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Interstitial lung disease (ILD) is a serious complication of connective tissue

diseases (CTDs). The heterogeneity of ILDs reflects differences in pathogenesis

among diseases. This study aimed to clarify the characteristics of CTD-ILDs via a

detailed analysis of the bronchoalveolar lavage fluid (BALF) and blood immune

cells. BALF and blood samples were collected from 39 Japanese patients with

newly diagnosed ILD: five patients with Sjögren’s syndrome (SS), eight patients

with dermatomyositis (DM), six patients with rheumatoid arthritis (RA), six patients

with systemic sclerosis, four patients with anti-neutrophil cytoplasmic antibody-

associated vasculitis, and 10 patients with idiopathic interstitial pneumonia. We

performed single-cell RNA sequencing to analyze the gene expression profiles in

these patients’ immune cells. In patients with SS, B cells in the BALF were

increased and genes associated with the innate and acquired immunity were

enriched in both the BALF and blood. In contrast, patients with DM showed an

upregulation of genes associated with viral infection in both the BALF and blood.

In patients with RA, neutrophils in the BALF tended to increase, and their gene

expression patterns changed towards inflammation. These disease-specific

characteristics may help us understand the pathogenesis for each disease and

discover potential biomarkers.
KEYWORDS

single-cell RNA sequencing, genetics, interstitial lung disease, connective tissue disease,
systemic autoimmune rheumatic disease
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Introduction

Connective tissue disease-associated interstitial lung disease

(CTD-ILD) is a serious complication and an important

prognostic factor in various autoimmune diseases, such as

Sjögren’s syndrome (SS), dermatomyositis (DM), rheumatoid

arthritis (RA), systemic sclerosis (SSc), and anti-neutrophil

cytoplasmic antibody (ANCA)-associated vasculitis (AAV) (1).

The presentation and clinical course of CTD-ILDs differ

depending on the underlying CTD (2). In addition, the

heterogeneity in the lung fibrosis status in these diseases may

reflect differences in the underlying pathogenic mechanisms,

which may involve multiple cellular compartments (3). Various

immune cells are thought to be involved in the pathogenesis of

CTD-ILD (4); however, the characteristics of immune cells in each

underlying disease remain unclear.

High-resolution computed tomography is essential for the

diagnosis and severity assessment of CTD-ILDs (5). However, even

with similar diagnosis and severity, some patients may face a poorer

prognosis or experience acute exacerbations (1). Therefore, advanced

techniques beyond imaging help better understand the diversity and

pathophysiology of CTD-ILDs. Bronchoalveolar lavage fluid (BALF) is

a useful sample to help exclude infectious diseases and alveolar

hemorrhage and can provide complementary clues for diagnosis (5–

7). Although histopathology seems to provide more information than

BALF samples, the necessity of lung biopsy for CTD-ILD is

controversial because of its invasiveness; therefore, its practice is

limited (8, 9). If we could interpret the local pathology of the lung

from the status of immune cells in BALF, it would be useful to further

understand the pathogenesis of CTD-ILDs. The phenotypic

characteristics of immune cells in the BALF of patients with CTD-

ILD are not well known, so a comprehensive landscape of immune cells

in the BALF is necessary to identify features reflecting the pathogenesis

of each CTD-ILD. Single-cell RNA sequencing technologies are

revolutionary and can potentially define cell populations more

accurately by examining a large number of genes (10–12). Another

example of a single-cell transcriptome study is the report of specific

disease-related functional changes in lung macrophages (13–16).

Hence, single-cell transcriptomic analysis appears promising for

revealing the characteristics of immune cells in CTD-ILDs.

Therefore, in this study, we used single-cell RNA sequencing to

analyze the characteristics of immune cells in BALF and blood

samples from patients with newly developed CTD-ILD. We aimed

to clarify the pathogenesis of each CTD-ILD and investigate their

characteristics in terms of the distribution of immune cells and their

gene expression profiles in the BALF and blood.
Materials and methods

Summary of materials and methods

The scRNA-seq analysis encompassed several crucial steps. Fastq

files were preprocessed using the Drop-seq tools and aligned with the

hg38 reference genome, excluding abundant mitochondrial

transcripts. Quality control involved defining inclusion criteria
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based on gene and cell counts, and filtering cells with high

endogenous-to-mitochondrial counts. The Seurat pipeline was

employed for dataset integration, log-normalization, variable gene

selection, and dimensionality reduction. Harmony integration

mitigated batch effects, and UMAP representation was generated.

Doublet cells were identified using the ‘DoubletFinder’ package.

To identify and remove low-quality cells, various metrics were

collected, including mitochondrial gene counts, empty droplets,

ribosomal reads, and cell-type annotations. This resulted in a blood

dataset of 35,670 cells and a BALF dataset of 83,067 cells across

14,666 genes. Patient 25 in the blood dataset was excluded due to

contamination with BALF cells. Patients 4, 10, 36, and 45 were also

excluded from the blood dataset due to the low number of reads.

Patients 1, 10, 16, and 31 were included in the cell type annotations

of BALF and blood but were excluded from the further analysis.

Patients 1 and 16 were excluded because their radiological patterns

were OP, making the diagnosis of idiopathic interstitial pneumonia

(IIP) controversial. Patient 10 was excluded because of taking 2g/

day of mycophenolate mofetil. and Patient 31 was excluded because

of the diagnosis other than CTD-ILDs. Detailed patient information

is provided in Supplementary Table 1. Clustering was performed

using an SNN-graph algorithm, and cell types were annotated using

‘FindTransferAnchors’ and ‘MapQuery’ functions. Sub-clustering

of major cell types was carried out, and DE analysis was conducted

at both major cell type and sub-cluster levels. Two strategies,

involving ‘DESeq2’ and ‘IDEAS,’ were used for DE gene

identification. Gene ontology enrichment analysis was performed,

and data were visualized using Seurat, pheatmap, and ggplot2.
Study population

Human studies were approved by the ethics committee of the

Kyoto Prefectural University of Medicine (approval number ERB-

C-1471) and conducted in accordance with the Declaration of

Helsinki. All patients provided written informed consent before

specimens were collected. Patients with SS, DM, RA, SSc, AAV, or

IIP were diagnosed according to each classification criteria (17–24).

Radiological findings examined using high-resolution computed

tomography (HRCT) were diagnosed and classified by a thoracic

radiologist according to the American Thoracic Society/European

Respiratory Society (ATS/ERS) classification of IIP (17). Tables

explaining the clinical characteristics, demographic characteristics,

and smoking habits are presented in Table 1 and Supplementary

Table 1. At the onset of interstitial pneumonia, one patient with RA

was taking 5 mg/day prednisolone equivalent for other symptoms.
Bronchoscopy procedure

Bronchoscopy was performed as part of the diagnostic workup

by two bronchoscopists through oral access and with light

conscious sedation in the middle lobe or, if not accessible, the

lingular lobe. BAL was conducted using the fiberoptic

bronchoscope in a wedge position within the selected

bronchopulmonary segment. Warmed saline solution (three
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syringes, 50 mL each) was injected into the airway with the

intention of retrieving at least 30% of its total volume to obtain

BALF specimens. The BALF was passed through sterile gauze and

collected in containers for suspension tissue culture and the

specimens were transported at 4°C (i.e., on ice).
BALF processing

Human BALF was obtained from all patients included in the

study through bronchoscopy. BALF specimens were centrifuged at

4°C and 300 × g for 10 minutes, and the supernatant was separated.

