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mediators in the lipid-coronary
artery disease/ calcification
(CAD/CAC) causal pathway
Dingding Qian1†, Haoyue Zhang2†, Rong Liu2 and Honghua Ye1*

1Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Ningbo,
Zhejiang, China, 2School of Medicine, Ningbo University, Ningbo, Zhejiang, China
Background: Coronary artery disease (CAD) imposes a significant global health

burden, necessitating a deeper comprehension of its genetic foundations to

uncover innovative therapeutic targets. Employing a comprehensive Mendelian

randomization (MR) approach, we aimed to explore the genetic associations

between lipid profiles, immune cell phenotypes, and CAD risk.

Methods: Utilizing data from recent large-scale genome-wide association

studies (GWAS), we scrutinized 179 lipid and 731 immune cell phenotypes to

delineate their genetic contributions to CAD pathogenesis, including coronary

artery calcification (CAC). Moreover, specific immune cell phenotypes were

examined as potential mediators of the lipid-CAD/CAC causal pathway.

Results: Among the 162 lipid species with qualified instrumental variables (IVs)

included in the analysis, we identified 36 lipids that exhibit a genetic causal

relationship with CAD, with 29 being risk factors and 7 serving as protective

factors. Phosphatidylethanolamine (18:0_20:4) with 8 IVs (OR, 95% CI, P-value:

1.04, 1.02-1.06, 1.50E-04) met the Bonferroni-corrected significance threshold

(0.05/162 = 3.09E-04). Notably, all 18 shared lipids were determined to be risk

factors for bothCADandCAC, including 16 triacylglycerol traits (15 ofwhich had≥ 3

IVs), with (50:1) exhibiting the highest risk [OR (95% CI) in CAC: 1.428 (1.129-1.807);

OR (95%CI) inCAD: 1.119 (1.046-1.198)], and2diacylglycerol traits. Furthermore,we

identifiedHLADR+natural killer cells (IVs= 3) as nominally significantwith lipids and

as potential mediators in the causal pathway between diacylglycerol (16:1_18:1) or

various triacylglycerols and CAD (mediated effect: 0.007 to 0.013).

Conclusions: This study provides preliminary insights into the genetic

correlations between lipid metabolism, immune cell dynamics, and CAD

susceptibility, highlighting the potential involvement of natural killer cells in the

lipid-CAD/CAC causal pathway and suggesting new targets for therapy. Further

evidence is necessary to substantiate our findings.
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Introduction

Coronary artery disease (CAD) remains a leading cause of global

morbidity and mortality, necessitating continuous efforts to elucidate

its complex pathogenesis and identify novel therapeutic targets.

Dyslipidemia’s pivotal role in CAD development is well-established,

but emerging evidence suggests that immune-inflammatory

pathways, mediating lipid metabolism cascades, also play crucial

roles in disease pathophysiology (1, 2). Understanding the intricate

interplay between lipid metabolism and immune regulation may

yield new insights into CAD mechanisms and pave the way for

innovative therapeutic interventions.

Lipids play a central role in CAD onset and progression, with

dyslipidemia recognized as a major risk factor for atherosclerosis

and subsequent coronary events. Plasma lipids, typically measured

through high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), triglycerides, and total cholesterol,

have been extensively studied (3, 4). Advanced lipidomic techniques

have significantly expanded our understanding of circulating lipid

variability and breadth (5, 6). Finer lipid classifications, such as

choles t ero l e s ters , ceramides , phosphat idy lcho l ines ,

lysophosphatidylcholines, and diacylglycerols, offer potential

improvements in CAD risk assessment (7). Additionally, ongoing

advancements in omics technologies provide opportunities to

identify genetic variants underlying a broad spectrum of lipid and

immune cell phenotype determinants, potentially offering new

intervention targets for cardiovascular diseases (8). However,

specific lipid species’ potential impacts on CAD risk and the role

of immune cells therein remain incompletely investigated.

In this study, we employed Mendelian randomization (MR)

analysis to comprehensively investigate a wide array of 179 lipid

profiles, assessing their genetic susceptibility to CAD and coronary

artery calcification (CAC) (7). Additionally, we integrated genetic

data from 731 immune cell phenotypes, utilizing a two-step MR
Frontiers in Immunology 02
analysis to evaluate their potential mediation in the lipid-CAD/

CAC connection (9).

Our findings provide new insights into the complex genetic

architecture of CAD and underscore the interdependence between

lipid metabolism and immune cell dynamics in disease susceptibility.

By revealing the genetic pathways linking lipids, immune cells, and

CAD risk, our study offers new avenues for developing targeted

therapeutic interventions aimed at mitigating CAD burden and

improving patient prognosis. Importantly, this study employs an

exploratory MR design, aiming not only to generate hypotheses and

provide preliminary insights into the causal relationships between

lipids, immune cells, and CAD/CAC but also to leverage genetic

instruments to infer causality. This exploratory nature sets the stage

for future research to build upon our findings and move toward more

definitive conclusions.

