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Exosomes play a crucial role in various biological processes, such as human

development, immune responses, and disease occurrence. The membrane

proteins on exosomes are pivotal factors for their biological functionality.

Currently, numerous membrane proteins have been identified on exosome

membranes, participating in intercellular communication, mediating target cell

recognition, and regulating immune processes. Furthermore, membrane

proteins from exosomes derived from cancer cells can serve as relevant

biomarkers for early cancer diagnosis. This article provides a comprehensive

review of the composition of exosome membrane proteins and their diverse

functions in the organism’s biological processes. Through in-depth exploration

of exosome membrane proteins, it is expected to offer essential foundations for

the future development of novel biomedical diagnostics and therapies.
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1 Introduction

In recent years, as our understanding of exosomes has advanced, the biological roles of

exosome membrane proteins in cells and organisms have garnered increasing attention. As

a primary constituent of exosomes, exosome membrane proteins not only play a role in the

formation and release of exosomes (1–6) but also exhibit diverse functions, including

targeting or adhering to receptor cells, anti-apoptotic activities, membrane fusion, signal

transduction, metabolism, and structural dynamics (7). Therefore, comprehending the

composition and functions of exosome membrane proteins is crucial for understanding the

biological characteristics and mechanisms of action of exosomes.

The generation of exosomes involves the inward budding of the plasma membrane and

the formation of intraluminal vesicles (ILVs) within multivesicular bodies (MVBs) in the

cell. ILVs are eventually secreted as exosomes by the fusion of MVBs with the plasma

membrane and released via exocytosis (8–12). The initial inward budding of the plasma

membrane forms a cup-shaped structure containing cell surface and soluble proteins

related to the extracellular environment. Subsequently, budding of the inner membrane
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forms ILVs within endosomes, which contain specific proteins,

lipids, nucleic acids, and other molecules (13–17). The biogenesis of

exosomes is driven by multiple protein-regulated mechanisms,

including ESCRT protein complexes, Rab GTPases, Tetraspanins,

etc (18). Finally, mature MVBs fuse with the plasma membrane,

releasing ILVs as exosomes through exocytosis into the extracellular

environment (1, 2). These released exosomes can facilitate

intercellular signaling, modulate immune responses, and promote

cell-cell communication (18, 19).

In this review, we systematically summarize the composition of

exosome membrane proteins and explore their potential

applications in mediating target cell recognition, immune

regulation, and disease control.
2 Composition and classification of
exosome membrane proteins

Exosome membrane proteins are classified based on membrane

localization into transmembrane proteins, lipid-anchored membrane

proteins, peripheral-associated membrane proteins, and inner-associated

membrane proteins. According to the current exosome content database,

Exocarta (http://www.exocarta.org), 9769 exosome proteins have been

identified in exosomes from various cell types and organisms. With

the continuous development of modern technology, the detection

methods for extracellular vesicle membrane proteins are also

constantly being updated. Currently used methods include

Western blot, ELISA, Atomic Force Microscopy (AFM), etc. (20).

Table 1 summarizes the common methods for detecting

extracellular vesicle membrane proteins. Recently, Xiaoni Fang

et al. (27), using the integrated GF/PMO platform, identified a
Frontiers in Immunology 02
total of 334 exosome proteins, including 111 membrane proteins.

The GF/PMO platform is an innovative approach that integrates

two nanomaterials with different surface properties: hydrophilic

macroporous graphene foam (GF) and amphiphilic periodic

mesoporous organosilica (PMO). This platform is used for the

efficient separation of exosomes from human serum and effective

protein analysis, aiding in the identification of more exosome-based

disease biomarkers. This method of efficient and specific separation

and analysis of exosome proteins holds significant application

prospects in biomedical research. Table 2 summarizes some

important and noteworthy proteins distributed within the inner

membrane, outer membrane, and transmembrane region of

exosomes. The arrangement of exosome membrane proteins is

illustrated in Figure 1.

