24
disulfidptosis-related genes

Figure 1A shows the mutation status of 24 DRGs in CRC patients,

with a total mutation rate of 25.33%, with FLNA, MYH9, FLNB, and

SLC3A2 having the highest mutation rates. In the copy number

variation analysis of DRG (Figure 1C), we observed copy number
TABLE 1 Information of two datasets.

Datasets Platform Country Numbers
of patients

GSE39582 GPL570 French 585

TCGA Illumina HiSeq US 384
TABLE 2 General information of patients in two datasets.

GSE26712 TCGA

Age(mean ± SD) 71 ± 13.3 67.0 ± 12.8

Gender(Femla/Male) 256/310 180/205

Stage(n,%)

I Na 66

II Na 151

III Na 103

IV Na 54

Unknow Na 11

T

Tis 1 1

T1 11 9

T2 45 68

T3 367 263

T4 119 44

Unknow 23 0

N

N0 302 231

N1 134 88

N2 98 66

N3 6 0

Unknow 26 0

M

M0 482 286

M1 61 54

Unknow 23 45

Fustat(n,%)

Alive 371(12.97%) 306(79%)

Death 191(69.73%) 79(21%)

Unknow 4(17.30%) 0
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gain of IQGAP1, ACTB, and DSTN, and copy number loss of CAPZB,

PDLIM1, SLC7A11, FLNB, GYS1, and OXSM. Figure 1B shows the

chromosomal location of DRG mutations. KM analysis divided the

genes into high and low expression groups based on the median gene

expression level, and 17 genes showed significant differences in survival

between the two groups (P< 0.05) (Supplementary Table S1). Figure 1D

illustrates the interaction relationships among 24 DRGs.
3.3 Identification of DRG subtypes
in COAD

To explore the relationship between the expression of 24 DRGs and

Colorectal cancer, we used a clustering analysis to obtain the optimal K

value (Figure 2A, Supplementary Figure S1). When k=2, patients were

divided into two subtypes, A and B (Figures 2A–D, Supplementary

Table S2). Survival analysis revealed that subtype A had a significant

survival advantage (Figure 2E), and Figure 2H showed the clinical

differences between subtypes A and B, with subtype B patients having

higher tumor T and N staging. KEGG enrichment analysis showed that

subtype A was mainly related to Propanoate Metabolism and

Peroxisome. In contrast, subtype B was significantly enriched in

MAPK Signaling Pathway, Pathways In Cancer and Fc Gammar R-

mediated Phagocytosis (Figure 2I). GO annotation revealed that
Frontiers in Immunology 05
subtype B was mainly enriched in Cell Substrate Adhesion, as well as

negative regulation of this process, with involvement in Vascular

Endothelial Growth Factor Receptor Signaling Pathway, Artery

Development, and Bone Development (Figure 2J).

Additionally, we used the CIBERSORT to analyze the immune cell

infiltration in subtype B patients, which showed a significantly more

abundant immune cell infiltration, including activated B cell, activated

CD8 T cell, activated dendritic cell, CD56dim natural killer cell,

eosinophil, gamma delta T cell, immature B cell, immature dendritic

cell, myeloid-derived suppressor cell(MDSC), macrophage, mast cell,

natural killer T cell, natural killer cell, regulatory T cell, T follicular

helper cell, and others (Figure 2F). Most of the immune checkpoints,

such as PD1, PD-L1, and CTLA-4, were also significantly higher

expressed in subtype B (Figure 2G). Taken together, our results

suggest that there are significant functional differences and immune

microenvironment between the molecular subtypes of COAD based on

DRG, which may be related to immune therapy response.
3.4 Identification of gene subtypes based
on DEGs

We further explored the potential biological behaviors between

the disulfidptosis-related subtypes and found 744 differentially
FIGURE 1

Expression and mutation profile of DRG in COAD. (A) Mutation frequency of 24 DRGs in the TCGA-COAD cohort of 375 patients. (B) The locations
of CNV alterations in DRGs across 23 chromosomes, The red dots represent gain, while the blue dots represent loss. (C) The DRGs in TCGA-COAD
chohrt show instances of gene copy number gain and gene copy number loss. (D) Interactions among DRGs in COAD. Each node represents a
gene, the size of the node corresponds to the significance level (p-value), indicating the strength of the association between the gene and
prognosis. The orange and green connecting lines represent positive and negative interactions between genes, respectively.
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FIGURE 2