Methods

Study overview

Our research aimed to uncover genetic factors associated with

CAD by examining an expansive set of 179 lipid profiles, shedding

light on deeper disease mechanisms and identifying new avenues for

treatment. Drawing from a comprehensive lipidomic study, we

extracted the respective genetic instrumental variables (IVs) related

to lipid categories from 179 GWAS to evaluate their genetic

predisposition to CAD through an MR approach. Additionally, we

explored the genetic influence of significantly linked lipids on CAC

risk. Our study also integrated recent genetic data on 731 immune cell

phenotypes to assess the role of specific immune cells as potential

intermediaries in the lipid-CAD/CAC connection, utilizing a two-

step MR analysis (Figure 1). This comprehensive analysis aims to

enhance our understanding of genetic underpinnings under CAD

and pave the way for novel therapeutic interventions.
FIGURE 1

Study process overview. The study first conducts MR to assess the association between lipids and CAD/CAC, followed by a Two-Step MR approach.
Step 1 identifies immune cell phenotypes associated with CAD/CAC, and Step 2 examines the causal link between these immune cells and lipid
profiles, suggesting potential mediation pathways.
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Source of genetic information for
included phenotypes

Our research utilized lipidomic data from a comprehensive

analysis of 179 lipid species in a Finnish cohort, with datasets

recorded in the HGRI-EBI Catalog (Study ID: GCST90277238 to

GCST90277416) and detailed lipidome data accessible at https://

www.ebi.ac.uk/gwas/publications/37907536 (7). GWAS of 179

lipidomes were batch downloaded and formatted in R software.

We analyzed CAD using GWAS data from 181,522 cases among

1,165,690 participants, mainly of European descent, available at the

Common Metabolic Diseases Knowledge Portal (CVDKP) (https://

cvd.hugeamp.org/downloads.html#summary) (10). The latest CAC

GWAS data, involving 26,909 Europeans, was also sourced from

CVDKP (11). Additionally, we accessed GWAS data for 731

immune cell traits from 3,757 individuals from Sardinia via the

IEU open GWAS database (https://gwas.mrcieu.ac.uk/), with access

numbers ranging from ebi-a-GCST90001391 to ebi-a-

GCST90002121 (9). All datasets comply with ethical guidelines

from their respective studies, negating the need for further ethical

approval for our secondary analysis.
Genetic instruments of exposure

To ascertain causal connections between lipid and immune cell

profiles (exposure) and CAD and CAC, we utilized exposed IVs as

genetic proxies. Data processing was conducted primarily with the

TwoSampleMR package (version 0.5.8) in R. We began by aligning

the datasets to a common reference genome build (GRCh37) to

ensure consistent genomic coordinates. Subsequently, all datasets

were standardized, focusing on allele coding and effect size

representation. We extracted relevant single nucleotide

polymorphisms (SNPs) associated with lipid and immune cell

phenotypes from GWAS summary statistics using the

extract_instruments function. These SNP as IVs, serving as

genetic surrogates, were selected based on their significant genetic

correlations (P < 5 × 10-8) and minimal linkage disequilibrium (r² <

0.001) within a 10,000 kb span. Ensuring the ancestry of control and

case samples was well-matched was critical to avoid confounding;

traits without suitable IVs were excluded from the analysis. We

excluded SNPs with F-statistic values under 10 to maintain

instrument strength. Only phenotypes with SNPs meeting these

criteria for correlation and independence were considered for

analysis. True to the exclusion restriction principle for MR, our

analysis focused on SNPs linked exclusively to lipid and immune

cell levels, excluding empirically inferred potential confounding

effects (smoking, alcohol consumption, hypertension, diabetes,

BMI, lipid-lowering drugs, antihypertensives, and antidiabetic

medications) on CAD/CAC risk using the NCBI’s LDlink tool by

significant genetic correlations (P < 5 × 10-8) (12). The

corresponding outcome data for the selected SNPs were extracted

using the extract_outcome_data function, and the exposure and

outcome datasets were harmonized with the harmonise_data

function to align effect alleles (e.g., A/T, C/G). During the
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harmonization process (set the action = 2), palindromic variants

with allele frequencies near 0.5 are typically excluded due to the

challenge in accurately aligning them. Finally, we performed MR

estimation and sensitivity analyses to validate the reliability of

our findings.
Statistical analysis

MR estimates of lipidome and CAD、CAC
To evaluate the causal impact of lipid profiles on CAD and

CAC, our analysis utilized the TwoSampleMR package in R (version

4.3.1), applying the inverse variance weighting (IVW) method for

variables with multiple genetic IVs and the Wald ratio for single-IV

traits. The IVW method assumes all IVs are valid and non-

interacting, suitable for complex variables. To enhance result

reliability and minimize false positives, we employed the MR-

Robust adjusted profile score (RAPS) technique from the mr.raps

package (version 0.4.1), offering stabilized and accurate causal

assessment through offering consistent and asymptotically normal

estimators by adjusting the profile score to provide robustness to

pleiotropy and weak instruments (13). To address the issue of

multiple comparisons given the numerous lipids examined, we

utilized the Bonferroni correction, which is a conservative method

for reducing the likelihood of false positives. The adjusted

significance threshold was set at P < (0.05 divided by the number

of trait/SNP) and when the P-value does not reach the adjusted

significance threshold but remains below 0.05, it is considered

nominally significant. We aim to identify a broad range of

potential associations, capturing initial signals that might be

missed with stricter thresholds. The exploratory nature of this

study is intended to generate genetic causal hypotheses,

uncovering interesting patterns and associations for future, more

targeted investigations. MR-Egger regression assessed pleiotropy in

multi-IV analyses, with intercept P-values > 0.05 supporting

result credibility.
Two-step MR estimates for immune cells as
mediators in lipid-CAD/CAC association