A specific class of membrane proteins serves as exosome-

specific markers, such as the tetraspanins CD9, CD63, and CD81

(2, 4, 28, 30, 56–63). These proteins have been demonstrated to

regulate the transport and function of associated proteins through

membrane compartmentalization (64). Lipid-anchored outer

membrane proteins, including CD39, CD73, GPC-1, CD55, and

CD59, with enzymatic activity, notably CD39 and CD73, have been

shown to promote angiogenesis through adenosine A2B receptor

signaling (65). Peripheral membrane proteins such as Tenascin C,

Fibronectin, ECM1, MfgE8, and Wnt play crucial roles in the

functional processes of exosomes. For example, exosomes derived

from embryonic stem cells (ESCs) carrying Fibronectin contribute

to maintaining their stem cell characteristics (66). Lipid-anchored

inner membrane protein Rab27a regulates exosome formation and

release (67). Inner membrane proteins Tsg101 and Alix serve as

exosome markers and are involved in the biogenesis of

multivesicular bodies (MVB) (68). The arrangement of exosome

membrane proteins is illustrated in Figure 1.

Exosomemembraneproteinsvaryamongdifferent cell sources; for

instance, exosomes from antigen-presenting cells (APCs) are rich in

transmembrane proteins such as MHC-I, MHC-II, and ICAM-1 (68,

69). The diversity of these membrane proteins determines the

versatility of exosome functions (70). Therefore, a focused discussion

on the composition and clinical applications of exosome membrane

proteins is crucial for guiding future research directions.
3 Roles and functions of exosome
membrane proteins

3.1 Diagnostic role of exosome membrane
proteins in diseases

Currently, a substantial body of literature indicates that the

molecular components of exosomes, particularly exosome proteins,

serve as promising novel markers for the clinical diagnosis of

various diseases (71–84). Their application prospects are

considerable due to unique advantages: high sensitivity (85), high

specificity (43), and high stability (85), making them a preferred

option for liquid biopsy. The presence of exosomes can be detected

in various bodily fluids (86).
TABLE 1 Commonly used methods for identifying exosomal proteins.

Method Description References

Flow cytometry Detect and characterize exosome
surface proteins

(21)

Enzyme-linked
immunosorbent
assay (ELISA)

Used for the detection and quantification
of exosomal proteins. Common capture
antibodies include CD63 and CD81

(22)

Western blot Used to detect the presence of proteins
on extracellular vesicles (CD9,

CD63, CD81)

(23, 24)

Atomic Force
Microscopy
(AFM)

Using a very sharp cantilever to scan the
sample surface, software analysis can be
used to identify specific receptor sites on

the surface of extracellular vesicles,
including membrane proteins

(15)

Single Particle
Interferometric
Reflectance

Imaging Sensor
(SP-IRIS)

Antibodies labeled with extracellular
vesicle surface markers can be arranged
on silicon chips to detect extracellular

vesicle surface proteins

(25)

Surface plasmon
resonance (SPR)

Label-free and real-time quantitative
analysis techniques have a high

sensitivity of up to 1 nM for specific
protein binding of 20 kDa

(26)
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In the current stage, many potential targets for cancer treatment

are tumor-specific biological markers. Since exosomes derived from

cancerous sources carry similar markers on their membrane

surfaces, researching exosome membrane protein biomarkers is

crucial for the development of targeted cancer therapies (87, 88).

The primary component of exosome proteins, membrane proteins

(27), offers a reliable choice for developing new disease diagnostic

biomarkers. It is gradually becoming a focal point in exosome

research. Table 3 summarizes exosome membrane proteins from

different disease sources.

Mariantonia Logozzi and colleagues designed an internal

sandwich ELISA (Exotest), revealing a significant increase in CD63

andCaveolin-1 in plasma-derived exosomes frommelanomapatients.

They described a novel non-invasive detection method for assessing

the expression of exosome-specific membrane proteins in melanoma

patients’ plasma, providing a potential diagnostic tool (120). In 2013,

Yusuke Yoshioka and colleagues conducted a comparative analysis of

exosomeproteinmarkers in different human cancer types. They found

elevated levels of CD63 in exosomes derived from malignant cancer

cells compared to those from non-cancerous cells, further supporting

CD63 as a protein marker for cancer (29, 121). Bingqian Lin et al.

developed a specific dual-ligand recognition system based on the

exosome membrane, combined with droplet digital PCR (ddPCR)

(TRACER), for quantifying tumor-derived exosome PD-L1 (Exo-PD-

L1). The tumor-derived Exo-PD-L1 levels detected by TRACER could

distinguish cancer patients fromhealthy blood donors (122). Research

indicates that the lipid-anchored outer membrane protein GPC-1 is

significantly overexpressed in plasma-derived exosomes from

pancreatic ductal adenocarcinoma (PDAC) patients compared to

healthy controls, confirming the potential utility of GPC-1 for early

PDAC diagnosis (123).