Clinicopathological and biological characteristics associated with two subtypes of DRG identified by consensus clustering analysis. (A) Unsupervised
clustering of disulfidptosis-related genes and Consensus matrix heatmaps for k =2. (B) Cumulative Distribution Function (CDF) from k=2 to 9. (C)
relative change in area under CDF curve. (D) PCA analysis. (E) Kaplan-Meier curve shows different overall survival (OS) between the two DRG
subtypes. (F) Bundance of 23 infiltrating immune cells in the two DRG subtypes (*p< 0.05, **p< 0.01, ***p< 0.001).(G) Differential expression analysis
of immune checkpoint genes between two subtypes. (H) Heatmap of clinical pathological features and expression of 24 DRGs in TCGA-COAD,
GSE39582 cohorts. (I, J) GO and KEGG enrichment analysis between two subtypes, with orange indicating activation of related pathways and green
indicating inhibition of related pathways.
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expressed genes (DEGs) (Supplementary Table S3) between DRG

subtypes A and B (Supplementary Table S2). In the molecular

function (MF) results of GO annotation, it is worth noting that the

DEGs were significantly enriched in sulfur compound binding

pathways. In biological processes (BP), they were mainly related

to extracellular structures, regulation of leukocyte migration, and
Frontiers in Immunology 07
positive regulation. In cellular components (CC), they were

associated with intracellular structures, extracellular matrix

composition, and cell-matrix connections (Figures 3A, B). KEGG

enrichment analysis also suggested that DEGs were involved in the

regulation of the Regulation of actin cytoskeleton (disulfidptosis can

affect this regulation process), as well as pathways related to colon
FIGURE 3

Gene subtype analysis based on DEGs. (A, B) GO enrichment analyses of DEGs among two DRG subtypes. (C, D) KEGG enrichment analyses of DEGs
among two DRG subtypes. (E) The consensus clustering algorithm (k = 2) was used to divide all samples in TCGA-COAD and GSE35982 cohorts into
two DRG gene subtypes. (F) Kaplan-Meier survival analysis of two gene subtypes. (G) Differences in the expression of 24 DRGs between two gene
subtypes (*p< 0.05, **p< 0.01, ***p< 0.001).
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cancer development, including the PI3K-Akt signaling pathway,

NF-kappa B signaling pathway, TGF-beta signaling pathway, and

pathways related to cell signaling, immune response, cell adhesion,

and apoptosis (Figures 3C, D). These results suggest that DEGs may

be closely related to disulfidptosis and participate in colon cancer

development through the above-mentioned pathways. Based on

the expression of DEGs, clustering analysis classified patients

into A and B gene subtypes (Figure 3E, Supplementary Figure S2,

Table S4), with significant differences in prognosis between different

subtypes of patients (Figure 3F). Finally, we analyzed the expression

differences of 24 DRGs in different gene subtypes (Figure 3G).
3.5 Construction of disulfidptosis-related
prognostic signature in ovarian cancer

Seven genes were identified for constructing the risk model

through Lasso regression analysis (Figures 4A, B). Risk score =

(0.200*expression of FABA4)+(-0.182*expression of GIPC2)

+(0.249*expression of EGR3)+(0.133*expression of HOXC6)

+(-0.120*expression of CCL11)+(-0.192*expression of CXCL10)

+(-0.056*expression of ITLN1). Prognostic and risk analyses were

performed for the risk models constructed for the total cohort

(n=920), training set (n=460), and validation set (n=460). The

results of the three datasets were consistent, with better prognosis

for low-risk patients (Figure 4C, Supplementary Figures S3A, Figure

S4A). The model had a certain value in predicting the prognosis of

patients at 1, 3, and 5 years (Figure 4D, Supplementary Figure S3B,

Figure S4B). As the risk increased, the number of deaths from

COAD also increased (Figures 4G-I, Supplementary Figures S3B-E,

Figures S4B-E). By combining the clinical feature score and risk

score, a column chart could predict the survival time of patients. For

example, a patient with a risk score of 363 had a 90.5% probability

of surviving for 1 year, a 67.6% probability of surviving for 3 years,

and a 58.5% probability of surviving for 5 years (Figure 4L).

Additionally, we found that DRG subtypes, gene subtypes, and

high/low-risk groups were closely related (Figures 4E, F, K), with

better prognosis for DRG subtype A, gene subtype B, and low-risk

group, while worse prognosis for DRG subtype B, gene subtype A,

and high-risk group, with consistent results. Figure 4J showed the

expression differences of 24 DRGs between high and low-

risk groups.
3.6 SHAP(SHapley Additive
exPlanations)analysis

SHAP analysis can rank the impact of these 7 target genes on

prognosis (Figure 5A) and quantify their positive or negative impact

on prognosis based on gene expression levels (Figures 5B-H). The

upward trend and downward trend on the curve respectively

indicate a positive and negative impact on patient prognosis. For

example, the expression level of HOXC6 tends to stabilize with a

certain degree of expression, indicating a stable impact on patient

prognosis (Figure 5B). CCL11 and GIPC2 are primarily expressed

on the upward curve (Figures 5C, D), indicating a positive impact
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on patient prognosis. When the expression of FABP4 is greater than

