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Rheumatoid arthritis (RA) affectsmillions of people worldwide, but there are limited

drugs available to treat it, so acquiring a more comprehensive comprehension of

the underlying reasons and mechanisms behind inflammation is crucial, as well as

developing novel therapeutic approaches to manage it and mitigate or forestall

associated harm. It is evident that current in vitromodels cannot faithfully replicate

all aspects of joint diseases, which makes them ineffective as tools for disease

research and drug testing. Organ-on-a-chip (OoC) technology is an innovative

platform that can mimic the microenvironment and physiological state of living

tissues more realistically than traditional methods by simulating the spatial

arrangement of cells and interorgan communication. This technology allows for

the precise control of fluid flow, nutrient exchange, and the transmission of

physicochemical signals, such as bioelectrical, mechanical stimulation and shear

force. In addition, the integration of cutting-edge technologies like sensors, 3D

printing, and artificial intelligence enhances the capabilities of these models. Here,

we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip,

where we outline their structure and function, highlighting the potential of the

model to advance our understanding of RA. We integrate the actual evidence

regarding various OoC models and their possible integration for multisystem

disease study in RA research for the first time and introduce the prospects and

opportunities of the chip in RA etiology and pathological mechanism research,

drug research, disease prevention and human precision medicine. Although many

challenges remain, OoC holds great promise as an in vitromodel that approaches

physiology and dynamics.
KEYWORDS

rheumatoid arthritis, Organ-on-a-Chip, Synovial Joint-on-a-Chip, disease models,
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1 Introduction
Rheumatoid arthritis (RA) manifests as an autoimmune disorder

marked by persistent, aggressive arthritis. It affects about 0.5% to

1.0% of the global population and can occur at any age, with its

highest incidence between 30-50 years, with the incidence of RA in

women being 2-3 times higher than in men (1–4).The origins and

development of RA remain intricate and a subject of ongoing

research, with a prevailing belief that genetic, environmental, and

autoimmune elements could be crucial in this condition (4, 5). Over

time, these elements result in an overproduction of pro-inflammatory

cytokines, represented by interleukin-6 (IL-6) and tumor necrosis

factor (TNF), culminating in synovial cell proliferation, followed by

cartilage destruction and bone erosion (4) (Figure 1). The primary

clinical symptom of this illness is recurrent symmetrical polyarthritis,

commonly seen in the hands, wrists, feet and other small joints (2, 8).

In the initial stage of the disease, symptoms such as joint

inflammation (redness, swelling, heat, pain) and joint disorders

often occur (9). As the disease progresses, a range of different

degrees of joint stiffness and deformity (10), or even disability (11),

can be seen. However, since RAmanifests as a systemic inflammatory

condition, impacting not just joints but also various other extra-

articular characteristics (4, 12, 13), such as skin, cardiovascular

system, digestive system, respiratory system, etc. (14, 15) (Figure 2

Part A). The current treatment methods for RA have low remission

rate, many adverse reactions, and unsatisfactory efficacy, which

seriously affect the quality of everyday living (16) and physical and

mental health (17), and bring burdens to individuals and society (18–

20). Therefore, it is essential to deepen our comprehension of the

etiology and pathogenesis of RA and develop new and more effective

drugs to alleviate the suffering of patients.

A wide range of in vitro models have been employed to reveal

the tissue development and pathogenesis of joints. These include

simple 2D monolayer cultures of fibroblast-like synoviocytes (FLS)

(21, 22), as well as more complex models such as tissue explants of
Frontiers in Immunology 02
bone (23), cartilage (24, 25), synovium (26) and meniscus (27, 28),

co-culture of cartilage and synovium (29) and multi-compartment

bioreactor (30, 31), among others. Despite their contributions,

traditional in vitro models have limitations when it comes to

accurately reflecting physiological conditions (Table 1). Similarly,

animal models (such as mice), which are a vital part of RA research,

suffer from species-specific differences (32, 33) and high costs (34,

35). Consequently, it’s critically important to create innovative,

dynamic, and physiological 3D cell culture models as substitutes for

additional studies.

Compared with the traditional in vitro cell models, OoC enable

precise control over cell cultivation (36), cell spatial configuration

(37), and inter-organ interactions (38). Unlike static organoid

culture, OoC technology enables the efficient movement of fluids,

thereby improving nutrient transfer and the conveyance of

physicochemical cues like bioelectrical stimulation (39),

mechanical stimulation (40), and shear force. Consequently, this

method provides a more precise depiction of the physiological states

present in living tissue (41). Moreover, the use of OoC technology

in physiological barrier models accurately mimics the delivery and

penetration of compounds in vivo (42). In recent years, there has

been a notable enhancement in the precision of OoC, enabling

single-cell detection and high-throughput capabilities (43).