Subsequently, they were washed with PBS supplemented with 2%

fetal calf serum (FCS) and centrifuged at 4°C and 300 × g for 10

minutes. The supernatants were discarded, and the remaining cells

were resuspended in 3 ml of PBS supplemented with 2% FCS, after

which the cells were counted.
Isolation of peripheral blood mononuclear
cells and granulocytes

Peripheral blood mononuclear cell (PBMC) was obtained by

Ficoll density centrifugation (at 20°C and 400 × g for 30 min with

the centrifugation break turned off) of the peripheral blood. After

harvesting PBMC from the interphase, all further steps were

conducted at 4°C. Granulocytes were recovered from the

granulocyte/erythrocyte fraction using cold ammonium chloride

potassium lysing buffer (1.5M NH4Cl, 0.1M KHCO3, and 1mM

EDTA in H2O with pH 7.4 at 8°C) to lyse erythrocytes, followed by

a washing step with PBS supplemented with 2% FCS. All

centrifugation steps required for granulocyte isolation were

performed at max 300 × g for 10 min.
Flow cytometry/FACS

Single-cell suspensions were stained with Fixable Viability Dye

eFluor™ 780 (ThermoFisher, USA) for 15 min at room

temperature and washed with PBS at 300 × g for 5 min at 4°C.

They were then resuspended in 100 µL PBS and blocked with 5 µL

human FcR blocking reagent (Miltenyi, Germany) for 15 min on ice

and were subsequently stained with the listed anti-human

antibodies (Supplementary Table 2) in buffer containing PBS, 2%

FCS for 30 min on ice. The cells were centrifuged at 300 × g for 5

min at 4°C and re-suspended in a buffer containing PBS and 2%

FCS for analysis. Data were acquired using a FACS Celesta (BD

Biosciences). Data were analyzed using FlowJo v.10 software (Tree

Star, USA). We gated CD45+ living single cells and analyzed

myeloid cells and lymphoid cells separately. For myeloid cells in

the BALF, we defined CD3-CD19-CD56-CD66b+HLA-DR-CD16+

cells as neutrophils, CD3-CD19-CD56-CD66b+HLA-DR-CD16- as

eosinophils, CD3-CD19-CD56-CD66b-HLA-DR+autofluorescence+

as alveolar macrophages, CD3-CD19-CD56-CD66b-HLA-

DR+autofluorescence-CD14+ as monocytes, CD3-CD19-CD56-

CD66b-HLA-DR+autofluorescence-CD14- as dendritic cells, and
Frontiers in Immunology 03
CD3+CD19+CD56+ as lymphocytes (Supplementary Figure 1A).

For myeloid cells in the blood, we defined CD3-CD19-CD56-

CD66b+HLA-DR-CD16+ cells as neutrophils, CD3-CD19-CD56-

CD66b+HLA-DR-CD16- as eosinophils, CD3-CD19-CD56-CD66b-

CD14+CD16- as classical monocytes, CD3-CD19-CD56-CD66b-

CD14+CD16+ as intermediate monocytes, CD3-CD19-CD56-

CD66b-CD14-CD16+ as nonclassical monocytes, CD3-CD19-

CD56-CD66b-HLA-DR+CD14-CD16- as dendritic cells, and

CD3+CD19+CD56+ as lymphocytes (Supplementary Figure 1B).

For lymphoid cells in the blood and BALF, we defined

CD3+CD19- cells as T cells, CD3-CD19+ as B cells, CD3-CD19-

CD56+ as CD56 NK cells, CD3-CD19-CD56-CD16+ as CD16 NK

cells, CD3+CD4+CD8-CD19- cells as CD4 T cells, CD3+CD4-

CD8+CD19- as CD8 T cells, and CD3+CD4-CD8-CD19- as double

negative T cells (Supplementary Figures 1C, D).
Measurement of proteins in BALF
and plasma

After the isolation of cells (see above), the supernatant of BALF

samples and plasma was collected and frozen at −80°C before protein

measurement. Protein levels in cell-free BALF and plasma samples

were determined using the LEGENDplex macrophage/microglia

panel (BioLegend, USA). The normalized results were further

analyzed using the LEGENDplex software. Complement levels were

estimated using an enzyme-linked immunosorbent assay (ELISA) kit

(BD Biosciences), according to the manufacturer’s protocol.
Analysis of immune cells in the BALF and
blood of patients with CTD-ILD by
nanodroplet-based scRNA-seq (Seq-Well)

Freshly isolated BALF and peripheral blood were collected from

patients. In order to analyze the gene expression patterns of

immune cells in the BALF and blood, we used Seq-Well, a

nanodroplet-based technology for single-cell RNA sequencing

(25). Briefly, individual cells were loaded in nanowells with

capture beads. Seq-well is one of the commonly used methods for

single-cell RNA sequencing (26) and shown to be comparable to

other methods (14). Libraries were prepared using the Nextera XT

DNA Sample Prep Kit (Illumina) according to the manufacturer’s

recommendations, and paired-end sequencing was performed as

follows: Read 1 26 cycles, i7 index 8 cycles and Read 2 56 cycles on a

NextSeq500 instrument (Illumina) by Macrogen Japan (Tokyo,

Japan). We then compared the distribution of immune cells and

the differential gene expression profiles in the BALF and blood

samples of patients.
Preparation of Seq-Well arrays, libraries,
and sequencing

Seq-Well arrays and libraries were prepared as described by

Gierahn et al. (25). Briefly, Sylgard base and crosslinker were mixed
frontiersin.org
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TABLE 1 Patient characteristics.

SS DM RA SSc AAV IIP p

n 5 8 6 6 4 10

Radiological pattern, n(%) 0.0040

NSIP 3 (60) 7 (88) 4 (67) 5 (83) 0 (0) 6 (60)

UIP 1 (20) 0 (0) 0 (0) 1 (17) 1 (25) 3 (30)

OP 0 (0) 1 (13) 2 (33) 0 (0) 0 (0) 0 (0)

HP 1 (20) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

PPFE 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (10)

Unclassifiable 0 (0) 0 (0) 0 (0) 0 (0) 3 (75) 0 (0)

Sex, female subjects, n(%) 5 (100) 3 (38) 2 (33) 6 (100) 2 (50) 2 (20) 0.0017

Age, median (IQR) 64 (55, 68) 58 (45, 60) 71 (67, 77) 68 (67, 73) 73 (70, 74) 72 (66, 75) 0.11

BMI, n(%) 19.6 (15.6, 23.9) 23.4 (20.6, 25.1) 25.5 (21.1, 27.6) 21.8 (21.4, 22.3) 24.4 (22.6, 26.5) 24.5 (23.1, 27.7) 0.24