Our investigation deepened the understanding of how lipid

profiles potentially modulate CAD risk by affecting immune cell

behaviors. Utilizing a two-step MR strategy (14), we initially

pinpointed the direct influence of specific lipids on CAD, and

CAC, and we derived common lipid types that potentially affect

CAD and CAC. In the first step of MR, we determined which

immune cell phenotypes were statistically significantly associated

with CAD. In the second step, we can analyze the causal

relationship between the lipids co-associated with CAC, CAD,

and these specific immune cell phenotypes, shedding light on

how lipid variations may predispose to CAD through immune

modulation (Figure 1). Mediating candidates are recognized as

logically consistent based on the direction of the MR effect. This

dual-phase analysis underscored the interplay between lipid

metabolism and immune cell dynamics, offering insights into

novel genetic pathways that may underlie the lipid-immune
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influence on CAD risk. Significance thresholds were similarly

corrected using 0.05 divided by the number of traits being compared.
Results

Lipids significantly causally associated
with CAD

The causal association between lipids andCADwas investigated in

our study. Initially, we identified the IVs for 179 lipid species, ensuring

strong correlation and independence criteria were met. IVs for 162

lipids were successfully identified, with computed F-statistic values
Frontiers in Immunology 04
ranging from 29.79 to 1946.15, indicating no weak instrumental bias

(Supplementary Table 1). Utilizing the IVW/Wald ratio for MR, we

found that 36 lipids were genetically causally associated with CAD,

with 29 acting as risk factors and 7 as protective factors (Figure 2A,

Supplementary Table 2). This preliminary observation highlights a

significant subset of lipid groups potentially influencing CAD risk.

Specifically, Phosphatidylcholine (O-18:0_16:1) (OR, 95%CI, P-value:

0.85, 0.80-0.91, 3.21E-06), Phosphatidylethanolamine (18:0_20:4)

(OR, 95% CI, P-value: 1.04, 1.02-1.06, 1.50E-04), Triacylglycerol

(50:1) (OR, 95% CI, P-value: 1.12, 1.05-1.19, 2.65E-04), and

Phosphatidylcholine (16:0_18:1) (OR, 95% CI, P-value: 1.12, 1.05-

1.19, 2.70E-04) allmet the Bonferroni-corrected significance threshold

(0.05/162 = 3.09E-04) (Supplementary Table 2).
FIGURE 2

MR results for lipidomes, immune cell phenotypes, and CAD. (A) Volcano plot showing IVW/Wald ratio effect estimates between lipidomes and CAD,
with significant lipid species highlighted in red; (B) Bubble plot displaying MR-RAPS estimates of significant lipids associated with CAD through IVW/
Wald ratio estimation; (C) Volcano plot illustrating IVW/Wald ratio effect estimates between immune cells and CAD; (D) Bubble plot illustrating MR-
RAPS estimates of significant immune cell phenotypes associated with CAD through IVW/Wald ratio estimation. Two immune cell types with
horizontal pleiotropic bias are highlighted in red.
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To corroborate the MR findings, robust RAPS analysis was

conducted on the 36 lipids, revealing that 32 lipids passed the

nominal significance threshold, including 26 risk factors (17

triacylglycerols, 4 Phosphatidylcholines, 2 Diacylglycerols, Sterol

ester (27:1/20:2), Phosphatidylethanolamine (18:0_20:4) and

Phosphatidylinositol (16:0_20:4)) and 6 protective factors (5

Phosphatidylcholines and Ceramide (d40:2)) (Figure 2B, Table 1,

Supplementary Table 3). Elevated levels of 17 triacylglycerols were

positively correlated with increased CAD risk (Odds Ratio, OR > 1).

Importantly, the findings regarding finely categorized

phosphatidylcholine traits, with 5 specific phosphatidylcholines

exhibiting protective association against CAD (OR < 1). Conversely,

4 specific phosphatidylcholines were identified as strongly associated

with elevated CAD risk, with phosphatidylcholine (16:1_18:0)

demonstrating the highest risk (OR: 1.138, 95% CI: 1.036-1.251, P =

0.007) (Figure 2B, Table 1, Supplementary Table 3). To address

potential directional horizontal pleiotropy bias in the MR results,

Egger’s intercept test was performed for phenotypes with more than

three IVs. The P values of the five MR estimate consistently exceeded

0.05, indicating an absence of bias by pleiotropy and thus enhancing

the validity of our causal inferences (Table 2, Supplementary Table 4).
Immune cell phenotypes genetically
associated with CAD