In this review, we outline the structural features and benefits of

OoC, highlighting its advantages over traditional models in terms of

replicating the complexity of biological systems. We then provide

an overview of the current applications and accomplishments of the

Synovial Joint-on-a-Chip (JoC), a specialized OoC model designed

to mimic the human synovial joint. We describe the fundamental

structure and functions of JoC, emphasizing its relevance to the

study of RA. In addition, we delve into the potential applications of

JoC in RA research, including its utility in investigating the

underlying causes of the disease, understanding its pathological

mechanisms and aiding drug development, and how JoC can

contribute to disease prevention strategies and the field of

precision medicine. We believe that although JoC still faces many
FIGURE 1

Joint characteristics of health and RA. During RA, the synovial membrane undergoes the following changes: infiltration of immune cells, new
angiogenesis, uncontrolled proliferation of FLS, and the intima thickens and develops an aggressive pannus (6). Pannus tissue invades and destroys
the underlying cartilage and bone (7), resulting in cartilage degeneration, bone destruction, and joint space narrowing.
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challenges, with more in-depth research and the development of

new technologies, the application of this chip in disease research,

especially precision medicine, will be further promoted.
2 Organ-on-a-Chip: a novel and
promising in vitro model

Organ-on-a-Chip (OoC, namely, microphysiological systems) is

a micrometer-sized cell culture device that integrates microfluidic

technology, biomaterials, and cell biology (6, 7), aiming to replicate

the basic structural and functional characteristics of a specific tissue

or organ (44–47). The creation of OoC systems is dependent on four

key elements: First, microfluidics plays a crucial role in delivering

nutrients and maintaining cellular homeostasis while also facilitating

the removal of waste products. Second, living cells are integrated with
Frontiers in Immunology 03
biomaterials, such as hydrogels, to create a supportive environment

that mimics the natural extracellular matrix. Third, physicochemical

stimuli are applied to simulate the in vivo microenvironment,

enhancing the system’s ability to replicate physiological conditions.

Finally, sensors are incorporated to collect, process, and analyze data

and images, providing valuable insights into cellular behavior and

responses (7). Traditionally, microfluidic culture devices have been

manufactured using soft lithography technology with materials like

polydimethylsiloxane (PDMS). However, 3D printing has become a

promising technology for microfluidic devices due to its low cost,

standardization, and rapid production (48–50). In general, the

corresponding OoC is constructed by simplifying and analyzing the

different cell types and organ-specific microenvironments of the

target organ and combining with the research objectives.

First and foremost, it is important to understand the target

organ to determine the microstructure, including the biological
FIGURE 2

(Part A) Extra-Articular Manifestations (EMs) and comorbidities of RA. While synovitis serves as the pathological hallmark of RA, the intricate and
persistent inflammatory and autoimmune nature of this disease gives rise to various Ems and comorbidities. These complications and comorbidities
lead to increased morbidity and mortality. Among patients with RA, cardiovascular disease emerges as the primary cause of death, followed closely
by respiratory ailments. (Part B) Multi-Organ-on-Chip (Multi-OoC) or Body-on-a-chip (BoC). OoC platforms can be interconnected to form more
complex multi-OoC models or even BoC models, which can generalize interactions between various organs in the body, making it possible to study
multi-tissue and even systemic diseases. Because intertissue crosstalk holds a pivotal position in the emergence and advancement of human, a
common shared medium is often required for recycling that allows organ components to communicate with each other, while allowing them to
retain their identity.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1408501
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1408501
context, size, and geometry-whether the microchamber or

microchannel (single or multiple, parallel or sandwich structure).

For example, a Synovial Membrane-on-a-Chip needs to be designed

as a sandwich structure containing upper and lower layers separated

by a membrane that supports intercellular communication.

However, cartilage microarray usually only requires the design of

a culture chamber to accommodate chondrocytes. The selection of

appropriate cells is a critical step in the development of an OoC

system. Cells are derived from primary human cells or mature, well-

characterized cell lines (51), and stem cells, especially induced

pluripotent stem cells (iPSC) (52), are an area of active and

potential research. To create an environment that closely

resembles the natural extracellular matrix (ECM), cells are often

embedded within hydrogels. These materials can be synthetic, such

as polyethylene glycol (PEG), or naturally derived, including

agarose (53), alginates (54), or polysaccharides such as hyaluronic

acid and glucan (55). The choice of hydrogel depends on the specific

needs of the model and the desired mechanical and biochemical

properties. The integration of cells within these hydrogels and their

subsequent injection into the microstructures form the basis of the

OoC system. This approach allows for the creation of a

microenvironment that supports cell growth, function, and

interaction, providing a powerful tool for studying organ-specific

diseases such as RA.
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Then, the integrity of OOC was increased depending on the

environment to which the cells were exposed and the stimuli

received. For instance, in an alveolar-capillary OoC model,

alveolar epithelial cells and pulmonary microvascular endothelial

cells are exposed to their respective tissue-specific environments,

with air on the alveolar side and fluid on the vascular side, thus

mimicking the natural conditions each cell type experiences (56).