Current smoking, n(%) 0 (0) 0 (0) 0 (0) 0 (0) 1 (25) 2 (20) 0.27

EX-smoking, n(%) 0 (0) 2 (25) 4 (67) 1 (17) 2 (50) 1 (10) 0.0013

Pack-years, median (IQR) 0 (0, 0) 0 (0, 30.0) 10.6 (0, 34.0) 0 (0, 0) 20.0 (0, 48.0) 44.5 (28.5, 65.0) 0.0013

VC (% predicted), median (IQR) 72.8 (71.9, 82.4) 68.3 (68.0, 76.3) 79.5 (73.4, 83.0) 92.2 (89.7, 100.2) 78.6 (75.6, 81.7) 76.8 (67.4, 90.2) 0.11

Blood

WBC, /mL, median (IQR) 5100
(4810, 5660)

5300 (4900, 7320)
9620

(8420, 10100)
4990 (4080, 6500)

7980
(5940, 11100)

6560 (5020, 7370) 0.18

lymphocyte, /mL, median (IQR)
1000 (800, 1100) 1590 (1420, 1830)

1730
(1380, 2070)

1600 (1050, 2150)
1270

(1010, 1700)
1650 (1500, 2150) 0.35

neutrophils, /mL, median (IQR) 3400
(2590, 4300)

3590 (2740, 4450)
6750

(5920, 7280)
3150 (2580,3880)

5470
(3500, 8750)

3850 (2880, 4530) 0.13

monocytes, /mL, median (IQR) 300 (300, 350) 500 (355, 555) 565 (473, 600) 400 (325, 475) 455 (275, 733) 550 (400, 600) 0.39

eosinophils, /mL, median (IQR) 100 (70.0, 100) 120 (55.0, 235) 150 (75.0, 225) 150 (100, 200) 150 (100, 253) 250 (125, 375) 0.48

CRP, mg/dL, median (IQR) 0.130
(0.100, 0.280)

0.275
(0.0925, 0.703)

3.55 (2.06, 5.82)
0.265

(0.0925, 0.460)
1.09

(0.135, 5.27)
0.500

(0.0875, 0.880)
0.083

KL-6, U/mL, median (IQR) 1830
(1120, 2780)

983 (714, 1870) 876 (410, 2270) 866 (531, 1130) 326 (237, 548) 960 (530, 1310) 0.19

BALF

BALF cell numbers, /mL,
median (IQR)

163 (135, 373) 200 (150, 216) 134 (55.3, 255) 124 (95.0, 138) 44.5 (37.8, 160) 84.5 (61.5, 171) 0.27

%neutrophils, %, median (IQR) 7.00 (1.00, 15.0) 2.00 (1.50, 4.00) 6.00 (5.00, 42.5) 0.50 (0.00, 1.75) 4.50 (1.00, 8.25) 1.00 (0.00, 1.75) 0.060

%lymphocytes, %, median (IQR) 28.0 (8.00, 15.0) 25.0 (11.5, 48.5) 3.00 (1.50, 4.50) 5.00 (4.25, 11.0) 3.50 (2.25, 5.00) 2.50 (1.25, 7.00) 0.016

%eosinophils, %, median (IQR) 1.00 (0.00, 4.00) 1.00 (0.00, 3.50) 3.00 (1.50, 3.00) 0.50 (0.00, 1.00) 0.50 (0.00, 1.25) 0.00 (0.00, 0.00) 0.56

%macrophages, %, median (IQR) 61.0 (40.0, 73.0) 60.0 (47.5, 83.0) 91.4 (71.3, 93.5) 93.0 (87.5, 95.5) 91.0 (90.0, 91.8) 97.0 (88.3, 98.0) 0.052

CD4 / CD8
3.03 (1.48, 3.56)

0.272
(0.196, 0.307)

0.76 (0.55, 1.60) 1.41 (0.867, 4.07) 1.12 (1.18, 1.26) 2.50 (1.44, 4.41) 0.023

recovery rate, %, median (IQR) 51.3 (50.0, 56.7) 52.5 (38.6, 57.5) 51.7 (35.5, 55.8) 62.5 (56.3, 66.5) 62.5 (57.8, 68.0) 58.0 (51.0, 66.0) 0.14
F
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The Kruskal–Wallis test was performed for the multi-condition comparison and Fisher’s exact test was performed for the categorical variables. Statistical significance was set at p < 0.05.
The recovery rate was calculated by dividing the total volume of recovered BALF by the 150 ml of saline solution injected.
NSIP, Non-specific interstitial pneumonia; UIP, Usual interstitial pneumonia; OP, Organizing pneumonia; HP, hypersensitivity pneumonitis; PPFE, pleuroparenchymal fibroelastosis; SS,
Sjögren’s syndrome; DM, dermatomyositis; RA, rheumatoid arthritis; SSc, systemic sclerosis; AAV, ANCA-associated vasculitis; IIP, idiopathic interstitial pneumonia.
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in a ratio of 10:1 for 10 min, placed under vacuum pressure for 15

min to remove air bubbles and poured for a 2 h incubation at 70°C

into a wafer with a mounted 86,000 well pattern-holding

microscope slide. The arrays were then removed from the molds,

excess silicone was cut off with a blade, and the arrays were prepared

for functionalization. This protocol adds chemical moieties to the

surface of the arrays, facilitating sealing with a semipermeable

polycarbonate membrane and the interchange of lysis and RNA

hybridization buffers. The arrays were rinsed with EtOH, plasma

treated for 10 min, and successively submerged in APTES, acetone,

and PDITC buffers. Upon further washes with acetone, the arrays

were spun and dried at 70°C for 2 h. The arrays were then incubated

with 0.2% chitosan solution (pH=6.3) at 37°C for 1.5 h, followed by

overnight incubation in PGA buffer at room temperature under

vacuum pressure. Finally, the arrays were removed from the

vacuum, rotated for 3 h at room temperature, and subsequently

moved to 4°C for at least 24 h before use.

After loading the functionalized arrays with mRNA capture

beads, 20,000 cells were coated and suspended in RPMI 1640

medium supplemented with 10% FCS. During the 10 min

incubation period, the loaded arrays were placed on a strong

magnetic plate to support the settling of the cells via a magnetic

field. After repeated washing with PBS and soaking in RPMI 1640

medium, the arrays were sealed using polycarbonate membranes

treated with air plasma for 7 min under mild vacuum (Diener

Electronic). Following a 30 min incubation in a 37°C cell culture

incubator, the arrays were incubated in lysis buffer for 20 min and

then placed in hybridization buffer for 40 min. Next, the mRNA

capture beads were washed from the arrays and collected using

washing buffer. Reverse transcription was performed on the bead

pellet using a Maxima Reverse Transcriptase reaction for 30 min at

room temperature followed by 90 min incubation at 52°C with end-

over-end rotation. The reaction was stopped by washing the beads

with TE buffer supplemented with 0.1% Tween-20 (TE-TW) and

TE buffer supplemented with 0.5% SDS (TE-SDS). After a washing

step in 10mM TrisHCl pH 8.0, excess primers were digested in an

exonuclease reaction for 50 min at 37°C with end-over-end rotation

and washed in TE-TW and TE-SDS. Beads were resuspended in 500

µL H2O and counted using a Fuchs-Rosenthal cytometer in bead

counting solution. Pools of 5,000 beads (10 µL) were then added to

40 µL PCR reactions for the amplification of reverse transcribed

cDNA libraries. After PCR, 16,000-20,000 beads were combined

(hereafter referred to as ‘pools’) and further processed. The pools

were cleaned with 0.6 × volumetric ratio AMPure XP beads, and

library integrity was assessed using the High Sensitivity D5000

ScreenTape assay for Tapestation 4200 (Agilent).