Given the well-established role of immune cells in CAD, we

aimed to assess the causal association of 731 immune cell phenotype

groups with CAD. Utilizing similar criteria as for lipid species, we

identified IVs for these immune cell phenotypes. Out of 731

phenotypes, 614 species with eligible IVs were successfully

identified, with calculated F-statistic values greater than 10 (29.85

to 5062.70) (Supplementary Table 5). MR results revealed that 38

immune cell phenotypes with nominal significance were genetically

causally associated with CAD, with 9 showing positive correlations

and 29 showing negative correlations (Figure 2C, Supplementary

Table 6). Robust RAPS analysis of these 38 correlated immune cells

confirmed significant associations for 33 phenotypes, including 25

negative and 8 positive correlations (Figure 2D, Supplementary

Table 7). Assessment of pleiotropy using MR-Egger’s method

identified 2 immune cell phenotypes (CD64 on monocyte and

CD64 on CD14+ CD16- monocyte) with potential bias due to

pleiotropy in their estimates of CAD (Figure 2D, Table 2,

Supplementary Table 8). Consequently, 31 immune cell

phenotypes (9 phenotypes with ≥3 IVs and CD24+ CD27+ B cell

%B cell passed significance threshold correction) were ultimately

identified as having a significant causal association with CAD,

comprising 23 protective factors and 8 risk factors.
Lipidome and immune cell phenotypes
associated with CAC

CAC serves as a prominent pathological hallmark of CAD (11).

Here we utilized the recently released CAC GWAS data to

characterize potentially genetically associated lipid profiles and
Frontiers in Immunology 05
immune cell phenotypes. Initially, employing the IVW/Wald

ratio, we identified 39 lipid types significantly associated with

CAC (Supplementary Table 9). Subsequent robust RAPS analyses

excluded 5 potentially non-significant lipids, leaving 34 lipids

confirmed to have a robust causal relationship with CAC.

Notably, 18 of these lipids also exhibited a causal relationship

with CAD, underscoring their importance in CAD pathology.

Importantly, all 18 shared lipids were identified as risk factors for

both CAD and CAC, comprising 16 triacylglycerol traits (15 species

with ≥ 3 IVs) with (50:1) representing the highest risk [OR (95% CI)

in CAC: 1.428 (1.129-1.807); OR (95% CI) in CAD: 1.119 (1.046-

1.198); P <0.05/3] and 2 diacylglycerol traits, including (18:1_18:2)

[OR (95% CI): 1.212 (1.058-1.388), P<0.05/5] and (16:1_18:1) [OR

(95% CI): 1.370 (1.055-1.780), P<0.05/2] (Table 3, Supplementary

Table 10). Assessment of pleiotropy did not invalidate the

aforementioned causal assessment (P > 0.05) (Table 4,

Supplementary Table 11).

Regarding immune cells, MR results suggested that 23 immune

cells were causally related to CAC (Supplementary Table 12), and

RAPS estimates further confirmed the robustness of causality for 19

immune cells, including 9 negative and 10 positive correlations

(Supplementary Table 13). MR-Egger estimation did not reveal the

presence of horizontal pleiotropy (Table 4, Supplementary

Table 14). Interestingly, the analysis of immune cells with CAC

yielded only one duplicate finding that passed corrected

significance, CD24+ CD27+ B cell %B cell, compared to the

CAD analysis.
Immune cell-mediated lipid-CAD/CAC
causal pathway

In light of the potential for lipids to influence CAD through

modulation of immune cell phenotypes, we employed a two-step

MR approach to evaluate immune cell types as potential mediators

of the lipid-CAD/CAC causal pathway. We specifically focused on

the 18 immune cell phenotypes that are co-associated with both

CAD and CAC, andMR-estimated them against the 31 immune cell

phenotypes robustly associated with CAD.

Our analysis revealed that 14 lipid levels, comprising 13

triglycerides and 1 diacylglycerol, were inversely genetically

correlated with SSC-A on HLA DR+ Natural Killer cells (IVs = 3,

bIVW: -0.291 to -0.526) at a nominal significant level (Corrected

standard: P < 0.05/14 = 0.004). The RAPS analysis consistently

confirmed the direction of causality estimation, bolstering the

robustness of this mediation analysis (Figure 3, Supplementary

Table 15). Further examination of the causal relationship between

SSC-A on HLA DR+ Natural Killer cells and CAD demonstrated

that lower levels of this immune cell were associated with higher

CAD risk [OR (95%) = 0.975 (0.952-0.998), P = 0.034]

(Supplementary Table 6). Collectively, these findings suggest that

higher diverse triglyceride or diacylglycerol (16:1_18:1) levels are

predictive of lower SSC-A on HLA DR+ Natural Killer cell levels,

and lower SSC-A on HLA DR+ Natural Killer cells indicate higher

CAD risk. Therefore, we identify SSC-A on HLA DR+ Natural

Killer cells may play as a genetically predicted potential mediating
frontiersin.org
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TABLE 1 Robust adjusted profile score (RAPS) estimates for lipidomes found to be significantly causally associated with coronary artery disease (CAD)
by the IVW/Wald ratio methods.

ID.exposure Trait.exposure nsnp Beta P value OR OR_LCI OR_UCI

GCST90277248 Sterol ester (27:1/20:2) levels 1 0.106 0.010 1.111 1.026 1.204

GCST90277254 Ceramide (d40:2) levels 2 -0.049 0.004 0.952 0.920 0.985

GCST90277260 Diacylglycerol (16:1_18:1) levels 1 0.125 0.007 1.133 1.035 1.241

GCST90277262 Diacylglycerol (18:1_18:2) levels 3 0.090 0.047 1.094 1.001 1.195

GCST90277273 Phosphatidylcholine (14:0_18:1) levels 2 0.104 0.005 1.109 1.032 1.192

GCST90277278 Phosphatidylcholine (16:0_16:1) levels 1 0.129 0.007 1.138 1.037 1.249