2.5, it begins to have a negative impact on patient prognosis

(Figure 5E). EGR3 is mainly expressed on the downward trend

curve (Figure 5F). TLIN1 and CXCL10 also have different effects on

patient prognosis at different expression ranges (Figures 5G, H). By

combining the COX risk coefficients, we can intuitively judge the

specific impact of these genes on the prognosis of COAD patients

based on the changes in their expression range.
3.7 TMB analysis and survival analysis
of TMB

Using the CIBERSORT analysis, we observed that naive B cells,

resting dendritic cells, M1 macrophages, plasma cells, memory

activated CD4+ T cells, memory resting CD4+ T cells, CD8+ T

cells, and regulatory T cells (Tregs) were negatively associated with

the Risk score. In contrast, memory B cells, M0 macrophages,

activated mast cells, and neutrophils were positively associated

with the risk score (Figure 6A). Figure 6B shows the close

relationship between the 7 DRGs and the levels of immune cell

infiltration. In addition, the high-risk group had a higher

immuneScore and a lower stromalScore (p<0.05) (Figure 6C). The

overall mutation rate and TMB were higher in the high-risk group

compared to the low-risk group (Figures 6D-G), and patients with

high TMB had poorer prognosis than those with low TMB

(Figure 6H). Combining patient survival data, we further analyzed

and found that patients with high risk and high TMB levels had the

worst prognosis, followed by patients with low TMB levels in the

high-risk group, consistent with the previous findings. However, in

the low-risk group, there was no statistically significant impact of

TMB levels on the prognosis of these patients (Figure 6I).

Correspondingly, high-risk score was associated with MSI-H and

MSI-L status, while low-risk score was associated with MSS status

(P<0.05) (Figure 6J). Figure 6K also showed that the proportion of

MSI-H and MSI-L was higher in the high-risk group, indicating

that patients in the high-risk group may be more sensitive to

immunotherapy. Finally, stem cell-related analysis showed a

negative correlation between patient risk score and stem cell index,

whichmeans that colon cancer cells with lower risk scores have more

obvious stem cell characteristics and lower cell differentiation

levels (Figure 6L).
3.8 Drug susceptibility analysis

We analyzed the sensitivity of 198 drugs using the

“oncoPredict” package and found that 66 drugs had differences in

sensitivity between high-risk and low-risk patients (Supplementary

Figure S5). Of note, first-line chemotherapy drugs for colon cancer,

5-Fluorouracil (Figure 7A) and Oxaliplatin (Figure 7B), as well as

targeted molecular drugs Gefitinib (Figure 7C), Erlotinib

(Figure 7D), Nilotinib (Figure 7E), and Sorafenib (Figure 7F)

were more effective in low-risk patients. On the other hand,
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IGF1R_3801 (Figure 7G), Luminespib (Figure 7H) and

Staurosporine (Figure 7I) were more effective in high-risk

patients. These results may help us in future risk stratification

and individual treatment selection for patients.
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3.9 Single-cell level research

Through the analysis of dataset EMTAB8107, it was found that

CCL11 is mainly expressed in fibroblasts (Figure 8G), CXCL10 is
FIGURE 4

Construction of disulfidptosis-related prognostic signature. (A, B) The LASSO path plot shows the feature selection process. (C) Kaplan-Meier curve
shows different overall survival (OS) between high and low-risk score groups. (D) ROC curves to predict the sensitivity and specificity of 1-, 3- and 5-
year survival according to the Risk score. (E, F) Differences in Risk score between the two DRG clusters and the two gene clusters. (G) Expression of
7 DEGs in the high and low-risk groups. (H, I) Ranked dot and scatter plots showing the Risk score distribution and patient survival status, respectly.
(J) Expression of 24 DRGs in the high and low-risk groups. (K) Alluvial diagram of subtype distributions in groups with different DRG_scores and
survival outcomes (*p< 0.05, **p< 0.01, ***p< 0.001). (L) Nomogram can integrate patients’ clinical features and risk scores to predict
patient prognosis.
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expressed at the highest level in macrophages (Figure 8H), EGR3 is

expressed in both macrophages and mast cells (Figure 8I), ITLN1,

GIPC2, and FABP4 are mainly expressed in epithelial cells

(endothelial and epithelial), and FABP4 is also expressed in

myofibroblasts (Figures 8E, F, J). These results suggest that in

addition to immune cells, these genes may also play a role in

stromal cells outside of cancer cells. The expression levels of 7 genes

across different cell types were obtained (Figure 8A), along with

Uniform Manifold Approximation and Projection (UMAP) plots

(Figures 8B, C), and a pie chart (Figure 8D).
3.10 Real-time quantitative reverse
transcription PCR