To simulate the mechanical forces that cells experience in the body,

innovative design solutions have been employed. For example,

vacuum pumps have been used to apply traction and

compression forces to PDMS membranes, deforming them in a

controlled manner (57). In the Intestinal-on-a-Chip, epithelial cells

under drip and periodic mechanical deformation. In the study of

musculoskeletal systems, increasing mechanical stimulation is

essential to mimic the impact of physical activity on cells.

Similarly, for tissues with significant electrical activity, such as

those in the nervous system and the heart, integrating electrical

stimulation into OoC systems is vital to enhance their physiological

relevance. In addition, almost all cells are affected by biological

chemical stimulus such as cytokines, growth factors, and signaling

molecules, which play crucial roles in physiological responses, tissue

development, and intercellular communication. Therefore,

incorporating these factors into OoC models is crucial for

accurately reflecting cellular behavior. Additionally, physical
TABLE 1 Existing models for studying joints.

Models Major Advantages Major Disadvantages

2D Monolayer culture ·High-throughput
·Simple and easy to work

·Lack of mechanical stimulation
·Fail to replicate the complex cell–cell
and matrix–cell interactions
·The altered phenotype of cells

3D
cell-based

Co-culture of cells ·Reproduction of intercellular and cell-matrix interactions ·Enable to mimic only one tissue type

Bioreactor ·Extended culture time and quality of explants/tissues ·No tissue-tissue interface and chemical
concentration gradient

Tissue explant ·Reflecting the human physiology in terms of 3D structure
and environment

·Difficult to collect and preserve
·Lack of reproducibility

Organoid ·Recapitulates native organ architecture and cell types. ·There are differences in size and
human body, and the function is
limited
·Lack of neural, immune and
circulatory structures

3D Scaffold-based or
3D printed-based

·Scaffold mechanically supports cells and promotes cell survival,
proliferation, migration and differentiation·
·3D Bioprinting offers low-cost production, digital control of
highly resolution patterns
and high printing speed

·No control of parameters at the single-
cell level

OoC ·Mimic the physiological microenvironment of the in vivo target
organs faithfully.
·Provide tissue mechanical force and a controllable
microenvironment
·Highspeed, parallel collection, and analysis of individual
biological information.

·Difficult to standardize
·High complexity and
technical requirements

Animal models ·The repeatability was good ·Species-specific differences
·Ethical issues
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environmental conditions such as temperature, pH, and oxygen

concentration must be carefully controlled to optimize the

performance and quality of OoC systems, ensuring that they

provide a reliable and representative model of the organ or tissue

being studied.

In the past, the measurement of relevant parameters in

the OoC platform could be achieved by multi-electrode matrix

(MEA), transepithelial electrical resistance (TEER) and enzyme

immunosorbent assay (ELISA) (40, 58, 59). However, the need to

continuously monitor the environment and cellular behavior in real

time has driven the inclusion of sensors. Such as measurements of

plasma cytokines sensors (60), used to measure oxygen concentration

colorimetric or fluorescence sensors (61) and electrochemical

microsensors to monitor pH (62), oxygen concentration (63), and

cell metabolism (64), etc.

OoC have been employed to simulate a wide range of functional

tissues or organs, encompassing the lung (39, 57, 65–67), liver (68–

71), heart (72–74), gut (75–77), kidney (78, 79), brain (80, 81), skin

(82–84), and tumors (85–88),among others. Interlinking various

OoC platforms can lead to the creation of intricate multi-OoC

models (89, 90) or even Boc models(Figure 2 Part B) (91–94),

facilitating the exploration of diseases affecting multiple systems or

systemic diseases. RA manifests as a systemic condition that can

accumulate almost every organ in the body, and people are very

interested in the multi-OoC and even the BoC model that simulates

RA. OoC devices have emerged as the forthcoming wave of in vitro

models, bridging the divide between conventional preclinical in

vitro models and clinical experiments (95).
3 Synovial Joint-on-a-Chip

The joint consists of a complex network of tissues, including

various tissues such as articular cartilage, subchondral bone, synovial

membrane, ligaments, and meniscus, as well as auxiliary tissues,

including Hoffa fat pads, muscles, tendons, and knee patella, each

with specific structural characteristics and functions. A JoC close to

the physiological state should contain all parts of the joint structure,

but in most cases, people add only the required parts appropriately

according to their own research purposes (Table 2). Different cell

types and compositions as well as complex tissue structures and

interactions present a significant challenge in creating in vitromodels

that accurately represent the microenvironments of joint tissues.