Compared to biomarkers detected directly in conventional

specimens (such as serum or urine), exosome biomarkers offer

higher specificity and sensitivity due to their superior stability (124).

Exosome biomarkers, especially those from easily obtainable

biological fluids like saliva, show great potential for clinical

applications. In conclusion, exosome biomarkers are still in the
TABLE 2 Exosome membrane proteins.

Protein
Classification

Exosome
Source

Membrane
Protein
Name

Reference

Transmembrane
Proteins

HEK293 Cell CD9、
CD63、CD81

(28, 29)

B
Lymphocyte、

DC

MHC-II (30–33)

DC ICAM-1 (34)

MCF-7 Cell SDCs (35)

Mouse E0771、
Mouse Pan02

Integrins (36)

B Lymphocyte MHC-I (37)

Melanoma Cell PD-L1 (38)

DC line D1 CD86 (39)

SW480 BCAM、

CD109、
CD44、CD46、
CD47、CD70、
GPC4、IGSF8、

ITGA5、
LTGAV、

ITGB5、LDLR、
MMP14、
TFRC、

TSPAN1、
TSPAN14、
VAMP7

(40)

Lipid-Anchored
Outer

Membrane Proteins

HT1376、
CACO2、
DU145、

PC3、MCF7

CD39、CD73 (41)

Erythrocyte CD55、CD59 (42)

MDA-MB-231 GPC-1 (43)

Peripheral
Membrane Proteins

Pancreatic ductal
adenocarcinoma
with pancreatic

duct fluid

Tenascin C (44)

Sw71 Fibronectin (45)

Colon cancer
patient
plasma

ECM1 (46)

COS-7 Cell MfgE8 (47)

B-
cell Lymphoma

Wnt (48)

SW480 CLU、DCXR、
DNM1L、
EIF3L、

FKBP1A、
GANAB、

LGALS3BP、
RACK1、

SEC23B、USO1

(40)

(Continued)
TABLE 2 Continued

Protein
Classification

Exosome
Source

Membrane
Protein
Name

Reference

Lipid-Anchored
Inner

Membrane Proteins

HIV-1 BaL Strain Rab27a (49)

S2 Cell ARC (50)

Inner
Membrane Proteins

RN Cell、T
cell、Human
Mesothelioma

Cell Line

ERM (51–53)

CHO-K1 Cell Syntenin-1 (54)

DC Line D1 HSC73、
HSP84、Tsg101

(39, 55)

HeLa Kyoto Cell Alix (2)
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early stages of discovery and development, and their potential value

in clinical diagnostics requires further exploration. Therefore, if

certain membrane proteins are specifically expressed by a particular

tumor (125), their expression on circulating exosomes can be

utilized as an early diagnostic signal for cancer. The diagnostic

potential of exosome membrane proteins in different diseases is

depicted in Figure 2.
3.2 Remote regulatory role of exosome
membrane proteins

Current data suggest that exosome membrane proteins can

exert regulatory effects on recipient cells (17, 126–132). They

identify target cells by binding to surface proteins on recipient

cells (133), leading to changes in the recipient cells. Kun Zhao et al.

(134) found that exosome tetraspanin protein Tspan8 and CD151

derived from tumor cells can activate the PI3K/Akt signalling

pathway by binding to GPCR and RTK proteins on recipient

cells, promoting tumor angiogenesis. Similarly, Shi Du et al.

demonstrated that tumor cell-derived exosomes carrying tyrosine

kinase 2 (TIE2) with an immunoglobulin and epidermal growth

factor homology domain deliver TIE2 protein to macrophages.