cDNA libraries (1 ng) were tagged using the Nextera XT DNA

Sample Prep Kit (Illumina) according to the manufacturer’s

recommendations. The pools were cleaned with 0.8 × volumetric

ratio AMPure XP beads, run with a High-Sensitivity DNA5000

assay on Tapestation 4200 (Agilent), and quantified using the Qubit

high-sensitivity dsDNA assay. Seq-Well libraries were equimolarly

pooled and clustered at 1.4 pM concentration with 10% PhiX using

High Output v2.1 chemistry on a NextSeq500 system. Paired-end
Frontiers in Immunology 05
sequencing was performed as follows: custom Drop-Seq Read 1

primer for 21 cycles, 8 cycles for the i7 index, and 61 cycles for Read

2. Single-cell data were demultiplexed using bcl2fastq2 (v2.20). See

Supplementary Table 3 for details on reagents and reactions.
Preprocessing of scRNA-seq raw data

For preprocessing, the generated fastq files from Seq-Well

were loaded into a data preprocessing pipeline (version 0.4,

available at https://github.com/Hoohm/dropSeqPipe) which

relies on Drop-seq tools provided by the McCarroll lab. STAR

alignment within the pipeline was performed using the human

reference genome (hg38) with annotations (Ensemble v91). The

resulting datasets were imported into the R software for further

analysis. The highly abundant mitochondrial transcripts MT-RNR1

andMT-RNR2 were excluded. The resulting datasets were imported

into the R package ‘Seurat’ for downstream analyses. An overview

of the used packages and package versions is provided in

Supplementary Table 4.
Quality control of scRNA-seq data

We selected cells and genes for further analyses using the

following criteria for each donor separately: (і) only genes that

were found in at least 100 cells were retained; (ii) a threshold of 300

expressed genes was used to keep cells for further analyses; and (iii)

with regard to the rate of endogenous-to-mitochondrial counts per

cell, cells with a rate of > 5% were excluded.
Dataset integration and dimensionality
reduction of scRNA-seq data

All the subsequent steps were conducted using the single-cell

analysis pipeline Seurat unless stated otherwise. To account for

variations in the sequencing depth across cells, we applied a log-

normalization strategy using CPM normalization with a scale factor

of 10,000. Next, the genes with the highest cell-to-cell variability in

the dataset were determined by calculating the top 2,000 most

variable genes using the ‘vst’ method of the ‘FindVariableFeatures’

function in Seurat.

After the linear transformation of the remaining genes (scaling)

to ensure homoscedasticity, the dimensionality of the data was

reduced to 30 principal components. To analyze the data without

having any influence of batch effects resulting from either different

donors or technologies, the ‘harmony’ integration approach based

on patient batches was used to harmonize and integrate the different

datasets using the Seurat implementation with the default settings.

The integrated dataset was then used as the input for

UMAP representation.

Next, doublet cells were identified utilizing the R package

‘DoubletFinder’ (version 2.0.2) (27) using the first 30 principal
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components of the non-integrated datasets, assuming a doublet

formation rate of 10% and leaving all other parameters unaltered.
Background identification and removal

To detect low-quality cells (background in the Seq-Well

technology) and exclude them from further analysis, we collected

the following rich set of information about the cells: the proportion of

reads mapped to mtDNA using the ‘miQC’ package, the likelihood

that a cell represents an empty droplet using the ‘emptyDrops’

function of ‘DropletUtils’ (FDR <= 0.2), the percentage of

ribosomal reads, total reads, and the number of genes per cell.

Additionally, we used the ‘perCellQCMetrics’ function of the

‘scater’ package and provided mitochondrial and ribosomal genes

to detect the top 5% of cells enriched for these features. Another layer

of information was provided using annotated datasets to query the

most likely cell-type annotation of the cells in the datasets. For this

purpose, we used the ‘FindTransferAnchors’ (reference reduction =

PCA with 30 dimensions and log normalization) and the ‘MapQuery’

function of the ‘Seurat’ package. As reference samples, we used a large

annotated PBMC dataset (https://www.cell.com/cell/fulltext/S0092-

8674%2821%2900583-3) and the COPD dataset from Baßler et al.

(14). Through this annotation, we obtained a mapping and

prediction score that indicated how likely the cells in the

reference dataset were to find a counterpart in the dataset used in

this study. For each metric, we calculated the mean per cluster,

ranked the cluster means from low to high quality, and combined all

the statistics using the Borda rank. Clusters with exceptionally high

numbers of low-quality hits were excluded from further analysis.
Clustering of the integrated scRNA-
seq datasets

The cellular heterogeneity of the integrated datasets was

determined using a shared nearest neighbor (SNN)-graph based

clustering algorithm implemented in the Seurat pipeline. For both

the BALF and the blood data, we used the first 30 principle

components as input and set the resolution to 0.6 and 0.8,

respectively. The default setting was used for the number of

neighbors (k=20).
Cell-type annotation

For the annotation of the cell types (per cluster), the annotations

generated with the ‘FindTransferAnchors’ and ‘MapQuery’ functions

described above were used. In particular, the cell-type labels queried

from the dataset from Baßler et al. (14). were used for annotation. In

addition, we validated these cell-type annotations using marker genes.

Marker genes per cluster were defined as the most significant DE

genes between identified clusters using a Wilcoxon rank sum test for

differential gene expression implemented in Seurat. Visualization of

the obtained marker genes was performed using Seurat functions
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such as a dot plot representation of cell type/cluster-specific marker

gene expression. A more global overview of the expression profiles

was obtained by calculating the mean expression values of marker

genes per cluster, followed by scaling and centering of these values

and representing them in a heatmap graph using the R package

‘pheatmap’, in which the genes were clustered according to the

‘ward.D’ agglomeration method.
Sub-clustering of cell-types

For a detailed characterization of the cells in the dataset, the cells of

the identifiedmajor cell types were isolated, and scaling, dimensionality

reduction using PCA, and data integration were repeated as described

above. UMAPwas then calculated, followed by subclustering according

to the strategy described above (with different resolution parameters

depending on the cell type studied). To annotate the subclusters, we

used marker genes (as described above) in combination with a priori

knowledge from the public domain.
Differential expression analysis

The identification of differentially expressed (DE) genes

between conditions was performed at the level of major cell types

and sub-clusters. We used two strategies for identifying DE genes to

account for potential donor effects. (і) For each cell-type, mini-

bulks were generated per patient by summing the reads. Next, we

loaded the minibulks into ‘DESeq2’ and used its pipeline to identify

DE genes. (ii) We denoised the scRNA-seq dataset using the

imputation method of ‘SAVER’. Next, we used the denoised

dataset as input to the ‘IDEAS’ package. To run the ‘IDEAS’

functions to identify DE genes, we set the ‘fit_method’ argument

of ‘ideas_dist’ to “saver_direct” and left the other settings unaltered.