Therefore, creating innovative biological models for human joints

to enhance the study of joint physiology and pathology, like

osteoarthritis (OA) and RA, is essential yet challenging.
3.1 Osteochondral-on-a-Chip

Articular cartilage is a vascular and nerveless structure

composed mainly of chondrocytes (110). Collagen fibers and

glycosaminoglycans (GAG) are important extracellular matrix

components (111). Different from cartilage, the subchondral bone

is a highly vascularized and innervated tissue, characterized by its

hard, calcified matrix made of type I collagen and calcium
Frontiers in Immunology 05
phosphate (hydroxyapatite). Physiological maintenance of bone

homeostasis hinges on the equilibrium of bone development by

osteoblasts and bone degradation by osteoclasts (112, 113).

Calcified cartilage in the center divides the articular cartilage from

the subchondral bone. Cartilage behavior is shaped by the

architecture and composition of the subchondral bone, and there

is molecular and physical crosstalk between the two types of tissue

tissues (110, 114). In order to establish an accurate human Synovial

JoC model to study the interactions between tissues, the

combination of articular cartilage, osteochondral interface, and

subchondral bone into an engineered Osteochondral-on-a-Chip

has an important role in clarifying the development of joint

ailments and assessing the effectiveness of possible treatments (31).

The Osteochondral-on-a-Chip is usually designed as a device

of two compartments (Figure 3). Each compartment is composed

of a suitable hydrogel matrix containing different cells (one

compartment is chondrocytes, simulating articular cartilage; The

other compartment is used to simulate subchondral bone,

containing osteoblasts, osteoclasts and endothelial cells). It’s

essential that the two hydrogel matrices possess varying hardness

levels to effectively facilitate tissue formation and promote

vascularization in specific areas. A thin, permeable porous

membrane can divide these compartments, aiding in the

communication between bone and cartilage. Furthermore, each of

the two compartments will experience mechanical forces.

The Osteochondral-on-a-Chip of this structure have been

reported several times. Research delves into how mechanical

damage, contact with inflammatory cytokines, and weakened

bone integrity influence the deterioration of cartilage in the

osteochondral microsystem (31). Lin et al. (104) simulated the

pathology of OA with microphysiological osteochondral tissue

microchips and observed that celecoxib, a selective COX-2

inhibitor, down-regulated the levels of both pro-inflammatory

cytokines and catabolic in the OA model, highlighting the

potential usefulness of Osteochondral-on-a-Chip in drug testing.

A similar chip mimics the tissue response to interleukin-1b (30).
3.2 Synovial Membrane-on-a-Chip

The synovial membrane consists of the intimal lining layer facing

the joint cavity and the sublining layer. The intimal lining layer is

home to two types of cells—macrophage-like synoviocytes (Type A

cells) and fibroblast-like synoviocytes (FLS, Type B cells) (115–117).

These loose structural features, on the one hand, allow the diffusion of

nutrients to feed the avascular cartilage, and on the other, may lead to

the accumulation of inflammatory substances such as immune

complexes within the joint. The lamina propria contains synovial

cells, macrophages, nerves and microvessels. The synovial fluid, rich

in proteins, plasma, and lubricants like hyaluronic acid produced by

FLS, plays a crucial role in joint nourishment and lubrication.

Synovial Membrane-on-a-Chip (also known as Synovium-on-

a-Chip) is typically implemented through two microfluidic chamber

devices separated by a thin membrane that support cell-to-cell

communication. The upper chamber contains a layer of FLS or FLS

and macrophages, while the lower chamber contains embedded
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TABLE 2 Currently developed JoC models.

Joint Models Cells/Tissues type Main Findings/Uses References

A human 3D chip
of RA

FLS,
Chondrocytes

• First established a chip-based chondro-synovial dual organoid model, allowing
the study of mutual tissue-tissue cross talk in arthritis research.
• Co-cultivation of chondral and synovial organoids improved the phenotype of
chondrocytes within chondral organoids in comparison to chondral monocultures.

(96)

A cartilage-on-a-chip
model of RA

Human monocyte cell line (THP-1),
Human chondrogenic primary

cells (hCH)

The developed preclinical model allowed us to provide more robust data on the
potential therapeutic effect of anti-TNF a mAb-CS/PAMAM dendrimer NPs
loaded-Ty-GG hydrogel in a physiologically relevant model.