Macrophages carrying TIE2 (TEMs) interact with angiopoietin-2

(ANG2), ultimately promoting cervical cancer angiogenesis (135).

Furthermore, a study detected exosomes in the serum of

osteosarcoma patients with lung metastasis and those without

lung metastasis. The results revealed a significant expression of

PD-L1 and N-cadherin in exosomes from serum of osteosarcoma

patients with lung metastasis. This study suggests that exosomes

derived from osteosarcoma and carrying PD-L1 and N-cadherin
FIGURE 1

Schematic diagram of exosome membrane proteins. This figure was created using MedPeer.
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TABLE 3 Exosome membrane proteins from various disease sources.

System
Classification

Disease
Classification

Membrane
Proteins

References

Respiratory System Lung Cancer CD171、
CD151、
Tetraspanin
8、CD317、
EGFR、PD-L1

(82, 89, 90)

Nasopharyngeal
Carcinoma

Galectin 9、
LMP1、HLA-II

(91, 92)

Digestive System Liver Cancer CD26、
CD81、
S1C3A1、
CD10、
GPC3、

PIGR、14–3-3z

(93–96)

Chronic
Hepatitis C

CD81 (97)

Pancreatic Cancer GPC1、
CD151、
EphA2、
CKAP4、
CD133

(43, 81, 98–100)

Colorectal Cancer CD147、CD9 (101)

Gastric Cancer Tetraspanin
8、HER-2

(neu)、CCR6

(102)

Nervous System Parkinson’s
Disease

LRRK2、
L1CAM

(84, 103)

Malignant Glioma EGFRvIII、
EGFR、PDPN

(104, 105)

(Continued)
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reach the lungs through the circulatory system. The osteosarcoma

cells at the lung metastatic site further internalize these exosomes,

ultimately promoting the migration and progression of metastatic

tumors (136). The regulatory mechanism involves two steps. Firstly,

osteosarcoma cells stimulate epithelial cells to transition from an

adhesive epithelial state to an active mesenchymal state through the

epithelial-mesenchymal transition (EMT) mechanism. This

mechanism facilitates the spread of cancer cells at metastatic sites.

Secondly, metastatic osteosarcoma cells internalize exosomes

derived from primary osteosarcoma, which carry PD-L1 and N-

cadherin, promoting lung metastasis. A comprehensive

understanding of the complex regulatory mechanisms of exosome

membrane proteins in diseases can deepen our understanding of

disease development and provide stronger support for the

development of innovative treatment methods.
3.3 The role of exosomal membrane proteins
in epithelial-mesenchymal transition

EMT is a cellular process that drives the differentiation of

epithelial cells into mesenchymal cells. Through specific
Frontiers in Immunology 05
programs, epithelial cells acquire mesenchymal characteristics,

including reduced cell adhesion, loss of cell polarity, and

increased cell migration (137–140). Notably, cancer cells that

have undergone EMT not only gain distinct molecular

characteristics but also develop resistance to chemotherapy and

immunotherapy (141–143). Proteins in exosomes significantly

influence chemotherapy resistance. Based on their mechanisms of

inducing resistance, exosomal proteins are mainly classified into

enzymes, transcription factors, membrane proteins, and secreted

proteins (144). Laura J. Vellade et al. (145) demonstrated that

exosomes carrying PDGFRb interact with receptors on melanoma

cells, leading to dose-dependent activation of the PI3K/AKT

signaling pathway and bypassing BRAF inhibition in the MAPK

pathway, ultimately resulting in reduced drug sensitivity in

melanoma cells.

Reports indicate that tumor-derived exosomes (TEX) carry

proteins that promote epithelial-mesenchymal transition,

including EMT inducers such as TGF-b, HIF1a, b-catenin,
Caveolin-1, and Vimentin. These proteins can enhance the

invasion and migration capabilities of recipient cells and

contribute to stromal remodeling and the formation of the pre-

metastatic niche (146, 147). Research by Mohammad A. Rahman

et al. (147) demonstrated that exosomes derived from lung cancer

activate the migration process of human bronchial epithelial cells

(HBECs) by enhancing their metastatic properties. TEX were

isolated from the supernatants of non-metastatic and metastatic

lung cancer cell lines via ultracentrifugation, and these exosomes

carried epithelial (E-cadherin, ZO-1) and mesenchymal (N-

cadherin, Vimentin) markers. Among these, E-cadherin and N-

cadherin serve as membrane protein markers.