Remark: For the blood dataset, we excluded patient 25 because

the sample was contaminated with BALF cells.
Gene ontology enrichment analysis

Gene ontology (GO) enrichment analysis was performed based

on the DE genes between conditions using the ‘clusterProfiler’

package. As background, we used all expressed genes in the dataset.
Data visualization

The Seurat, pheatmap and ggplot2 packages were used to

generate the figures.
Statistical analysis

If not otherwise stated, statistical analyses were conducted in

relation to the total sample size n. For the two-condition
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comparison, the Wilcoxon rank-sum test was used, and for the

multi-condition comparison, the Kruskal–Wallis test followed by

the Steel–Dwass test was performed. Fisher’s exact test was

performed for the categorical variables. Statistical significance was

set at p < 0.05.
Results

Patient disposition and characteristics

Five patients with SS, eight patients with DM, six patients with RA,

six patients with SSc, four patients with AAV, and 10 patients with IIP

(as a control) who had newly developed interstitial pneumonia were

included in this study (Table 1, Supplementary Table 1). Blood tests

and bronchoscopy were performed before starting treatment for

interstitial pneumonia. All patients, except one with RA, were

received immunosuppressive therapy following sample collection in

this study as needed. Among the patients with DM, one was anti-

melanoma differentiation-associated (MDA) 5 protein antibody-

positive, while the others had anti-synthetase syndrome. All patients

with AAV were positive for myeloperoxidase (MPO)-ANCA.

Pulmonary function tests were performed before treatment, and

there appeared no significant differences.
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Differences in immune cell proportion in
the blood of patients with CTD-ILD

Freshly collected peripheral blood and BALF samples were

subjected to single-cell RNA sequencing using the Seq-Well

platform. We then compared the distribution of immune cells

and differential gene expression profiles.

Starting with the blood cells, we used a clustering approach and

visualized the data in 22 clusters using UMAP (Figure 1A). The

potential donor effect was assessed and clusters were selected for

further analysis, excluding those formed by only a few patients

(Figure 1B). After characterizing the cells within each cluster using

marker genes (Figure 1C), we identified the major cell types found

in the blood based on previously reported annotation methods (14).

After identifying the cell types (Figure 2A), we compared the cell

populations among patients with different CTD-ILDs (Figure 2B).

For instance, the percentage of neutrophils tended to increase in

patients with RA-associated ILD (RA-ILD), while that of B/plasma

cells tended to increase in patients with SSc-associated ILD (SSc-

ILD). T/NK cells were further subclassified to discriminate between

T cells and NK cells and the differences between diseases were

compared (Supplementary Figure 2). We also performed multi-

color flow cytometry (MCFC) and found similar, although not

significant, trends in the percentage of neutrophils in RA-ILD or B

cells in SSc-ILD (Supplementary Figures 1, 3).
FIGURE 1

(A) UMAP representation of the integrated blood data. The colors and numbers correspond to the identified main clusters. Twenty-two clusters were
visualized. (B) Distribution of patients per cluster. The potential donor effect was evaluated and clusters that only included certain patients were
excluded. (C) Dot plots show the top marker genes per cluster and bar charts represent the relative cell proportions in each cluster. Cells abundant
in each cluster were identified based on the marker genes.
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Differences in immune cell proportion in
the BALF of patients with CTD-ILD

A clustering approach was performed for analyzing BALF cells,

similar to that done using blood cells. Herein, we visualized the data

from 21 clusters using UMAP (Figure 3A). The potential donor effect

was assessed, and again clusters were chosen by excluding those that

solely included a few patients (Figure 3B). By identifying the

predominant cells in each cluster using marker genes (Figure 3C),

we ascertained the major cell types present in the BALF based on

previously reported annotation methods (14). Mononuclear myeloid

cells, including monocytes, alveolar macrophages (AMs), and

dendritic cells, were the most abundant immune cells in the BALF,
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which showed high heterogeneity (Figure 4A). We compared the cell

populations in the BALF of patients with CTD-ILD (Figure 4B).

Compared with patients with other CTD-ILDs, the percentage of B/

plasma cells remarkably increased in patients with SS-associated ILD

(SS-ILD). Furthermore, patients with SS-ILD had more mast cells.

The proportion of neutrophils tended to increase in patients with RA-

ILD, while that of mononuclear myelocytes tended to increase in

patients with AAV-associated ILD (AAV-ILD) or SSc-ILD. We

examined the cell proportions using MCFC and found similar

trends (Supplementary Figures 1, 4).

We found that mononuclear myeloid cells constitute the majority

of immune cells in the BALF, so we further hypothesized that the state

of predominant AMs differs depending on the underlying disease (14,
FIGURE 2

(A) Cell type annotation of the integrated blood data according to the step annotation approach. (B) Comparison of the proportion of immune cells
in the blood among patients with various diseases. The Kruskal–Wallis test followed by the Steel–Dwass test was performed for multi-condition
comparison. Statistical significance set at p < 0.05. The percentage of eosinophils was significantly different between systemic sclerosis-associated
interstitial lung disease (ILD) and idiopathic interstitial pneumonia-ILD (p = 0.040). The percentage of neutrophils and T/NK cells exhibited no
substantial variance in the post hoc analysis. SS, Sjögren’s syndrome; DM, dermatomyositis; RA, rheumatoid arthritis; SSc, systemic sclerosis; AAV,
ANCA-associated vasculitis; IIP, idiopathic interstitial pneumonia.
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28). Therefore, we subclassified mononuclear myeloid cells based on a

previous report (14) (Figure 4C, Supplementary Figures 5A–C, E), and

investigated the differences in the subtypes of mononuclear myeloid

cells among CTD-ILDs (Figure 4D, Supplementary Figure 5F). The

proportion of mononuclear myeloid cells expressing nuclear enriched

abundant transcript 1 (NEAT1), a long noncoding RNA known to

promote macrophage inflammasome activation and enhance

interleukin 1b (IL-1b) maturation (29), was increased in patients

with AAV-ILD. Some clusters of mononuclear myeloid cells also

showed signatures characteristic of tissue-resident macrophages

based on the previous reports (30, 31) (Supplementary Figure 5D).

In order to separate T cells from NK cells, T/NK cells were also

subclassified (Supplementary Figure 6), and several T cell fractions

appeared to be increased in SS-ILD.
Gene ontology enrichment analysis in
patients with SS-ILD

There are few reports of ILD in patients with SS, and there is no

established treatment for SS-ILD (32). Therefore, we first sought to

clarify the pathogenesis of SS-ILD by focusing on the functional

changes of immune cells in the BALF and blood. We identified a

large number of differentially expressed (DE) genes in patients with
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SS-ILD using the package IDEAS (33) for each immune cell type

compared to other diseases (Supplementary Tables 5, 6), then

applied gene ontology (GO) enrichment analysis to estimate their

functions and relationships. GO enrichment analysis was

performed on monocytes-macrophages (mononuclear myeloid

cells), neutrophils, T/NK cells, and B/plasma cells in the BALF

and monocytes, neutrophils, T/NK cells, and B/plasma cells in the

blood of patients with SS-ILD. Notable significant findings are

presented below.