(97)

Human vascularized
synovium-on-a-chip

FLS, Human umbilical vein endothelial
cells (HUVECs).

• Inflammatory markers in blood vessel channel enhanced with circulating
monocyte adhesion to increase.
• This vascularized human synovial fluid sheet model recapitulates many functional
features of healthy and inflamed human synovial fluid to understand synovial joint
disease mechanisms, allows identification of novel therapeutic targets and supports
preclinical testing of therapies.

(98)

3D chondrocyte
culture-on-a-chip

of OA

Chondrocytes The results show that our microtissue model mimics the essential features of native
cartilage and can respond to biochemical injury, thus providing a new basis for
exploring the pathophysiology of osteoarthritis.

(99)

A microfluidic chip
of RA

FLS, Osteoclastic, Bone marrow
mesenchymal stem cell (BMSC)

• Simulated FLS migration and invasion mediated bone erosion in RA.
• RA positive drug celastrol inhibition of FLS cell migration and tartrate resistant
acid phosphatase (TRAP) activities.

(100)

A joint mimicking
loading system

Chondrocytes • To investigate the effect of combined stimulation on the zonal organization of
cartilage.
• Mechanical loads applied in joints play a crucial role in stimulating ECM
production and its functional rearrangement.

(101)

Monolithic
microfluidic platform

of OA

Chondrocytes • The PDMS membrane of the device allows mechanical stimulation of the
chondrocytes.
• Chondrocytes cultured close to the side of high physiological stimulation had
lower viability.

(102)

A cartilage-on-a-chip
model of OA

Chondrocytes • Hyperphysiological compression in this model triggers the transition of cartilage
homeostasis to chondritis and inflammation and hypertrophy, and a gene
expression profile similar to that seen in clinical OA tissue can be obtained,
enabling the screening of DMOA candidates.

(103)

Osteochondral Tissue
Chip of OA

IPSCs differentiate into cartilage
and osteoblasts

Celecoxib, a prescription drug for OA, downregulated the expression of catabolic
and proinflammatory cytokines in this model, demonstrating the utility of this
model for drug screening.

(104)

Organotypic
microfluidic model

of OA

Chondrocytes,
FLS,

Synovial fluid

The platform is designed to study the biological mechanism of monocyte
extravasation in synovial membrane and will be used in the future to test
compounds that target the chemokine signaling axis responsible for
monocyte recruitment.

(105)

Miniature Joint
System of OA

Osteoblasts,
Chondrocytes,
FLS, Adipocytes

The potential of miniJoint to predict the in vivo efficacy of drug therapies was
demonstrated, thus providing a powerful OoC model for the study of joint
pathology and the development of novel therapeutic interventions.

(106)

A miniature knee
joint system (known
as the miniJoint)

of OA

Osteoblasts,
Chondrocytes,

FLS,
Adipocytes

• The combined treatment of bone morphogenic protein-7(BMP-7) and
oligodeoxynucleotides reduced inflammation in the synovial-like fibrous tissue and
increased the formation of glycosaminoglycan in the cartilage fraction.
• This is the first demonstration of the potential of micro-joints to develop drugs to
improve OA disease.

(107)

A cartilage-on-chip Chondrocytes This model allows multiple experimental parameters to be studied, opening new
avenues for basic research in cartilage tissue and drug testing research in
arthritic diseases.

(108)

Microphysiological
Osteochondral
System of OA

Human bone marrow stem cell
(HBMSCs) differentiated into upper
cartilage-like tissue and lower bone-

like tissues.

This model provides novel capabilities for the physiology of osteochondral tissue
and the pathogenic mechanisms of OA, and serves as a high-throughput platform
to test potential DMOADS

(30)

A 3D synovium-on-
a-chip

FLS The incorporation of intricate human synovial organ cultures into a lab-on-a-chip
platform yields consistent and dependable insights into the impact of systemic
stress factors on synovial tissue structures.

(109)

(Continued)
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FLS, macrophages, endothelial cells and nerve cells, all of which are

embedded in the 3D hydrogel (Figure 3). To replicate the effects of

shear stress caused by joint fluid during movement and blood

circulation, either partial or ongoing perfusion in both chambers

can be employed. Where membrane stretching is used, for example,

in Lung-on-a-Chip (57) devices to simulate breathing and Intestine-

on-a-Chip (118) devices to simulate peristalsis.