GCST90277281 Phosphatidylcholine (16:0_18:1) levels 2 0.116 0.001 1.123 1.047 1.205

GCST90277286 Phosphatidylcholine (16:0_20:3) levels 2 -0.050 0.008 0.951 0.917 0.987

GCST90277292 Phosphatidylcholine (16:1_18:0) levels 1 0.130 0.007 1.138 1.036 1.251

GCST90277301 Phosphatidylcholine (18:0_18:3) levels 1 -0.126 0.012 0.881 0.798 0.973

GCST90277312 Phosphatidylcholine (18:1_20:3) levels 3 -0.053 0.016 0.948 0.908 0.990

GCST90277322 Phosphatidylcholine (O-16:0_20:3) levels 2 -0.055 0.007 0.946 0.909 0.985

GCST90277335 Phosphatidylcholine (O-18:0_16:1) levels 1 -0.161 2.79E-04 0.851 0.780 0.928

GCST90277348 Phosphatidylethanolamine (18:0_20:4) levels 8 0.038 0.002 1.039 1.014 1.064

GCST90277360 Phosphatidylinositol (16:0_20:4) levels 3 0.074 0.008 1.076 1.019 1.137

GCST90277380 Triacylglycerol (46:2) levels 1 0.123 0.008 1.131 1.033 1.238

GCST90277382 Triacylglycerol (48:1) levels 1 0.118 0.006 1.125 1.035 1.224

GCST90277383 Triacylglycerol (48:2) levels 1 0.101 0.005 1.107 1.032 1.187

GCST90277384 Triacylglycerol (48:3) levels 1 0.099 0.005 1.104 1.031 1.182

GCST90277386 Triacylglycerol (49:2) levels 1 0.116 0.006 1.123 1.033 1.221

GCST90277387 Triacylglycerol (50:1) levels 2 0.113 0.001 1.119 1.046 1.198

GCST90277388 Triacylglycerol (50:2) levels 1 0.101 0.005 1.106 1.031 1.185

GCST90277389 Triacylglycerol (50:3) levels 2 0.089 0.003 1.093 1.031 1.159

GCST90277390 Triacylglycerol (50:4) levels 2 0.084 0.003 1.087 1.030 1.149

GCST90277391 Triacylglycerol (50:5) levels 2 0.090 0.003 1.094 1.030 1.161

GCST90277393 Triacylglycerol (51:2) levels 1 0.109 0.005 1.116 1.033 1.204

GCST90277395 Triacylglycerol (51:4) levels 1 0.104 0.006 1.109 1.030 1.194

GCST90277399 Triacylglycerol (52:5) levels 2 0.092 0.003 1.096 1.032 1.164

GCST90277400 Triacylglycerol (52:6) levels 3 0.073 0.008 1.075 1.019 1.135

GCST90277401 Triacylglycerol (53:2) levels 1 0.118 0.006 1.125 1.035 1.223

GCST90277403 Triacylglycerol (53:4) levels 2 0.097 0.002 1.101 1.037 1.170

GCST90277407 Triacylglycerol (54:6) levels 2 0.092 0.006 1.097 1.026 1.172

GCST90277331 Phosphatidylcholine (O-16:2_18:0) levels 1 0.051 0.054 1.053 0.999 1.109

GCST90277328 Phosphatidylcholine (O-16:1_18:2) levels 1 0.078 0.059 1.081 0.997 1.171

GCST90277320 Phosphatidylcholine (O-16:0_18:1) levels 1 0.091 0.063 1.095 0.995 1.206

GCST90277319 Phosphatidylcholine (O-16:0_16:1) levels 1 -0.077 0.066 0.926 0.852 1.005
F
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nsnp, number of single nucleotide polymorphism; OR, odds ratio; OR_LCI, Odds ratio 95% lower confidence interval; OR_UCI, Odds ratio 95% upper confidence interval.
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immune cell in the lipid-CAD/CAC causal association pathway

(mediated effect: 0.007 to 0.013).
Discussion

The immunogenetics perspective underscores the intricate

relationship among lipids, genes, and the immune system in

atherosclerosis (15). Moreover, the interplay between lipid

metabolism and immune function significantly impacts

inflammation and immune response, influencing CAD development

and progression (16). Benefitting from omics technology

advancements and large-scale genetic data, our study explores the

intricate interplay between lipid profiles, immune cell phenotypes, and

the pathogenesis of CAD, offering fresh insights into potential

mechanisms driving cardiovascular pathology. Beyond conventional

lipidomics, our key findings not only underscored significant overlaps

among lipid species associated with CADandCACbut also elucidated

potential mediating pathways linking lipid levels to CAD risk through

the modulation of specific immune cell phenotypes.
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Recent bioinformatics analyses identified distinct lipid

metabolic patterns in CAD patients, suggesting unique

characteristics within subgroups. Specific lipid metabolism-related

genes were implicated in atherosclerosis progression, hinting at

targeted genetic interventions (17). Our study identified 36 lipid

traits causally associated with CAD and 4 passed the Bonferroni

correction, comprising both risk and protective factors,

underscoring the complexity of lipid metabolism in CAD

pathogenesis. This finding is consistent with prior observational

studies that emphasize the association of specific lipid species, such

as various ceramides and phosphatidylcholines, with increased

CAD risk (18–21). Previous research has identified specific

ceramide subtypes, such as ceramide (d18:1), as predictors of

adverse cardiovascular events in CAD (21). Our study expands

this understanding by demonstrating that ceramide (d40:2) levels

act as protective factors for both CAD and CAC.