To determine whether 7 disulfidptosis prognostic genes are

differentially expressed in colorectal cancer tissues, we used qRT-

PCR to analyze the expression of each gene in 15 pairs of clinical

COAD tissues and adjacent normal tissues. The results showed that

the expression level in COAD tissues was different from that in

normal tissues (Figures 9A-G).
4 Discussion

Colorectal cancer exhibits high heterogeneity, with different

populations having different treatment sensitivity and clinical

prognosis. Although many molecular biomarkers have emerged
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for predicting patient survival and treatment response, the existing

biomarkers still have poor clinical validation. New key markers and

treatment strategies are continuously being explored. Meanwhile,

disulfidptosis has become a hot topic in recent years. Current

research finds that under conditions of oxidative stress, certain

cysteine residues in proteins of tumor cells can form disulfide

bonds. If this crosslinking is too severe, it can lead to abnormal

folding and assembly of proteins, resulting in the loss of normal

biological function. The redox state is one of the important

mechanisms for the occurrence and development of tumors (21),

such as some tumor cells increase their survival and tolerance by

changing the intracellular redox protein (22). Studies have shown

that disulfidptosis may have potential applications in tumor

therapy. For example, some anticancer drugs, such as cisplatin

and paclitaxel, exert their anticancer effects by reacting with

intracellular disulfides (23).

To explore strategies for guiding personalized treatment for

COAD patients, our study comprehensively analyzed the

expression and mutation status of 24 DRG in COAD and

identified two distinct subtypes. Patients with subtype B had

poorer prognosis and were significantly enriched in cancer-related

pathways in KEGG analysis and a marked enrichment in immune

cell phagocytosis and extracellular matrix adhesion in GO

annotation. CIBERSORT analysis suggested significant differences

in the tumor microenvironment between subtypes, with subtype B

having a higher composition of immune cells, including

macrophages. Macrophages are a component of the MPS and

play a crucial role in maintaining innate immune responses,
FIGURE 5

SHAP feature importance analysis. (A) Ranking of the impact of the 7 feature genes on patient prognosis. (B–H) Prediction of patient prognosis
based on the relationship between SHAP values and the expression levels of the seven target genes.
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tissue homeostasis, and inflammation (24). Tumor-associated

macrophages (TAMs) can be polarized from macrophages and

are the most abundant immune cells in CRC. TAMs can interact

with tumor cells through the secretion of exosomes or various
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cytokines, promoting tumor cell proliferation, migration, and

angiogenesis. TAMs also recruit regulatory T cells (Tregs)

through the CCL2, which inhibits T cell immune (25)response

function, leading to an immunosuppressive microenvironment in
FIGURE 6

TMB analysis and immune microenvironment analysis. (A) Correlations between Risk score and immune cell types. (B) The correlation between
immune cell abundance and three genes in the risk model. (C) Comparison of StromalScores, ImmuneScores, and ESTIMATE Scores between high-
risk and low-risk patients. (D, E) mutation status of all genes in high-risk and low-risk groups of patients is displayed separately. (F) Comparison of
TMB levels between high-risk and low-risk patients. (G) The linear variation of tumor mutational burden (TMB) influenced by risk scores. (H) The KM
curve graph indicates the impact of high and low TMB on patient survival. (I) The KM analysis assessed the differences in survival among patients
with different TMB levels and risk scores. (J) The relationship between different MSI statuses and risk scores. (K) The proportion of different MSI
statuses in the high-risk and low-risk groups. (L) The relationship between Stemness Scores and risk score.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1409149
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1409149
CRC (24, 25). Additionally, subtype B had a higher abundance of

MDSCs, which may inhibit the activity of immune cells, leading to

immune escape and tumor progression (26).

Further analysis of DEGs between subtypes revealed significant

enrichment in sulfur compound binding and regulation of the actin

cytoskeleton. Current research suggests that during the process of

apoptosis, actin undergoes a transition from a polymerized state to a

depolymerized state, affecting the cytoskeletal structure within cells,

leading to changes in cell morphology and restricted cell movement.

In addition, changes in actin polymerization can also affect

intracellular signal transduction, thus affecting cell metabolism

and survival, ultimately leading to cell death (5).

In the end, we conducted a screen of the differentially expressed

genes (DEGs) and, through LASSO regression, identified seven key

genes associated with prognosis. These genes were used to construct

a risk prognosis model related to disulfidptosis, which can stratify

COAD patients into high-risk and low-risk groups. The nomogram

can predict individualized clinical outcomes. During the model

construction, we obtained risk coefficients for each gene. A positive

risk coefficient indicates that the higher the expression level of this

gene, the higher the patient’s risk score. Conversely, a negative risk

coefficient suggests that the higher the expression level of the gene,

the lower the patient’s risk score. Additionally, we further employed
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SHAP feature importance analysis to address the black-box issue

inherent in machine learning. We not only ranked the genes

based on their impact on prognosis but also validated and

explained how specific expression levels of each gene contribute

to patient prognosis.