As mentioned above, the proportion of B/plasma cells in the BALF

tended to increase in patients with SS-ILD compared to those with other

diseases. In the B/plasma cells from the BALF of patients with SS-ILD,

terms associated with innate immune responses and the acquired

immune system related to antigen presentation were enriched

(Figure 5B). The guanylate-binding protein (GBP) family of the

interferon (IFN)-inducible GTPases is involved in the innate immune

response (Supplementary Figure 7B). Among the GBP members, GBP4

and GBP5 were identified as DE genes with significant differences (p <

0.01) (Supplementary Table 5). In T/NK cells from the BALF of patients

with SS-ILD, dipeptidyl peptidase-4 involved in T cell activation was also

enriched (Figure 5A, Supplementary Figure 7A).

In blood monocytes and neutrophils, terms associated with the

innate immune response, response to IFNg, and antigen processing

and presentation were enriched (Figures 6A, B); genes of the GBP
FIGURE 3

(A) UMAP representation of the integrated bronchoalveolar lavage fluid (BALF) data. (B) Distribution of patients per cluster. The potential donor effect
was evaluated and clusters that only included certain patients were excluded. (C) Dot plots show the top marker genes per cluster and bar charts
represent the relative cell proportions in each cluster.
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family and the JAK-STAT pathway were included (Supplementary

Figures 7C, D). In B/plasma cells in the blood of patients with SS-ILD,

the enriched terms were mainly related to antigen presentation and

proteasome 20S subunit beta 8 (PSMB8), a gene located in the class II

region of the major histocompatibility complex and induced by IFNg,
suggesting the influence of IFNg on various cells (Figure 6D,

Supplementary Figure 7F). The terms related to protein folding and

toll-like receptor 9 signaling pathway were enriched in T/NK cells in

the blood (Figure 6C, Supplementary Figure 7E). These findings

suggest that the innate and acquired immune systems play important

roles in lung and blood pathogenesis in patients with SS-ILD.

Furthermore, the involvement of IFNg signaling was suggested in a

wide range of cells.
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Gene ontology enrichment analysis in
patients with DM-associated ILD

Next, we examined the pathogenesis of DM-associated ILD

(DM-ILD) because ILD is an important prognostic determinant for

patients with DM (2). Using IDEAS (33) for each immune cell type,

we identified a large number of DE genes in patients with DM-ILD

compared to those with other diseases (Supplementary Tables 5, 6).

We then applied GO enrichment analysis to determine their

functions and relationships as described above.

In monocytes-macrophages in the BALF, terms associated with

virus and symbiont were enriched (Figure 7A), including IFN-

related genes such as IFN-induced protein with tetratricopeptide
FIGURE 4

(A) Cell type annotation of the integrated BALF data according to the step annotation approach. (B) Comparison of the proportion of immune cells
in the BALF among patients with various diseases. (C) Phenotypic classification of mononucleolar myeloid cells based on the expression of major
genes. (D) Comparison of the proportion of each subtype of mononuclear myeloid cells. The percentage of B/plasma cells exhibited no substantial
variance in the post hoc analysis. The Kruskal–Wallis test followed by the Steel–Dwass test was performed for multi-condition comparisons.
Statistical significance was set at p < 0.05. SS, Sjögren’s syndrome; DM, dermatomyositis; RA, rheumatoid arthritis; SSc, systemic sclerosis; AAV,
ANCA-associated vasculitis; IIP, idiopathic interstitial pneumonia; mononuclear myeloid cell, the fraction including monocytes, alveolar
macrophages, and dendritic cells.
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repeats 1 (IFIT1) and C-X-C motif chemokine ligand 10 (CXCL10)

(Supplementary Figure 8A). In neutrophils in the BALF, the term

related to the viral genome was also enriched. In addition, the term

associated with lymphocyte chemotaxis was enriched, also

including CXCL10. (Figure 7B, Supplementary Figure 8B). In T/

NK cells in the BALF, the enriched terms were mainly related to the

innate immune response, lymphocyte activation, and T cell

activation (Figure 7C, Supplementary Figure 8C). In B/plasma

cells in the BALF, terms related to catabolic process and

endoplasmic reticulum were enriched (Figure 7D).

In monocytes, neutrophils, and B/plasma cells in the blood,

terms associated with response to virus and symbiont were

enriched and in T/NK cells in the blood, terms related to virus

also enriched (Figures 8A–D); the expression of the myxovirus

resistance 1 (MX1) gene, which encodes an IFN-induced protein

with antiviral activity, was common in these four types of blood

cells (Supplementary Figures 8E–H). These findings suggest that

IFN- and virus infection-related pathways were upregulated in a

wide range of cells in both lung and blood pathogenesis in patients

with DM-ILD.
Gene ontology enrichment analysis in
patients with RA-ILD, SSc-ILD, and
AAV-ILD

ILD is also a significant complication for patients with RA

and is associated with increased mortality (34). We also

identified DE genes in patients with RA-ILD using IDEAS and
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performed GO enrichment analysis. The blood and BALF cell

fractions in RA-ILD showed a characteristic increase in the

proportion of neutrophils (Figures 2B, 4B). In neutrophils in

the BALF, terms related to cell adhesion, intracellular receptor

and pattern recognition receptor signaling pathway, and

negative regulation of nuclear factor-kappa B transcription

factor activity were enhanced (Supplementary Figure 9B). In

monocytes-macrophages in the BALF, terms associated with

inflammation and bacterium were enriched (Supplementary

Figure 9A). In neutrophils and monocyte-macrophages in the

BALF, genes related to tumor necrosis factor and nuclear factor-

kappa B were included (Supplementary Figures 9C, D). In B/

plasma cells in the BALF, terms associated with B cell activation,

immunoglobulin mediated immune response, and complement

activation were enriched (Supplementary Figure 9E).