Furthermore, 18 lipid types including 16 triacylglycerol traits

(15 of which had ≥3 IVs) and 2 diacylglycerol traits were identified

as shared risk factors for CAD and CAC, particularly emphasizing

various triacylglycerols and diacylglycerols, supporting common
TABLE 2 Directional horizontal pleiotropy in the causal association of lipid and immune cell groups with CAD as assessed by MR-Egger regression.

Exposure ID.exposure Trait.exposure Egger_intercept
Standard
error

P
value

Lipids

GCST90277262
Diacylglycerol

(18:1_18:2) levels
0.054 0.020 0.220

GCST90277312
Phosphatidylcholine
(18:1_20:3) levels

0.001 0.026 0.987

GCST90277348
Phosphatidylethanolamine

(18:0_20:4) levels
0.002 0.008 0.849

GCST90277360
Phosphatidylinositol
(16:0_20:4) levels

0.041 0.026 0.360

GCST90277400 Triacylglycerol (52:6) levels -1.77E-04 0.044 0.997

Immune cells

GCST90001987
CD64 on CD14+
CD16- monocyte

0.035 0.012 0.025

GCST90002006 CD64 on monocyte 0.032 0.011 0.028

GCST90001417 CD24+ CD27+ B cell %B cell 0.135 0.087 0.365

GCST90001432
Unswitched memory B cell

%lymphocyte
0.010 0.011 0.468

GCST90001649
HLA DR+ Natural Killer %

Natural Killer
-0.003 0.004 0.472

GCST90001585
CD14+ CD16+ monocyte

%monocyte
-0.006 0.006 0.524

GCST90001511
CD25++ CD45RA- CD4 not

regulatory T cell %CD4+ T cell
-0.016 0.018 0.543

GCST90001580
CD14+ CD16+ monocyte

Absolute Count
-0.006 0.007 0.555

GCST90001650
HLA DR+ Natural Killer %

CD3- lymphocyte
-0.003 0.005 0.582

GCST90002077
SSC-A on HLA DR+

Natural Killer
-0.004 0.007 0.660

GCST90001648
HLA DR+ Natural Killer

Absolute Count
-0.002 0.009 0.807
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TABLE 3 RAPS estimation for lipidomes significantly causally associated with coronary artery calcification (CAC) by the IVW/Wald ratio methods.

ID.exposure Trait.exposure nsnp Beta P value OR OR_LCI OR_UCI

GCST90277238 Sterol ester (27:1/14:0) levels 1 0.836 0.001 2.308 1.380 3.861

GCST90277244 Sterol ester (27:1/18:0) levels 8 0.269 0.055 1.309 0.994 1.723

GCST90277246 Sterol ester (27:1/18:2) levels 8 0.330 0.004 1.391 1.109 1.745

GCST90277257 Cholesterol levels 1 0.599 0.023 1.820 1.086 3.048

GCST90277258 Diacylglycerol (16:0_18:1) levels 1 0.320 0.054 1.377 0.995 1.905

GCST90277259 Diacylglycerol (16:0_18:2) levels 1 0.265 0.051 1.303 0.999 1.700

GCST90277260 Diacylglycerol (16:1_18:1) levels 2 0.315 0.018 1.370 1.055 1.780

GCST90277261 Diacylglycerol (18:1_18:1) levels 5 0.194 0.012 1.214 1.044 1.412

GCST90277262 Diacylglycerol (18:1_18:2) levels 6 0.192 0.006 1.212 1.058 1.388

GCST90277263 Diacylglycerol (18:1_18:3) levels 1 0.349 0.055 1.418 0.993 2.024

GCST90277362 Phosphatidylinositol (18:0_18:2) levels 7 0.098 0.047 1.103 1.002 1.215