FABP4 is a fatty acid-binding protein that plays a complex role

in the development, progression, and prognosis of COAD. Previous

studies have shown that the expression of FABP4 is significantly

associated with advanced tumor staging, poorer disease-free

survival, and overall survival in colorectal cancer, consistent with

our findings (27). Further research has explored the underlying

mechanisms and discovered that the expression of FABP4 increases

ROS (reactive oxygen species) levels, leading to the activation of the

ERK (extracellular signal-regulated kinase) pathway, which in turn

activates mTOR (mammalian target of rapamycin), thereby

promoting tumor cell growth.GIPC2 is an important member of

the PDZ domain family, and previous studies have suggested that

GIPC2 may play a critical role in tumor development and

embryonic development by promoting interactions between G

protein heterotrimers and Wnt receptors or receptor tyrosine

kinases (28). Whole-genome sequencing revealed the presence of

missense mutations F74Y and R312Q, as well as a nonsense

mutation E216X, in GIPC2 in colorectal cancer (29). The E216X
FIGURE 7

(A–I) Relationships between DRG_score and Drug susceptibility.
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nonsense mutation is a deleterious mutation that results in the loss

of the GH2 domain, which prevents GIPC2 from binding to MY06

(30). Arnon et al. reported that EGR3 is a member of the Early

Growth Response gene family and participates in many biological

processes such as cell proliferation, differentiation, and apoptosis.

Studies have shown that this gene is associated with cancer cell

migration, making it highly correlated with tumor progression, and

its expression levels have been used as prognostic markers for
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various cancers, including CRC (31). In colon cancer cell lines,

EGR3 has binding sites in several genes associated with resistance to

the cancer treatment drug 5-fluorouracil. EGR3 can regulate the

expression of these genes to affect the sensitivity of cells to 5-

fluorouracil, thereby affecting the efficacy of cancer treatment (32).

HOXC6 is a gene that encodes a transcription factor. Studies have

reported that high expression of HOXC6 in CRC can promote

tumor metastasis by activating the classical WNT pathway and
FIGURE 8

Single-cell level analysis. (A) Violin diagram shows the distribution of 7 feature genes expression in different cells. (B) Single-cell type map of major-
lineage. (C) Single-cell cluster map. (D) Sunburst plot for single-cell classification. (E-J) The cell type map shows the expression of 7 feature genes at
different single-cell levels.
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promoting proliferation through the TGF-b/smad pathway (33).

ITLN1 is an inflammatory factor that may be associated with

various tumor diseases, including pleural mesothelioma, gastric

cancer, and prostate cancer. Katsuya et al. found that its

expression is significantly increased in the tumor tissues of

colorectal cancer (CRC) patients, and compared with CRC

tissues, the expression of ITLN1 also shows a gradient decrease in

adenomatous polyps/serrated polyps and normal tissues (34).

Conversely, the research results of Zhang Y et al. suggest that

ITLN1 is positively correlated with a good prognosis in CRC

patients (35). A part of our research results predicts that ITLN1

may have different degrees of impact on the prognosis of COAD

patients at different expression levels. Considering that the previous

research has a relatively single population of samples, it may be

necessary to expand the sample size when necessary. The impact of

ITLN1 on the prognosis of colorectal cancer and its underlying

mechanisms are worthy of further exploration in the future. CCL11,

also known as Eotaxin-1, is a chemokine that primarily attracts cells

such as eosinophils and basophils to inflammatory sites,

participating in biological processes such as immune regulation

and inflammation. Studies have shown that Eotaxin-1 and its

receptors are significantly upregulated in colorectal cancer,

especially CCL11 and CCR3 (the receptor for CCL11) (36).

Tripathi et al. (37) demonstrated on breast cancer cells that

TAMs undergo phenotypic changes and aggregate in the hypoxic

regions of tumors. Hypoxic tumor cells exhibit upregulation of

intracellular eotaxin levels, which together promote tumor

progression. CXCL10 is also a chemokine that attracts and

activates immune cells, participating in tumor development and
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prognosis. Shang et al (38) found that CXCL10 can attract CD8+ T

cells to infiltrate into tumor tissues and exert a cytotoxic effect. In

addition, CXCL10 can also promote vascular normalization and

increase the sensitivity of colorectal cancer to cetuximab combined

with PD-1 checkpoint inhibitors (39).

TMB and MSI are important biomarkers for predicting potential

response to immune therapy. The higher the TMB, the greater the

number and type of neoantigens produced by tumor cells, making it

easier to activate specific anti-tumor immune responses, which may

make immune therapy more effective (40). MSI is caused by defects in

the DNA mismatch repair (MMR) system, resulting in instability of

DNA microsatellite sequences. Patients with high MSI colon cancer

have a better response to PD-1/PD-L1 inhibitors.