The progression of ILD is variable in patients with SSc-ILD, so it

is important to identify patients with early pulmonary function loss

(35). In blood B/plasma cells, terms associated with innate

immunity, cytokine production, and translation were enriched

(Supplementary Figure 10A). Terms associated with cytokine

production were also enriched in neutrophils in the BALF

(Supplementary Figures 10C, D) and the terms related to negative

regulation of lymphocyte activation and toll-like receptor signaling

pathway were enriched in neutrophils in the blood (Supplementary

Figures 10E, F). The terms associated with endoplasmic reticulum

tubular network and protein folding were enriched in monocytes-

macrophages in the BALF (Supplementary Figures 10G, H). In

contrast, the terms related to mRNA were enriched in monocytes in

the blood (Supplementary Figures 10I, J).
FIGURE 5

Gene ontology (GO) enrichment analysis of differentially expressed (DE) genes in the bronchoalveolar lavage fluid (BALF) from patients with Sjögren’s
syndrome (SS)-associated interstitial lung disease (ILD). The most significantly enriched pathways in each immune cell were visualized using dot
plots. (A) T/NK cells in the BALF. (B) B/plasma cells in the BALF. The p-value cutoff for genes was set at 0.05 for T/NK cells and B/plasma cells in the
BALF. Dot plots show the enriched terms. The size of the dot corresponds to the gene count enriched in the pathway, and the color of the dot
indicates the pathway enrichment significance.
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In patients with AAV-ILD, DESeq2 showed significant DE

genes. RETN, the gene encoding resistin, was upregulated in

monocyte-macrophages and neutrophils in the BALF of patients

with AAV-ILD (Supplementary Table 5).
Differences in cytokine/chemokine levels
and complement activation

Our RNA sequencing data indicate a distinct distribution of

cellular fractions within each CTD-ILD. Moreover, it suggests that

diverse genetic pathways were enriched, leading to alterations in

immune cell functions. We hypothesized that there are differences

in cytokine/chemokine profiles that reflect the pathogenesis of

CTD-ILDs. We then measured cytokine/chemokine levels in
Frontiers in Immunology 12
BALF supernatants and plasma using ELISA (Figure 9A,

Supplementary Figure 11). Levels of CXCL10, which are

produced in response to IFNg, in the plasma were significantly

elevated in patients with DM-ILD, while its levels in the BALF

tended to be elevated in patients with SS-ILD. In addition,

interleukin 6 (IL-6) levels in the plasma tended to be elevated in

patients with RA-ILD. Moreover, thymus and activation-regulated

chemokine (TARC) and interleukin 1 b (IL-1b) levels in the plasma

tended to be increased in patients with SSc-ILD and AAV-ILD,

respectively. In addition, the exacerbation of pulmonary fibrosis by

C1q has been reported before (36), suggesting the importance of

C1q in the pathogenesis of CTD-ILD. Therefore, we measured C1q

levels in the BALF supernatants and plasma using ELISA. We also

measured C3a, C4a, and C5a levels to determine the status of

complement pathway activation in CTD-ILDs from complement
FIGURE 6

Gene ontology (GO) enrichment analysis of differentially expressed (DE) genes in the blood cells from patients with Sjögren’s syndrome (SS)-
associated interstitial lung disease (ILD). The most significantly enriched pathways in each immune cell were visualized using dot plots.
(A) Monocytes in the blood. (B) Neutrophils in the blood. (C) T/NK cells in the blood. (D) B/plasma cells in the blood. The p-value cutoff for genes
was set at 0.05 for T/NK cells and B/plasma cells in the blood and 0.01 for monocytes and neutrophils in the blood. Dot plots show the enriched
terms. The size of the dot corresponds to the gene count enriched in the pathway, and the color of the dot indicates the pathway
enrichment significance.
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values, such as C3 and C4, which are routinely measurable in

clinical practice. Differences in complement levels are shown in

Figure 9B. In patients with SS-ILD, C1q, C3a, and C4a levels were

elevated in the BALF. Moreover, C5a levels in the BALF of patients

with RA-ILD tended to be elevated.

We found that each disease had a distinct profile of cytokines/

chemokines and complements. Using our sequencing data, we

compared the relative mRNA expression levels of these proteins

across different diseases and cell types (Supplementary Figure 12).

mRNA levels for IL-6 and IL-1b were not elevated in RA-ILD or

AAV-ILD, respectively, unlike their protein levels. In SS-ILD, CXCL-

10 was upregulated in blood monocytes, and Interferon Gamma

(IFNG) was upregulated in T/NK cells and neutrophils in BALF,

suggesting a role of IFNg in the pathogenesis of SS-ILD. In RA-ILD

monocytes, increased Complement C1q B Chain and C Chain (C1QB

and C1QC) expression suggested complement activation.
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Discussion

In this study, we analyzed the BALF and blood from patients

with newly developed CTD-ILD using single-cell RNA sequencing

and investigated the cellular distribution status and gene expression

patterns of the immune cells for each CTD-ILD. To the best of our

knowledge, this is the first study to comprehensively analyze BALF

and blood samples from patients with CTD-ILD at a single-

cell level.

First, the proportion of B/plasma cells in the BALF was

remarkably increased in patients with SS-ILD. A previous study

reported that lymphocyte proliferation in the BALF of patients with

SS-ILD suggests interstitial pneumonia activity (37); however,

detailed subset reports are scarce. We also found an increased

number of mast cells in the BALF of patients with SS-ILD. Mast

cells are a source of TGFb (38), and TGFb-positive mast cells are
FIGURE 7

Gene ontology (GO) enrichment analysis of differentially expressed (DE) genes in the bronchoalveolar lavage fluid (BALF) cells from patients with
dermatomyositis (DM)-associated interstitial lung disease (ILD). The most significantly enriched pathways in each immune cell were visualized using
dot plots. (A) Monocyte-macrophages in the BALF. (B) Neutrophils in the BALF. (C) T/NK cells in the BALF. (D) B/plasma cells in the BALF. The p-
value cutoff for genes was set at 0.05 for monocyte-macrophages and neutrophils in the BALF and 0.01 for T/NK cells and B/plasma cells in the
BALF. ER, endoplasmic-reticulum; ERAD, endoplasmic-reticulum-associated protein degradation.
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involved in lung fibrosis (39). Thus, mast cells may be involved in

fibrosis in SS-ILD. Furthermore, neutrophils in the BALF of

patients with RA-ILD tended to increase, consistent with a

previous report (40). Moreover, higher percentages of

mononuclear myeloid cells in the BALF were observed in patients

with AAV-ILD and SSc-ILD, and a more detailed analysis revealed

differences in the phenotypes of these mononuclear myeloid cells,

such as an increase in the percentage of mononuclear myelocytes

expressing NEAT1 in patients with AAV-ILD. Upregulated NEAT1

expression was involved in the development of fibrosis in various

organs, including pulmonary fibrosis (41). Therefore, patients with

each CTD-ILD had characteristics of the cellular fraction in the

BALF, which are primarily involved in local lung pathology and

may be potential therapeutic targets.