A variety of OoC systems have been created to investigate

synovium’s function in rheumatic diseases. To illustrate, a

vascularized Synovium-on-a-Chip that incorporates mechanical

stimulation was reported to study healthy synovial membranes,

synovial inflammation, and its effects on circulating monocyte

behavior (98). A JoC model including vascularized synovial

membrane and articular cartilage was developed and validated in

a study to investigate the exfiltration of monocytes into the synovial

membrane (119). A microfluidic chip-based co-culture system was

evaluated for its ability to mimic bone erosion caused by FLS in RA

and its potential for drug testing (100). Rothbauer and his team

engineered a 3D Synovium-on-a-Chip setup to track the emergence

and development of inflammatory responses in synovial tissues

(109). For closer physiological proximity, the nearest Synovial

Membrane-on-a-Chip incorporates synovial fluid (120).
3.3 Other joint tissues chips

Other joint tissues, including tendons, ligaments, meniscus, and

Hoffa fat, we can envision designing these tissue chips in a plug-

and-play form that can be flexibly adapted to applications driven by

clinical needs. Lymphatic vessels have been incorporated into in

vitro models of RA in several studies (121).When making the

decision on which tissues or components to incorporate, it is

important to find a middle ground between complexity and
Frontiers in Immunology 07
accuracy. The goal is to maintain a JoC model that remains

biologically and/or physiologically relevant, while also promoting

its widespread adoption through simplicity and user-friendliness.
3.4 Sensors for RA

Has now developed a variety of biological sensors used in RA.

Some optical biosensors are used to detect RA-related biomarkers,

including microRNAs (miRNAs), anti-citrullinated protein

antibodies (ACPA) (122, 123), rheumatoid factor (RF) (124), and

C-reactive protein (CRP) (125–127). Electrochemical nanosensor

for the detection of ACPA (128). A sandwich dual electrochemical

biosensor for the simultaneous detection of anti-cyclic citrullinated

peptide (CCPA) and RF autoantibodies with high sensitivity and

efficiency was recently reported (129). Lin et al. developed a peptide

electrochemical sensor based on electrochemical impedance

spectroscopy, for detecting RA autoantibodies (130). Due to the

small size of nanomaterials and their unique electronic, physical

and chemical properties (131), nanobiosensor devices have been

developed for RA (132, 133) and will become a vital component of

the next generation of point-of-care diagnostic tools, offering rapid

and accurate testing options (134).
4 Prospects and opportunities of
Synovial Joint-on-a-Chip in RA

4.1 To investigate the etiology and
pathogenesis of RA

The onset and development of RA is linked to a range of

different factors, including genetics, immunity, and the
TABLE 2 Continued

Joint Models Cells/Tissues type Main Findings/Uses References

3D osteochondral
microtissue of OA

Bone, Osteochondral interface,
Cartilage, Synovium,

It will eventually serve as an improved, high-throughput in vitro model for
predicting the efficacy, safety, bioavailability, and toxicological outcomes of
candidate OA drugs.

(31)
FIGURE 3

Synovial Joint-on-a-Chip. The multi-tissue characteristic of joint determines the complexity of synovial joint-on-a-chip. When making JoC, the
usual method is to separate each joint tissue into a single chip module, and then connect the required part appropriately according to their own
research purposes.
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environment (such as smoking). A key benefit of using OoC

in vitro models lies in their capacity to examine a single factor

sequentially, thereby reducing potential disruptions in live studies

(95). With the support of microfluidic technology, Several OoC

devices, designed to mimic the etiology of diseases, have been

created. A 3D Synovium-on-a-Chip system with four individual

microcompartments has been developed to monitor the occurrence

and progression of inflammatory synovial tissue responses (109).

4.1.1 Genetic susceptibility
Recent research has uncovered an expanding array of genetic

factors associated with joint disorders, including epigenetic changes

and genomic variations (135). Genetic factors stand out as the

primary risk factor for RA (1). It is feasible to conceive of two main

applications of synovial articular microchips in unraveling RA

genetic susceptibility. Not only can we study specific gene

functions by creating “genetically modified” OoC, but the

utilization of comparative transcriptomics in the analysis of

tissues derived from OoC models generated by cells from various

patients and disease subgroups has the potential to elucidate

previously unidentified genetic inclinations to joint diseases (135).

We have reason to believe that in the near future, this new model

will also be used in RA etiology and pathogenesis research.

4.1.2 Environmental factors
Smoking is known to significantly escalate the danger of RA.

Benam et al. (136) constructed a smoking airway chip composed of

four integrated components in vitro to study the smoke-induced

pathophysiology. Another study connected small airway chips to

biomimetic smoking robot microfluidics to investigate how e-

cigarettes impact genetic, molecular, cellular, and tissue reactions

in human lungs under controlled conditions (137). The

development of cigarette chips, trachea chips, and lung chips is

expected to further the understanding of how smoking affects RA.