GCST90277370 Sphingomyelin (d34:1) levels 6 0.283 0.008 1.328 1.077 1.637

GCST90277382 Triacylglycerol (48:1) levels 2 0.328 0.022 1.388 1.048 1.840

GCST90277383 Triacylglycerol (48:2) levels 2 0.285 0.022 1.329 1.042 1.696

GCST90277384 Triacylglycerol (48:3) levels 2 0.271 0.020 1.311 1.044 1.647

GCST90277386 Triacylglycerol (49:2) levels 2 0.308 0.020 1.361 1.051 1.763

GCST90277387 Triacylglycerol (50:1) levels 3 0.356 0.003 1.428 1.129 1.807

GCST90277388 Triacylglycerol (50:2) levels 2 0.264 0.018 1.302 1.047 1.619

GCST90277389 Triacylglycerol (50:3) levels 2 0.229 0.017 1.258 1.042 1.519

GCST90277390 Triacylglycerol (50:4) levels 2 0.224 0.018 1.251 1.039 1.506

GCST90277391 Triacylglycerol (50:5) levels 2 0.243 0.020 1.275 1.040 1.564

GCST90277393 Triacylglycerol (51:2) levels 2 0.259 0.016 1.296 1.050 1.600

GCST90277394 Triacylglycerol (51:3) levels 5 0.254 0.001 1.289 1.110 1.495

GCST90277395 Triacylglycerol (51:4) levels 2 0.237 0.016 1.267 1.046 1.535

GCST90277396 Triacylglycerol (52:2) levels 4 0.263 0.002 1.300 1.102 1.534

GCST90277397 Triacylglycerol (52:3) levels 6 0.199 0.002 1.220 1.075 1.385

GCST90277398 Triacylglycerol (52:4) levels 6 0.240 3.41E-04 1.272 1.115 1.450

GCST90277399 Triacylglycerol (52:5) levels 3 0.227 0.005 1.255 1.070 1.472

GCST90277400 Triacylglycerol (52:6) levels 3 0.191 0.033 1.211 1.016 1.443

GCST90277401 Triacylglycerol (53:2) levels 2 0.254 0.015 1.289 1.050 1.582

GCST90277402 Triacylglycerol (53:3) levels 6 0.175 0.015 1.191 1.034 1.372

GCST90277403 Triacylglycerol (53:4) levels 4 0.237 0.003 1.268 1.086 1.480

GCST90277405 Triacylglycerol (54:4) levels 6 0.167 0.014 1.182 1.035 1.349

GCST90277406 Triacylglycerol (54:5) levels 4 0.200 0.011 1.222 1.046 1.427

GCST90277407 Triacylglycerol (54:6) levels 3 0.224 0.023 1.251 1.031 1.519

GCST90277408 Triacylglycerol (54:7) levels 3 0.210 0.046 1.234 1.003 1.518

GCST90277411 Triacylglycerol (56:5) levels 4 0.152 0.046 1.164 1.002 1.352

GCST90277413 Triacylglycerol (56:7) levels 4 0.204 0.010 1.226 1.051 1.431

GCST90277416 Triacylglycerol (58:8) levels 1 0.347 0.055 1.415 0.993 2.017
F
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underlying mechanisms driving arterial plaque calcification and

underscoring the potential utility of CAC as a surrogate marker for

stratifying CAD risk. For instance, triacylglycerol (50:1) exhibited

the highest risk for both conditions, which is consistent with studies

showing higher levels of triacylglycerols and diacylglycerols in

myocardial infarction-prone rabbits compared to normal rabbits

(19). In a gender-stratified lipidomic comparison study of CAD

patients, women with CAD had lower diacylglycerols (18:1_22:4)

and higher triacylglycerols (52:3) compared to those without CAD.

In men with CAD, diacylglycerols (18:0_22:6), (16:0_16:0),

(14:0_16:0), (16:0_18:0), and (16:1_18:0) were lower, while

diacylglycerol (20:0_20:0) was higher compared to those without
Frontiers in Immunology 09
CAD (22). Our results identified nearly all diacylglycerols and

triacylglycerols as risk factors for CAD or CAC. These

discrepancies may be due to our focus on diacylglycerol (18:1),

differences in lipid function based on fatty acid composition,

methodological variations, and population heterogeneity.

Interestingly, lipidomic analysis of patients with coronary

microvascular dysfunction (MVD) showed lower concentrations

of long-chain triacylglycerols and diacylglycerols, and higher

concentrations of short-chain triacylglycerols. This contrasts with

their traditional role as CAD risk factors and our findings,

indicating specific pathobiological mechanisms in distinct

diseases (23).
TABLE 4 Directional horizontal pleiotropy in the causal relationship of lipid and immune cell groups with CAC as assessed by MR-Egger regression.