Our study found that patients with high-risk scores had a higher

overall mutation rate, higher TMB, and a higher proportion of MSI-H

status. In addition, TMB significantly affected patient prognosis, and

the combination of TMB and DRG risk scores may be an effective

prognostic biomarker for colon cancer patients. Finally, we validated

the sensitivity of first-line chemotherapy drugs Oxaliplatin, 5-

Fluorouracil, and targeted drugs. The results showed that the risk

model has the potential to stratify colon cancer patients for

individualized risk assessment and may serve as a biomarker for

identifying different patients’ sensitivity to immune therapy,

chemotherapy drugs, and targeted drugs in the future.

In summary, we conducted cluster analysis on DRG and

screened out differentially expressed genes for DRG subtypes.

Subsequently, we constructed a prognostic risk model using 7

biomarkers to validate its predictive value for COAD patient

prognosis. Although our model has outstanding ability in
FIGURE 9

(A–G) The expression of each gene in 15 pairs of clinical COAD tissues and adjacent normal tissues. (ns p>0,05, *p< 0.05, **p< 0.01).
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identifying patients’ immune status and predicting their prognosis,

there are still limitations that need to be addressed in subsequent

studies. Data analysis based on public databases may lead to

deviations between predictions and actual situations. More

COAD patient data are needed in the future to verify the

usefulness of this model and the accuracy of treatment

predictions. In addition, more prospective and fundamental

research is needed to complete the details of this study.
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SUPPLEMENTARY FIGURE S1

Unsupervised clustering of disulfidptosis-related genes and Consensus
matrix heatmaps for k = 3-9.

SUPPLEMENTARY FIGURE S2

Unsupervised clustering of DEGs and Consensus matrix heatmaps for k = 3-9.

SUPPLEMENTARY FIGURE S3

Construction of disulfidptosis-related prognostic signature based on the train
sets. (A) Kaplan-Meier curve shows different overall survival (OS) between

high and low-risk score groups in train sets. (B) ROC curves to predict the
sensitivity and specificity of 1-, 3- and 5-year survival according to the Risk

score. (C) Expression of 7 DEGs in the high and low-risk groups. (D, E) Ranked
dot and scatter plots showing the Risk score distribution and patient survival

status, respectly.

SUPPLEMENTARY FIGURE S4

Construction of disulfidptosis-related prognostic signature based on the test
sets. (A) Kaplan-Meier curve shows different overall survival (OS) between

high and low-risk score groups in test sets. (B) ROC curves to predict the
sensitivity and specificity of 1-, 3- and 5-year survival according to the Risk

score. (C) Expression of 7 DEGs in the high and low-risk groups. (D, E) Ranked
dot and scatter plots showing the Risk score distribution and patient survival
status, respectly.
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel R. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185
countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492
2. Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in
colorectal cancer: A review. J Clin Pathol. (2018) 71:110–6. doi: 10.1136/jclinpath-2017-
204739
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1409149/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1409149/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1136/jclinpath-2017-204739
https://doi.org/10.1136/jclinpath-2017-204739
https://doi.org/10.3389/fimmu.2024.1409149
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1409149
3. Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040.
Transl Oncol. (2021) 14:101174. doi: 10.1016/j.tranon.2021.101174

4. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM.
Cancer treatment and survivorship statistics. CA Cancer J Clin. (2019) 69:363–85.
doi: 10.3322/caac.21565

5. Liu X, Nie L, Zhang Y, Yan Y, Wang C. Actin cytoskeleton vulnerability to
disulfide stress mediates disulfidptosis. Nat Cell Biol. (2023) 25:404–14. doi: 10.1038/
s41556-023-01091-2

6. Hogg PJ. Biological regulation through protein disulfide bond cleavage.
Redox report: Commun Free Radical Res . (2002) 7:71–7. doi: 10.1179/
135100002125000299

7. Su Z, Yang Z, Xu Y, Chen Y, Yu Q. Apoptosis, autophagy, necroptosis, and cancer
metastasis. Mol Cancer. (2015) 14:48. doi: 10.1186/s12943-015-0321-5

8. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.
(2015) 20:e47. doi: 10.1093/nar/gkv007

9. Chen H, Yang W, Li Y, Ma L, Ji Z. Leveraging a disulfidptosis-based signature to
improve the survival and drug sensitivity of bladder cancer patients. Front Immunol.
(2023) 14:1198878. doi: 10.3389/fimmu.2023.1198878

10. Barretina J, Caponigro G, Stransky N, Venkatesan K. The Cancer Cell Line
Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature.
(2012) 483:603–7. doi: 10.1038/nature11003

11. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinf (Oxford England). (2010) 26:1572–3.
doi: 10.1093/bioinformatics/btq170

12. Liberzon A. The Molecular Signatures Database (MSigDB) hallmark gene set
collection. Cell Syst. (2015) 1:417–25. doi: 10.1016/j.cels.2015.12.004

13. Subramanian A. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U.S.A. (2005)
102:15545–50. doi: 10.1073/pnas.0506580102