4.1.3 Immune disorder
The immune system is pivotal in the emergence and

advancement of numerous rheumatic conditions (138), and since

immune malfunction is a key factor in the development of RA, it

ought to be incorporated into the suggested JoC model. Recent

extensive research has shown that changes in the gut microbiota of

RA patients significantly contribute to the development of abnormal

systemic immunity (139–141). Lately, the rapid evolution of Gut-on-

a-Chip (or Intestinal-on-a-Chip) technology has opened new avenues

for disease research, including RA. 1) Gut-Microbiome-on-a-Chip.

The Gut-on-a-Chip developed by Jalili-Firoozinezhad’s team

coculture human gut epithelial cells with either anaerobic or

aerobic gut microbiota (by producing a controlled oxygen gradient)

to examine the immediate connections between gut bacteria and

intestinal tissues (142).A separate research by Gumuscu and

colleagues involved co-culturing intestinal bacteria (E. coli) cells

with Caco-2, perfusion continuously using a microfluidic

apparatus, to initially assess the effects of drugs (143). 2) Gut-

Immune Interactions-on-a-Chip. Kim and colleagues have created
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a bespoke human Gut-on-a-Chip system designed to explore the

dynamics of gut and immune responses (144). Similarly, Shin and

Kim designed an immune model using a similar approach to observe

the early stages of inflammation in the gut (145).

Currently, the Gut-on-a-Chip is already used for conditions such

as phenylketonuria (146), viral infections (147) and inflammatory

bowel disease (IBD) (148). Although there is no precedent for RA, the

gut is closely related to RA (intestinal infection can be the cause of

RA, intestinal microbial disturbance is the pathogenesis of RA, RA

can be manifested as digestive system involvement, and the gut itself

and intestinal flora have a certain effect on drug efficacy). The

growing research on the gut-joint axis suggests a promising future

for Gut-on-a-Chip technology in the study of RA.
4.2 Screening of drugs

Developing new therapeutic agents and treatments is a

recognized challenge due to its high cost, complexity, extended

duration, and high failure rates. The OoC technology, with its high

throughput, integration, and reproducibility, offers a promising

solution to reduce the costs associated with drug research and

development and is increasingly being utilized in drug screening

and analysis.

4.2.1 Modeling of pharmacokinetics
and pharmacodynamics

Following the identification of potential molecules and targets,

studies focusing on pharmacokinetics and pharmacodynamics (PK

and PD) are conducted. On the one hand, PK is used to describe the

metabolic process of drug candidates in vivo, namely absorption,

distribution, metabolism and elimination (ADME). On the other

hand, PD refers to the drug’s impact on a specific tissue or organ,

namely, how pharmacology or toxicology interacts with the drug’s

dosage or concentration (149). Integrating PK/PD factors is vital for

the advancement of new medications, as it forecasts potential drug

reactions, thereby minimizing harmful metabolites and side effects

(93, 150).
4.2.2 Evaluating drug safety and efficacy
The safety and efficacy of drugs are usually not predicted in

animal models (151–153).The pharmacokinetics of drugs are

affected by many factors, and toxicity testing and screening of

drugs with inappropriate disease models may lead to potential

multi-organ side effects (41). Multi-OoC (154) or human BoC

models (94), which couple complex whole-body physiological

reactions from two or more organ chips in vitro, facilitate the

study of organ interactions and the identification of possible adverse

effects (155). Additionally, these models offer a basis for examining

interactions between drugs (156). A microfluidic chip co-culture of

FLSs with osteoblasts and osteoclasts reestablishes the migration

and invasion abilities of bone-associated cells, providing a valuable

tool for anti-RA drug screening for FLS migration-mediated

targeted bone erosion (100).
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Furthermore, during the quest for novel medications, an

additional critical factor impacting drug efficacy is the effective

method of drug delivery within the patient’s system (157).

Therefore, developments in Skin-on-a-Chip for transdermal

administration assessment (158), Lung-on-a-Chip for inhalation

administration evaluation (159, 160), Gut-on-a-Chip for oral/rectal

administration testing (161, 162), and models for vascularization in

intravenous administration testing (163) have been achieved.

Additionally, this approach facilitates the examination of

potential drugs in at-risk groups such as expectant mothers, kids,

and the aged, who are frequently omitted from clinical

studies (164).

4.2.3 Personalized drug therapy
In recent years, high-throughput OoC utilizing multi-chamber

and compatible dosing concentration gradient generators is a new

method for drug development or “personalized” drug therapy,

which can automatically process multiple drug combinations of

different concentrations within a brief span of time to improve the

efficiency of drug development (165). The organoid chip developed

by Schuster et al. (166) can perform individual, combined and

ordered drug screening.