Exposure ID.exposure Trait.exposure Egger_intercept
Standard
error

P
value

Lipids

GCST90277246 Sterol ester (27:1/18:2) levels -0.009 0.047 0.850

GCST90277261 Diacylglycerol (18:1_18:1) levels -0.005 0.033 0.885

GCST90277262 Diacylglycerol (18:1_18:2) levels -0.005 0.030 0.871

GCST90277362 Phosphatidylinositol (18:0_18:2) levels 0.022 0.030 0.494

GCST90277370 Sphingomyelin (d34:1) levels -0.009 0.040 0.831

GCST90277387 Triacylglycerol (50:1) levels 0.003 0.068 0.974

GCST90277394 Triacylglycerol (51:3) levels 0.020 0.034 0.602

GCST90277396 Triacylglycerol (52:2) levels 0.019 0.036 0.646

GCST90277397 Triacylglycerol (52:3) levels 0.002 0.028 0.953

GCST90277398 Triacylglycerol (52:4) levels 0.017 0.029 0.591

GCST90277399 Triacylglycerol (52:5) levels 0.002 0.042 0.966

GCST90277400 Triacylglycerol (52:6) levels -0.061 0.067 0.534

GCST90277402 Triacylglycerol (53:3) levels -0.017 0.030 0.604

GCST90277403 Triacylglycerol (53:4) levels 0.011 0.034 0.783

GCST90277405 Triacylglycerol (54:4) levels -0.011 0.022 0.660

GCST90277406 Triacylglycerol (54:5) levels -0.006 0.033 0.881

GCST90277407 Triacylglycerol (54:6) levels -0.025 0.038 0.628

GCST90277408 Triacylglycerol (54:7) levels -0.027 0.088 0.814

GCST90277411 Triacylglycerol (56:5) levels -0.058 0.070 0.494

GCST90277413 Triacylglycerol (56:7) levels 0.018 0.048 0.742

Immune cells

GCST90001508
CD25++ CD45RA+ CD4 not regulatory T cell

%CD4+ T cell
-0.031 0.018 0.193

GCST90001509
CD25++ CD45RA+ CD4 not regulatory T cell

%T cell
-0.029 0.018 0.202

GCST90001621 Natural Killer T Absolute Count -0.030 0.031 0.392

GCST90001558
Terminally Differentiated CD8+ T cell %CD8+

T cell
0.015 0.035 0.743

GCST90001562 CD45RA+ CD8+ T cell %T cell -0.003 0.037 0.945

GCST90001665
CD28+ CD45RA+ CD8dim T cell %CD8dim

T cell
-0.001 0.018 0.961

GCST90001667 CD28+ CD45RA- CD8dim T cell %T cell 0.006 0.128 0.970
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Emerging evidence suggests lipids profoundly influence

immune cell function within atherosclerotic plaques, further

shaping the inflammatory milieu (24–26). Our analysis elucidated

the active involvement of immune cells in CAD pathogenesis, with

31 distinct phenotypes demonstrating significant causal

relationships, indicating their integral role. We also identified

immune cell phenotypes as potential mediators in the lipid-CAD/

CAC pathogenic pathway. Through a two-step Mendelian

randomization approach, we identified SSC-A on HLA DR+

Natural Killer cells as a potential mediator linking lipid levels to

CAD risk, suggesting that lipid-induced alterations in NK cell

activation status may contribute to CAD pathogenesis. We

established a negative causal association of NK cells with CAD,

consistent with reports of reduced NK cell levels in patients with

CAD (27, 28). The expression of HLA-DR on NK cells suggests a

more active and mature phenotype, and these cells may also have

the ability to present antigens and interact with other components

of the immune system (29). The interactions between NK cells and

other immune cells, and their potential to present antigens due to

the expression of HLA-DR, may imply that they play a more
Frontiers in Immunology 10
complex role in the immune response associated with CAD.

These findings suggest that dysregulated lipid metabolism may

not only directly lead to atherosclerosis but also indirectly

influence CAD risk through NK cell dysregulation, opening

avenues for exploring immune-targeted interventions as adjunct

therapies in CAD management.

Our study contributes to understanding CAD pathophysiology

by revealing complex interactions between lipid metabolism and

immune cell function, emphasizing a potential CAD management

approach. While the MR method offers advantages in establishing

causal relationships and enhancing CAD risk prediction, several

limitations may affect our results. Firstly, we applied a correction

for multiple testing due to the large number of traits analyzed. This

correction was necessary to reduce the risk of false positives,

particularly given the exploratory nature of our study. The

corrected significance thresholds resulted in some findings not

meeting the adjusted criteria, underscoring the need for caution in

interpreting these results. Secondly, given the exploratory nature of

our analysis, we included all traits regardless of the number of IVs,

taken to explore as many correlations as possible. Using a single IV in
FIGURE 3

Significant mediated MR estimates for specific lipids and immune cell types in CAD. nsnp, number of single nucleotide polymorphism.
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statistical analysis ensures consistency across different estimation

methods, such as ratio and 2SLS, and allows valid testing of causal

effects, even with a weak instrument. However, it faces challenges like

the finite mean issue and potential bias from weak instruments,

necessitating a P-value threshold of less than 0.03 for practical use

(30). Therefore, caution should be exercised in interpreting these

results and future GWAS with larger samples havemore qualified IVs

needed to support these results. Directional horizontal pleiotropy

may confound causal inference, although MR-Egger regression tests

indicate minimal bias (14, 31, 32). Furthermore, we addressed the

genetic background of population stratification by mitigating weak

instrumental bias using instrumental variables with high F-statistics

and robust RAPS analyses for higher sensitivity validation of

multicollinearity, as well as by focusing the dataset on participants

of European descent only and applying genomic control methods (13,

33). It is important to acknowledge that while LDlink provided robust

support for phenotype association screening of each IV, the exclusion

restriction assumption based on the empirical exclusion of potential

pleiotropic pathways has an element of subjectivity. This subjectivity

may result in some unforeseen confounding factors not being entirely

excluded, thereby impacting the precision of our findings. Although

we employed various sensitivity analyses and rigorous statistical

methods to enhance the robustness of our results, these inherent

limitations could still influence our conclusions. Most GWAS

including the studies we adopted have predominantly included

individuals of European descent. This focus can limit the

applicability of the results to other ethnic groups due to variations in

genetic architecture and allele frequencies (32). Trans-ethnic GWAS

are being conducted to incorporate a broader range of populations.

Furthermore, considering the limitations of data selection is also

necessary, such as potential discrepancies inherent to different

datasets could influence our findings and the relatively small sample

size of immune cells, a larger sample size may reveal more important

associations that may not be detected in the current dataset, and thus

further studies on larger immune cell datasets are needed to validate

and extend our findings. Future research efforts should focus on

elucidating the underlying mechanisms driving the observed

associations, exploring potential therapeutic targets within the lipid-

immune cell axis, and conducting clinical trials to assess the efficacy of

immune-modulating therapies in CAD prevention and treatment.

Integrating insights from lipidomics, immunology, and cardiovascular

biology can deepen our understanding of CAD pathogenesis and

facilitate personalized treatment strategies.
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