Furthermore, the exosomal membrane protein CD44 can

promote cell migration and invasion by binding to hyaluronic

acid and activating EMT-related signaling pathways (148). A

recent study by Nakamura and colleagues showed that exosomes

derived from ovarian cancer transfer CD44 to human peritoneal

mesothelial cells (HPMC), thereby promoting cancer invasion

(149). Research by Yao Li et al. (150) found that exosomes

carrying the PSGR membrane protein enhanced the migration,

invasion, and EMT of low-invasive prostate cancer cells (LNCaP

and RWPE-1) and reshaped the mRNA profiles of these cells.

Although the morphological, phenotypic, and functional changes

associated with EMT have been well described, the molecular and

genetic mechanisms by which exosomal membrane proteins drive

this process require further investigation (151–154).
3.4 Therapeutic role of exosome
membrane proteins

Existing studies indicate that exosome membrane proteins play

a crucial role in mediating various disease treatments (125, 133,

155–169). CD47 is usually upregulated on the surface of tumor cells,

binding to signal-regulatory protein alpha (SIRPa) on phagocytic

cells and inhibiting their phagocytic function, creating a “don’t eat

me” signal. Eunee Koh et al. (170) designed engineered exosomes

with surfaces carrying SIRPa, disrupting the CD47-SIRPa
TABLE 3 Continued

System
Classification

Disease
Classification

Membrane
Proteins

References

Genitourinary
System

Renal
Cell Carcinoma

CAIX (106)

Diabetic
Nephropathy

EGFR (107)

Bladder Cancer CD36、
CD44、MUC1,
Integrin b1,
IntegrinBa6,
CD10,5T4,

Basigin,CD73

(108, 109)

Prostate Cancer PSA、PSMA (110)

Ovarian Cancer L1CAM、

CD24、
TSG101、
Alix、

ADAM10、
EMMPRIN、
Claudin-4、
HSP70、

HER2、CD47

(57, 111–113)

Endocrine System Thyroid Cancer ITGB2 (114)

Breast Cancer CD9、
Annexin‐1、
GPC1、
PMSA、
EGFR、

CD81、CEA

(115–117)

Skeletal System Osteosarcoma CD63 (118)

Immune System Systemic
Lupus

Erythematosus

BPI (119)
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interaction between cancer cells and macrophages, enhancing the

efficiency of phagocytosis of tumor cells. Similarly, Eunji Cho et al.

(171) found that exosomes containing SIRPa could more effectively

counteract CD47 on cancer cells, enhancing phagocytosis of tumor

cells by macrophages and inhibiting the metastatic growth of

tumors, offering a new approach to cancer treatment (Figure 3A).

Lydia Alvarez-Erviti et al. (172) achieved therapeutic effects for

Alzheimer’s disease by modifying exosomes from dendritic cells to

deliver therapeutic siRNA drugs, specifically knocking down the

expression of beta-amyloid precursor protein 1 (BACE1). LAMP2B

fused with a neuron-specific RVG3 peptide mediated the treatment

of neurodegenerative diseases, as shown in Figure 3B.

Additionally, Yan Lin et al. (173) fused HSTP1 with exosome

membrane protein LAMP2B and expressed it on the surface of

exosomes through genetic engineering. Engineered exosomes

(HSTP1-Exos) were more efficiently internalized by hepatic

stellate cells (HSC-T6). HSTP1 is a reliable targeting peptide that

specifically binds to activated hepatic stellate cells (aHSC).

Exosomes modified with HSTP1 achieved precise treatment of

aHSC in complex liver tissues, providing a new approach for the

clinical treatment of liver fibrosis (Figure 3C). Currently, preclinical

studies on the use of exosomal membrane proteins for disease

treatment have achieved many successes (174–179), laying a solid

foundation for the further development of clinical trials (178–187).