The continuous or sampling drug administration, coupled with

managing the culture environment, enables the evaluation of

intricate dosing doses and cycles, and even combined therapies.

This will provide a more precise and personalized regimen for the

periodic combination of medications in RA patients. Evidence has

shown that the anti-inflammatory and anti-metabolic responses of

certain drugs [Celecoxib, a drug that is non-steroidal and anti-

inflammatory (167), cortisol hormone dexamethasone (168),

interleukin-1 receptor antagonist (169)] can be predicted using in

a Cartilage-on-a-Chip model (103). OoC, especially multi-OoC, a

new in vitro model, is expected to screen potentially effective drugs

for improving RA symptoms and controlling disease progression,

and even take into account the functional status of patients’ organs

to achieve personalized medication.
4.3 Diagnosis and early prevention

The progression of RA initiates in a state of health, succeeded by

the onset of preclinical RA, which poses a risk for RA, then

transitions to early synovitis, and ultimately culminates in

established, destructive disease (1). According to the 2010

American College of Rheumatology/European League Against

Rheumatism (ACR/EULAR), early diagnosis and treatment are

important in improving the prognosis of RA. The detection

method that simultaneously targets RF and anti-CCP is integrated

in a 45 mm × 62 mm microfluidic chip, which is of great

significance for the diagnosis of RA, especially early RA (170).

Studies have shown that depending on the cells and stimuli used,

OoC can be used to model the different stages of RA development

(i.e., preclinical RA, early RA, and established RA) to understand
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the impact of RA pathology on various organs over both immediate

and extended periods (171), which could lead to renewed optimism

in the early detection and potential prevention of RA. However, at

present, joint tissues are mainly obtained from patients with

advanced joint diseases (172). Lack of joint tissue in healthy or

early-stage joint disease is a major obstacle.
4.4 Individual precision medicine

Individuals exhibit unique genetic profiles, diverse living

conditions, and varied disease mechanisms, leading to distinct

clinical presentations and complications. Tailoring medical care

to these individual differences is essential. It is meaningful to stratify

patient subgroups and even create “Your Chip” or “Patient-on-a-

Chip” to achieve true personalized medical care. Even within the

same patient, changes in the chip’s responses at different disease

stages can provide valuable insights for targeted interventions. OoC

applications may be particularly useful in cases where alternative

techniques fail to replicate genetic disorders (173), or when studies

in humans are difficult (e.g., special populations such as pregnant

women and young children, new drugs that have not yet been tested

in clinical trials, potentially pathogenic radiation, etc.).

Despite the rapid development of OoC technology, integrating

various mature tissues while maintaining their characteristics in

multi-OoC systems is still in its infancy. Phenotypes during organ

maturation are influenced by a variety of factors, such as the

microenvironment composed of nutrients, metabolites, local

substrates, circulating immune cells, and metabolites. As a result,

the BoC has not yet been fully realized, although it is developing at a

rapid pace.
5 Conclusion and future prospects

In this review, for the first time, we have compiled practical

evidence that various systems are establishing OoC, and innovatively

analyzed the possibility of integrating various systems into systemic

disease RA. This move undoubtedly provides a new alternative model

for studying RA. Although there are still challenges and

shortcomings, OoC combines the advantages of medical biology

and engineering, and can effectively solve the constraints of animal

models and traditional in vitromodels. In addition to realizing 3D cell

culture, the system reproduces the relationship between cells and

their matrix. Moreover, it can simulate the interstitial fluid and

mechanical force stimulation of target organs in vivo, which has

unparalleled advantages in the bionic microenvironment.

The future development trend of OoC will be a system composed

of multiple organs with the help of connected pipes-human organ

bionic chips. This requires more research on population proportions,

differentiation conditions, spatial distribution among multicellular

populations, and the determination of amplification factors to

simulate the complex physiological environment in vivo. Due to its
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reproducibility and accuracy, OoC is likely to completely change the

way medical research is conducted in the future, replacing animal and

2D cell experiments and becoming a new tool for more functional,

integrated, automated and personalized preclinical research.

The utilization of emerging technologies, such as artificial

intelligence and regulatory algorithms, to establish connections

with the OoC systems has the potential to enhance their

application in the fields of precision medicine and systems

biology (174). With the breakthrough of engineering challenges,

the integration of technologies in various fields, and the smooth

advancement of the industrialization layout of corresponding

companies, emerging technologies such as 3D printing, OoC and

nanotechnology may be expected to trigger a revolution in the

creation of novel medications and make the track full of vitality.
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