Next, we performed GO enrichment analysis of the DE genes in

patients with each CTD-ILD compared to those of other diseases. We

also examined cytokine, chemokine, and complement levels as possible

indicators of each CTD-ILD for clinical applications. Enrichment

analysis revealed the importance of innate immunity and acquired
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immunity in the pathogenesis of SS-ILD, which is consistent with

recent reports (42). We also found those pathways were activated not

only in blood monocytes and neutrophils but also in the B/plasma cells

in the BALF. Moreover, in our study, the IFNg signaling molecule type

2 IFN was enriched in monocytes and neutrophils in the blood.

Although type 1 IFN activation has been reported in patients with

SS (43, 44), populations with predominant type 2 IFNs have also been

reported (45). Type 2 IFNs have been suggested to play important roles

in the pathogenesis of active ILD.We also found a remarkable elevation

of C1q levels in the BALF supernatants. C1q is required for Th1-type

responses (46) and also contributes to removing dead cells and the

polarization of macrophages (47). This may also support the

importance of both acquired and innate immunity. In short,

pathways related to innate immunity, acquired immunity, and IFN

signaling were similarly enriched in the immune cells in both the blood

and BALF of patients with SS-ILD. Systemic and local lung immune

cell functions are similarly altered in SS-ILD, suggesting the

involvement of common pathways in systemic immune

abnormalities and pulmonary complications.
FIGURE 8

Gene ontology (GO) enrichment analysis of differentially expressed (DE) genes in the blood cells from patients with dermatomyositis (DM)-
associated interstitial lung disease (ILD). The most significantly enriched pathways in each immune cell were visualized using dot plots.
(A) Monocytes in the blood. (B) Neutrophils in the blood. (C) T/NK cells in the blood. (D) B/plasma cells in the blood. The p-value cutoff for genes
was set at 0.05 for monocytes, neutrophils, and B/plasma cells in the blood and 0.01 for T/NK cells in the blood.
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In DM-ILD, enrichment analysis unveiled that the pathways

involved in virus response operated across various cellular lineages.

Analysis of circulating monocytes in patients with anti-MDA5-

associated ILD reported that an antiviral inflammatory network

might be involved in the cytokine storm (48). We observed both

immune cells in the BALF and blood exhibited a network related to

viral response, signifying the commonality of this pathway across

diverse cell types and its pivotal role in pathogenesis. Additionally,

elevated expressions of type 1 IFN-induced genes, such asMX1 and

IFIT1 were reported in the peripheral blood mononuclear cells of

patients with active DM (49). Our investigation has also revealed

the elevated expression of IFN-related genes in a wide range of

immune cells in the BALF and blood. Furthermore, the activity of

DM was correlated with elevated serum CXCL10 levels (50), and we
Frontiers in Immunology 15
also found that CXCL10 was increased in the plasma of patients

with DM-ILD. In conclusion, pathways related to antiviral response

and IFN were closely associated with the pathogenesis of DM-ILD,

both in local lung pathogenesis and systemic immune abnormality.

In RA-ILD, enrichment analysis showed the upregulation of

inflammation-associated genes in the neutrophils and monocyte-

macrophages in the BALF. Inflammatory cells such as neutrophils

are essentially absent in the alveoli during homeostasis because

neutrophil migration is prevented by patrols of AMs, such as by

processing bacteria beforehand (51). The infiltration of neutrophils

into the BALF of patients with RA-ILD may indicate a breakdown

of local lung homeostasis. Additionally, the enrichment analysis of

B/plasma cells in the BALF showed an upregulation of the terms

related to B cell activation and humoral immunity. In RA-ILD, it
FIGURE 9

(A) Comparison of cytokine and chemokine levels in the bronchoalveolar lavage fluid (BALF) supernatants and plasma among patients with various
diseases. (B) Comparison of complement levels in the BALF supernatants and plasma among patients with various diseases. CXCL10 levels in the
plasma were significantly elevated in patients with dermatomyositis (DM)-associated interstitial lung disease (ILD) compared to patients with
idiopathic interstitial pneumonia (IIP) (p = 0.013). Complement levels were significantly different in the plasma and BALF of patients with different
diseases. The Kruskal–Wallis test followed by the Steel–Dwass test was performed for multi-condition comparison. Statistical significance was set at
p < 0.05. SS, Sjögren’s syndrome; DM, dermatomyositis; RA, rheumatoid arthritis; SSc, systemic sclerosis; AAV, ANCA-associated vasculitis; IIP,
idiopathic interstitial pneumonia; CXCL10, C-X-C motif chemokine ligand 10; IFNg, interferon-gamma; TARC, Thymus and Activation-Regulated
Chemokine; IL, interleukin.
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has been reported that tertiary lymphoid structures develop at

locally affected sites, surrounded by plasma cells that produce

high-affinity antibodies and a neutrophilic infiltrate in contact

with these plasma cells (52). In conclusion, the alterations

observed within the BALF may imply the significance of local

pulmonary pathogenesis in the context of RA-ILD.

In SSc-ILD, the enrichment analysis of blood B/plasma cells

showed the involvement of terms associated with innate immunity

and cytokine production, and B cell depletion therapy, rituximab, that

has been reported to prevent the worsening lung fibrosis (53) may have

an effect on this aspect. Furthermore, in monocytes-macrophages in

BALF, pathways related to the endoplasmic reticulum tubular network

were enhanced. The endoplasmic reticulum stress has been reported to

be associated with pulmonary fibrosis and to play a role in macrophage

polarization to the M2 phenotype, accompanied by the increased

production of fibrotic mediators (54). It was also reported that in

pulmonary arterial hypertension with limited cutaneous systemic

sclerosis, the activation of endoplasmic reticulum stress may

contribute to driving inflammation (55). These suggest that

endoplasmic reticulum stress may also play some role in SSc-ILD.

Moreover, serum TARC levels were reported to be elevated in patients

with SSc-ILD (56); this study also indicated a similar tendency.

In AAV-ILD, RETN, the gene encoding resistin, was upregulated in

the monocyte-macrophages and neutrophils in the BALF.

Macrophage-expressed resistin has important roles in inflammation

(57) and resistin stimulates neutrophils to pro-inflammatory activation

and promotes neutrophil extracellular trap (NET) formation (58). The

NET formation is deeply involved in the pathogenesis of AAV (59),

suggesting that RETN may play an important part in the lung

pathogenesis in AAV-ILD. Furthermore, IL-1b in plasma tended to

rise in patients with AAV-ILD. IL-1b produced by macrophages prime

neutrophils and plays a critical role in the pathogenesis of AAV (59).

Elevated blood IL-1b levels may mirror AAV pathogenesis. We also

found an increase in alveolar macrophages expressing NEAT1, linked

to IL-1b, which may imply localized effects of IL-1b in the lungs.

Our study had certain limitations. First, as this was an observational

study with a small sample size conducted in a clinical setting, the clinical

phenotype, history of smoking, and severity of ILD were not

standardized. Further studies with larger populations are required to

confirm our generalizations. Second, we only included patients with

systemic conditions allowing the collection of BALF, leaving critical cases

unexplored. Third, although various changes in gene expression were

observed, their interactions and functional changes were not validated;

these must be considered in future investigations.

In conclusion, our comprehensive single-cell analysis of the BALF

and blood showed characteristic immune cell distributions and

functional changes in patients with CTD-ILD. In the immune cells

in both the blood and BALF, we found that pathways associated with

virus and IFN signaling were enriched in DM-ILD, while those

associated with innate immunity, acquired immunity, and IFN

signaling were enhanced in SS-ILD. These findings imply an

interaction between systemic immune abnormalities and local lung

pathogenesis in DM-ILD and SS-ILD. For RA-ILD, the significance of

localized pulmonary inflammation was suggested; the lung

microenvironment seemed important for RA-ILD pathogenesis. The

characteristics of these immune cells may reflect the distinct
Frontiers in Immunology 16
pathogenesis of each disease. Our findings shed light on

understanding the diversity of pathogenesis in CTD-ILDs and would

provide new biomarkers useful for these diseases.
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