Benjamin Besse et al. conducted a phase II clinical trial using

dendritic cell-derived exosomes carrying MHC-I and MHC-II

and loaded with IFN-g (IFN-g-Dex) to treat non-small cell lung

cancer (NSCLC) patients, confirming the ability of Dex to enhance

NK cell anti-tumor immunity in advanced NSCLC patients (188).
Frontiers in Immunology 06
Shengming Dai et al. conducted a phase I clinical trial using

exosomes with surface-expressed MHC molecules and heat shock

proteins (HSPs) derived from autologous ascites (Aex) combined

with granulocyte-macrophage colony-stimulating factor (GM-CSF)

to treat colorectal cancer, showing that Aex combined with GM-

CSF can induce specific anti-tumor cytotoxic T lymphocyte (CTL)

responses (189). Table 4 lists the clinical trials involving exosomal

membrane proteins (190, 191).

Additionally, before the clinical application of exosomal

membrane proteins, issues related to exosome isolation and

comprehensive characterization must be addressed (192–194).

The lack of standardized procedures for exosome isolation,

proper quality control, and consistent characterization methods

can hinder the clinical development of exosomes and limit their

analysis in standard clinical laboratories (192, 194, 195). Table 5

lists some commonly used methods for exosome isolation

and supplements these methods with their advantages

and disadvantages.
3.5 Immunomodulatory role of exosome
membrane proteins

Previous literature has reported the role of exosomes in immune

responses (211–221), primarily mediated by membrane proteins.

For instance, the expression of PD-L1 on the surface of exosomes

has been confirmed, and its abundance on exosomes is related to the

progression of host tumors (38, 222–224). In 2022, Yunxing Lu et al.

proposed an integrated microfluidic system for exosome isolation
FIGURE 2

Diagnostic role of exosome membrane proteins in diseases. This figure was created using MedPeer.
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FIGURE 3

Therapeutic role of exosome membrane proteins in diseases. This figure was created using MedPeer.
TABLE 4 Clinical trials using exosomal membrane proteins as primary outcome measures from 2013 to 2024.

Study Title Conditions Study
Type

Start date Phase NCT
Number

LRRK2 and other novel exosome proteins in Parkinson's disease:
biomarkers associated with Parkinson's disease susceptibility and/or

progression in exosome-proteomes derived

Parkinson's Disease Observational 2013–01-01 Not
Applicable

NCT01860118

Study to measure the expression of the HER2-HER3 dimer in tumor and blood
(exosomes) samples from patients with HER2 positive breast cancer receiving

HER2 targeted therapies

HER2-positive
Breast Cancer

Observational 2019–12-20 Not
Applicable

NCT04288141

Pilot study with the aim to quantify a stress protein in the blood and in the
urine for the monitoring and early diagnosis of malignant solid tumors:

concentration of HSP70 exosomes in the blood and urine

Cancer Interventional 2015–12-15 Not
Applicable

NCT02662621

Identification in blood sample of new diagnostic protein markers derived from
circulating tumor exosomes for colorectal cancer

Colorectal Cancer Observational 2021–01-07 Not
Applicable

NCT04394572

Exosomes and Immunotherapy in Non-Hodgkin B-cell Lymphomas (ExoReBLy) Lymphoma, B-cell,
Aggressive Non-
Hodgkin (B-NHL)

Interventional 2019–07-02 Not
Applicable

NCT03985696

Analysis of Circulating Exosomes in Melanoma Patients (EXOMEL1) Melanoma Observational 2019–03-01 Not
Applicable

NCT05744076

Safety and efficacy of EXO-CD24 in preventing clinical deterioration in patients
with mild–moderate acute respiratory distress syndrome

ARDS Interventional 2023–07-04 Phase 2 NCT05947747

(Continued)
F
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and detection (EXID system) to analyze the abundance of exosome

PD-L1 protein markers. The study suggested that the abundance of

PD-L1 reflects sensitivity to immune responses, and exosomes

containing PD-L1 weaken anti-tumor immunity in the tumor

microenvironment (225). Meizhang Li et al. indicated that

exosomes derived from Wharton’s Jelly mesenchymal stem cells

(WJMSCs) enhance T-cell inhibitory effects through the carried

PD-L1, contributing to alleviating immune rejection in organ

transplantation, as shown in Figure 4C (226). Furthermore,

research results indicate that blocking exosome PD-L1 secretion

significantly contributes to anti-tumor immune responses.
Frontiers in Immunology 08
Inhibiting exosome secretion combined with anti-PD-L1 therapy

may enhance clinical anti-tumor effects (227).