14. Ashburner M. Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet. (2000) 25:25–9. doi: 10.1038/75556

15. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res. (2000) 28:27–30. doi: 10.1093/nar/28.1.27

16. Yu G, Wang L, Han Y, He Q. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics: J Integr Biol. (2012) 16:284–7.
doi: 10.1089/omi.2011.0118

17. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From
local explanations to global understanding with explainable AI for trees. Nat Mach
Intell. (2020) 2:56–67. doi: 10.1038/s42256-019-0138-9

18. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating
the population abundance of tissue-infiltrating immune and stromal cell populations
using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059-016-1070-5

19. Chalmers ZR. Analysis of 100,000 human cancer genomes reveals the landscape of
tumor mutational burden. Genome Med. (2017) 9:34. doi: 10.1186/s13073-017-0424-2

20. Lawrence MS. Mutational heterogeneity in cancer and the search for new cancer-
associated genes. Nature. (2013) 499:214–8. doi: 10.1038/nature12213

21. Iyamu EW. The redox state of the glutathione/glutathione disulfide couple
mediates intracellular arginase activation in HCT-116 colon cancer cells. Digestive Dis
Sci. (2010) 55:2520–8. doi: 10.1007/s10620-009-1064-1

22. Sideris S. Efficacy of weekly paclitaxel treatment as a single agent chemotherapy
following first-line cisplatin treatment in urothelial bladder cancer. Mol Clin Oncol.
(2016) 4:1063–7. doi: 10.3892/mco.2016.821

23. Mitin T, Hunt D, ShipleyWU, Kaufman DS, Uzzo R, Wu CL, et al. Transurethral
surgery and twice-daily radiation plus paclitaxel-cisplatin or fluorouracil-cisplatin with
selective bladder preservation and adjuvant chemotherapy for patients with muscle
Frontiers in Immunology 16
invasive bladder cancer (RTOG 0233): a randomised multicentre phase 2 trial. Lancet
Oncol. (2013) 14:863–72. doi: 10.1016/S1470-2045(13)70255-9

24. Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell
Mol Immunol. (2015) 12:1–4. doi: 10.1038/cmi.2014.83

25. Yang L, Zhang Y. Tumor-associated macrophages: From basic research to
clinical application. J Hematol Oncol. (2017) 10:58. doi: 10.1186/s13045-017-0430-2

26. Ouyang LY, Wu XJ, Ye SB, Zhang RX, Li ZL. Tumor-induced myeloid-derived
suppressor cells promote tumor progression through oxidative metabolism in human
colorectal cancer. J Transl Med. (2015) 13:47. doi: 10.1186/s12967-015-0410-7

27. Kim SH, Pyo JS, Son BK, Oh IH, Min KW. Clinicopathological significance and
prognostic implication of nuclear fatty acid-binding protein 4 expression in colorectal
cancer. Pathol Res Pract. (2023) 249:154722. doi: 10.1016/j.prp.2023.154722

28. Liu Y, Lou W, Chen G, Ding B, Kuang J. Genome-wide screening for the G-
protein-coupled receptor (GPCR) pathway-related therapeutic gene RGS19 (regulator
of G protein signaling 19) in bladder cancer. Bioengineered. (2021) 12:5892–903.
doi: 10.1080/21655979.2021.1971035

29. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS. Melanoma
genome sequencing reveals frequent PREX2 mutations. Nature. (2012) 485:502–6.
doi: 10.1038/nature11071

30. Network, C.G.A. Comprehensive molecular characterization of human colon
and rectal cancer. Nature. (2012) 487:330–7. doi: 10.1038/nature11252

31. Knudsen AM, Eilertsen I, Kielland S, Pedersen MW, Sørensen MD, Dahlrot RH,
et al. Expression and prognostic value of the transcription factors EGR1 and EGR3 in
gliomas. Sci Rep. (2020) 10:9285. doi: 10.1038/s41598-020-66236-x

32. Szoke D, Gyorffy A, Surowiak P, Tulassay Z, Dietel M, Gyorffy B. Identification
of consensus genes and key regulatory elements in 5-fluorouracil resistance in gastric
and colon cancer. Onkologie. (2007) 30:421–6. doi: 10.1159/000104490

33. Ji ML, Feng Q, He G, Yang L, Tang W, Lao X. Silencing homeobox C6 inhibits
colorectal cancer cell proliferation. Oncotarget. (2016) 7:29216–27. doi: 10.18632/
oncotarget.v7i20

34. Katsuya N, Sentani K, Sekino Y, Yamamoto Y, Kobayashi G, Babasaki T, et al.
Clinicopathological significance of intelectin-1 in colorectal cancer: Intelectin-1
participates in tumor suppression and favorable progress. Pathol Int. (2020) 70:943–
52. doi: 10.1111/pin.v70.12

35. Zhang Y, Gao T, Wu M, Xu Z, Hu H. Value analysis of ITLN1 in the diagnostic
and prognostic assessment of colorectal cancer. Trans Cancer Res. (2024) 13:2877–91.
doi: 10.21037/tcr-24-137