Recently, Wei Zhang et al. (228) identified three classes of

immunosuppressive membrane proteins expressed by

syncytiotrophoblast-derived exosomes. These include NKG2D

ligands (MICA/B, ULBP1–5/RAET1), oligomerization-induced

apoptosis ligands (FASL, TRAIL), and immune checkpoint

molecules interacting with PD-1 (PD-L1/B7-H1/CD274, PD-L2/

B7-H2/CD273). The delivery of these immunosuppressive

membrane protein signals by exosomes regulates the maternal

immune system and promotes the development of maternal-fetal
TABLE 4 Continued

Study Title Conditions Study
Type

Start date Phase NCT
Number

Safety and Efficacy of Exosomes Overexpressing CD24 in Two Doses for Patients
with Moderate or Severe COVID‐19

Covid19 Interventional 2021–06-09 Phase 2 NCT04902183

Evaluation of the Safety of CD24‐Exosomes in Patients With COVID‐
19 Infection

SARS-CoV-2 Interventional 2020–09-25 Phase 1 NCT04747574

A Phase II Randomized, Double‐blind, Placebo‐controlled Study to Evaluate the
Safety and Efficacy of Exosomes Overexpressing CD24 to Prevent Clinical
Deterioration in Patients with Moderate or Severe COVID‐19 Infection

COVID-19 Disease Interventional 2021–07-11 Phase 2 NCT04969172
Source: classic.clinicaltrials.gov.
TABLE 5 Common exosome isolation methods and their advantages and disadvantages.

Method Approach Advantages Disadvantages References

Density-gradient
ultracentrifugation

(dUC)

Combining centrifugal force and density gradient
media, including iodixanol, to separate exosomes based

on buoyant density. Centrifugation is typically
performed at 100,000–120,000 g for 16 hours

Can handle large sample volumes Potential loss of exosomes
may occur

(20, 196, 197)

Immunoaffinity-
based capture

Using particles with bound antibodies to specifically
bind exosomes

High specificity Lack of standardization,
requiring specific
exosomal markers

(198, 199)

Polymer based
precipitation

Employing polymer particles, such as polyethylene
glycol (PEG), to isolate exosomes from the solution

Improves separation efficiency
with commercially

available instruments

Co-precipitation of non-
exosomal materials

(200)

Size exclusion
chromatography

(SEC)

Utilizing the elution time of substances in a column to
separate exosomes based on size

Good integrity of isolated
exosomes, low cost using
chromatography columns

Non-specific isolation leading
to contamination by non-

exosomal substances

(201, 202)

Tangential-flow
filtration (TFF) for
exosome isolation

Capturing exosomes by passing exosome-containing
fluids through filters with membrane pores

Supernatant can be concentrated
and filtered simultaneously, and
has been used for 3D culture

Secondary filtration needed to
improve yield

(200, 203, 204)

Ultra-
centrifugation

Using an ultracentrifuge (100,000–110,000 g, 16–18
hours) to extract exosomes from the supernatant

Processes large sample volumes,
simple operation

Time-consuming, protein
precipitation may disrupt

exosome structure

(205–207)

Hydrostatic
Filtration

Dialysis (HFD)

Placing the supernatant in a dialysis membrane (1000
kPa) to be separated based on hydrostatic

pressure differences

Isolates intact exosomes from
highly diluted solutions without
the need for ultracentrifugation

Time-consuming, costly, with
potential exosome loss

(208)

Microfluidic-
Based Isolation

Including immunoaffinity capture of exosomes,
nanoporous membrane filtration, or microcolumn

nanocapture of exosomes

High specificity, reproducibility,
short separation time, low

separation cost

Complex operation (209)

Antibody-coated
magnetic beads

Attaching monoclonal antibodies to the surface of
immunomagnetic beads to specifically bind exosomes