36. Komura T, Yano M, Miyake A, Takabatake H, Miyazawa M, Ogawa N, et al.
Immune condition of colorectal cancer patients featured by serum chemokines and
gene expressions of CD4+ Cells in blood. Can J Gastroenterol Hepatol. (2018)
2018:7436205. doi: 10.1155/2018/7436205

37. Tripathi C, Tewari BN, Kanchan RK, Baghel KS, Nautiyal N, Shrivastava R, et al.
Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic M2-
polarized phenotype via hypoxic cancer cell derived cytokines Oncostatin M and
Eotaxin. Oncotarget. (2014) 5:5350–68. doi: 10.18632/oncotarget.v5i14

38. Shang S, Yang YW, Chen F, Yu L, Shen SH, Li K, et al. TRIB3 reduces CD8+ T
cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in
colorectal cancer. Sci Transl Med. (2022) 14:eabf0992. doi: 10.1126/scitranslmed.
abf0992

39. Yan W, Qiu L, Yang M, Xu A, Ma M, Yuan Q, et al. CXCL10 mediates CD8+ T
cells to facilitate vessel normalization and improve the efficacy of cetuximab combined
with PD-1 checkpoint inhibitors in colorectal cancer. Cancer Lett. (2023) 567:216263.
doi: 10.1016/j.canlet.2023.216263

40. Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM. Tumor
mutational burden as a predictive biomarker for response to immune checkpoint
inhibitors: A review of current evidence. Oncologist. (2020) 25:e147–159. doi: 10.1634/
theoncologist.2019-0244
frontiersin.org

https://doi.org/10.1016/j.tranon.2021.101174
https://doi.org/10.3322/caac.21565
https://doi.org/10.1038/s41556-023-01091-2
https://doi.org/10.1038/s41556-023-01091-2
https://doi.org/10.1179/135100002125000299
https://doi.org/10.1179/135100002125000299
https://doi.org/10.1186/s12943-015-0321-5
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.3389/fimmu.2023.1198878
https://doi.org/10.1038/nature11003
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13073-017-0424-2
https://doi.org/10.1038/nature12213
https://doi.org/10.1007/s10620-009-1064-1
https://doi.org/10.3892/mco.2016.821
https://doi.org/10.1016/S1470-2045(13)70255-9
https://doi.org/10.1038/cmi.2014.83
https://doi.org/10.1186/s13045-017-0430-2
https://doi.org/10.1186/s12967-015-0410-7
https://doi.org/10.1016/j.prp.2023.154722
https://doi.org/10.1080/21655979.2021.1971035
https://doi.org/10.1038/nature11071
https://doi.org/10.1038/nature11252
https://doi.org/10.1038/s41598-020-66236-x
https://doi.org/10.1159/000104490
https://doi.org/10.18632/oncotarget.v7i20
https://doi.org/10.18632/oncotarget.v7i20
https://doi.org/10.1111/pin.v70.12
https://doi.org/10.21037/tcr-24-137
https://doi.org/10.1155/2018/7436205
https://doi.org/10.18632/oncotarget.v5i14
https://doi.org/10.1126/scitranslmed.abf0992
https://doi.org/10.1126/scitranslmed.abf0992
https://doi.org/10.1016/j.canlet.2023.216263
https://doi.org/10.1634/theoncologist.2019-0244
https://doi.org/10.1634/theoncologist.2019-0244
https://doi.org/10.3389/fimmu.2024.1409149
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Role of disulfidptosis in colorectal adenocarcinoma: implications for prognosis and immunity
	1 Introduction
	2 Materials and methods
	2.1 Data sources and processing
	2.2 Consensus clustering analysis of PRGs
	2.3 The relationship between molecular subtypes and clinical characteristics and prognosis of colorectal cancer
	2.4 Correlation enrichment analysis
	2.5 Construction of disulfidptosis-related prognostic signature in colorectal cancer
	2.6 The analysis of tumor microenvironment and immune-related factors
	2.7 Mutation data processing and tumor mutation burden
	2.8 Drug sensitivity analysis
	2.9 Statistical analyses
	2.10 Analysis of quantitative reverse transcription polymerase chain reaction

	3 Results
	3.1 Basic information of colorectal cancer patients
	3.2 Expression and mutation of 24 disulfidptosis-related genes
	3.3 Identification of DRG subtypes in COAD
	3.4 Identification of gene subtypes based on DEGs
	3.5 Construction of disulfidptosis-related prognostic signature in ovarian cancer
	3.6 SHAP(SHapley Additive exPlanations)analysis
	3.7 TMB analysis and survival analysis of TMB
	3.8 Drug susceptibility analysis
	3.9 Single-cell level research
	3.10 Real-time quantitative reverse transcription PCR

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