Can select and extract specific
subpopulations from samples
based on specific marker
expression, regardless of

particle size

Difficult separation of
exosomes from magnetic beads,
requiring appropriate analytical

tools for exosome analysis

(18, 210)
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FIGURE 4

Immunomodulatory effects of exosome membrane proteins on the body. This figure was created using MedPeer.
FIGURE 5

The impact of exosome membrane proteins derived from immune cells on cancer development. Exosome membrane proteins carried by immune
cells can promote or inhibit the progression of cancer cells. Exosome membrane proteins produced by B cells, CD8+ T cells from tumor-bearing
mice, and M2 macrophages promote cancer cell development. Exosome membrane proteins released by natural killer cells and Vd2 T cells inhibit
the development of cancer. This figure was created using MedPeer.
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tolerance, as depicted in Figure 4A. Exosomes derived from

dendritic cells express MHC-I, MHC-II, and immune co-

stimulatory molecules CD80 and CD86 on their membrane

surfaces, promoting T-cell activation and proliferation and

regulating the body’s immune mechanisms (8), as shown in

Figure 4B. Previous studies have indicated that MHC-II molecules

transferred to recipient dendritic cells through exosomes activate

CD4+ T cells. Similarly, MHC-I molecules transferred to dendritic

cells through exosomes contribute to the activation of CD8+ T cells

(229, 230). In addition, exosome membrane proteins derived from

immune cells can influence the development of cancer cells (217),

Figure 5. For immunosuppressive molecules expressed on the

exosome membrane, blockade can be achieved by incorporating

corresponding antibodies, while immune-activating molecules can

be applied in clinical therapy.
3.6 Other functions of exosome
membrane proteins

In addition to their role in diagnosing diseases, regulating the

body’s immune system, and serving as biological carriers targeting

receptor cells, exosome membrane proteins also possess other

functionalities. Upon generation, exosomes interact with proteins

circulating in the surrounding environment, leading to the

formation of a “protein corona” (PC). This formation alters

the properties of exosomes and influences their functionality

within the body (231–233). The protein corona enhances the

stability of exosomes, prolonging their circulation lifespan in the

body. This protection shields exosomes from degradation and

clearance, thereby increasing their survival time in vivo (234, 235).

Furthermore, the presence of the protein corona can impact the

interaction between exosomes and target cells. Specific protein

coronas may facilitate adhesion and uptake between exosomes

and target cells, mediating the entry of biologically active

substances released by exosomes into recipient cells (234, 236). In

conclusion, research on exosome membrane proteins is ongoing,

and the exploration of their functions is expected to deepen.
4 Summary and outlook

With the increasing understanding of exosome membrane

proteins, more functionalities of these proteins are gradually

coming to light. In addition to the roles mentioned in this article,

such as diagnosis and immune regulation, exosome membrane

proteins can be redesigned or modified, significantly enriching

their functions. This diversity opens up vast potential applications

for exosome membrane proteins in the future, making them a focal

point of current research. Despite the extensive research on

exosome membrane proteins, many proteins on the exosome

membrane still have undetermined functions, requiring further

in-depth investigation. Moreover, since exosome membrane

proteins vary depending on the cell source, it is essential to study them

in the context of their origin to obtain more accurate results (125, 133).
Frontiers in Immunology 10
Furthermore, membrane proteins of exosomes have garnered

significant interest in clinical trials for disease diagnosis and

therapy. However, achieving a range of functions in clinical

settings remains challenging for researchers (210, 237). To

advance the clinical translation of exosomes, several key issues

need to be addressed. These include: 1. The need for standardized

methods to isolate, characterize, and quantify exosomes to ensure

their stability and reproducibility; 2. Developing rigorous preclinical

biosafety evaluation protocols to mitigate risks before human trials;

3. Conducting pilot clinical studies to demonstrate feasibility,

biological distribution in humans, and preliminary efficacy before

large-scale applications (13, 20, 24, 238).

Although researchers from different fields have explored

exosome membrane proteins, gaining varying degrees of

understanding of protein types and biological functions,

the intricate environment within the body poses the need for

further exploration and explanation of membrane protein-

mediated mechanisms.
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