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Although advancements in genomic and epigenetic research have deepened our

understanding of acute myeloid leukemia (AML), only one-third of patients can

achieve durable remission. Growing evidence suggests that the immune

microenvironment in bone marrow influences prognosis and survival in AML.

There is a specific association between CD8+ T cells and the prognosis of AML

patients. To develop a CD8+ T cell-related immune risk score for AML, we first

evaluated the accuracy of CIBERSORTx in predicting the abundance of CD8+ T

cells in bulk RNA-seq and found it significantly correlated with observed single-

cell RNA sequencing data and the proportions of CD8+ T cells derived from flow

cytometry. Next, we constructed the CTCG15, a 15-gene prognostic signature,

using univariate and LASSO regression on the differentially expressed genes

between CD8+ THigh and CD8+ TLow groups. The CTCG15 was further validated

across six datasets in different platforms. The CTCG15 has been shown to be

independent of established prognostic markers, and can distill transcriptomic

consequences of several genetic abnormalities closely related to prognosis in

AML patients. Finally, integrating this model into the 2022 European

LeukemiaNet contributed to a higher predictive power for prognosis

prediction. Collectively, our study demonstrates that CD8+ T cell-related

signature could improve the comprehensive risk stratification and prognosis

prediction in AML.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous

hematopoietic malignancy with diverse genetic abnormalities (1).

New standard therapies such as Azacitidine and Venetoclax have

enhanced survival for older, unfit AML patients at initial diagnosis.

Despite these improvements, most AML patients eventually relapse,

with survival rates of 32% at two years and 24% at five years (2).

Novel therapeutic strategies, such as checkpoint blockade (3) and

chimeric antigen receptor T-cell therapies (4), have achieved

promising impacts on the outcomes in hematologic malignancies.

Similarly, numerous ongoing clinical trials are exploring the

effectiveness of stimulating the immune system in the treatment

of AML (5–7).

To date, our understanding of the classification of AML has

been based on the somatic mutations and cytogenetic

abnormalities, which is also the cornerstone of the European

LeukemiaNet (ELN) genetic risk classification (8, 9). Nevertheless,

leukemia is not just a genetic disorder; it represents a complex

microenvironment within the bone marrow, consisting of tumor

cells, various immune cells, and other cell types (10). Recently,

s tud ies have addressed the s ign ificance of immune

microenvironment in AML, disclosing that the immune-related

genes may predict the therapeutic response and patients’ prognosis

(11–13). T cells in the bone marrow (BM) are the prerequisite for

anti-leukemia response. It has been reported that the percentage

and the dysfunctional state of T cells in BM were correlated with the

response to treatment and the survival rates (14–17). Given the

substantial influence of CD8+ T cells on both the efficiency of

immunotherapy and prognosis in AML, we intend to explore

whether a prognostic model built on CD8 T-related genes can

accurately forecast the survival rates of AML patients.

In order to accurately evaluate CD8+ T cells in AML BM, we

chose CIBERSORTx as the machine learning method that enables

the estimation of cell type abundances from bulk transcriptome

data (18, 19). CIBERSORTx, a computational framework for

digitally isolating individual cell type transcriptomes from mixed

bulk RNA data without physical separation, now includes functions

for cross-platform data normalization and virtual cell purification

(18). CIBERSORTx, widely employed as an effective tool in AML

research for quantifying immune cell abundance (20–22), has been

confirmed for its accuracy compared to other methods (21, 22).

Utilizing this method, we calculated CD8+ T cell abundance in AML

BM specimens.

In our study, we aim to build a CD8 tumor infiltrating

lymphocytes (TILs) related prognostic score which is strongly

correlated with overall survival (OS) in AML patients. Firstly, we

used four distinct methods to validate the accuracy of CIBERSORTx’s

prediction of CD8 TILs abundance from bulk RNA-seq. We then

analyzed RNA-sequencing data from AML patients in the RJAML

cohort (RNA-sequencing data of bone marrow samples from de novo

AML patients collected at Ruijin Hospital) and generated fifteen CD8

TILs-related genes from the differentially expressed genes (DEGs) to

construct the CTCG15 prognostic model. We demonstrated the

effectiveness of this model across seven distinct cohorts from
Frontiers in Immunology 02
RJAML, HOVON, TCGA-LAML, BeatAML, and GEO. Further, we

explored the relationship between CTCG15 and the high-frequency

mutations in AML. Finally, we integrated CTCG15 into the ELN2022

framework, this resulted in a notable enhancement in the predictive

accuracy of ELN. Through our findings, we aim to provide CD8 TILs

insights that could refine risk stratification in AML.
Methods

Analysis of scRNA-seq

Before conducting single-cell data analysis, we extracted the

immune cells types and expression counts based on the annotations

provided in the original text (23). The single-cell RNA sequencing

(scRNA-seq) data were normalized using the ‘Seurat’ R package

(24), followed by log-transformation with an offset of 1 and

subsequent scaling. We identified genes with substantial

expression variation by employing the ‘FindVariableFeatures’

function in Seurat, specifying ‘vst’ as the value for the

‘vst.method’ parameter. Then, we utilized ‘ScaleData’ function to

normalize the gene expression values. We performed linear

dimensionality reduction on the high-dimensional dataset

through Principal Component Analysis (PCA) on the highly

variable genes. The ‘IntegrateLayers’ was applied to mitigate batch

effects across different experimental batches. We then applied the

Uniform Manifold Approximation and Projection (UMAP)

algorithm for nonlinear dimensionality reduction and visualized

the distribution of the data in the reduced-dimensional space.

Utilizing ‘FindMarkers’, we identified genes with statistically

significant differences in expression across various groups.
Collection and RNA-sequencing of AML
patient samples

We collected bone marrow samples from 157 patients newly

diagnosed with AML at Ruijin Hospital, Shanghai, China, during

the period from June 2019 to September 2020 (Supplementary

Table S6). The collection of the specimens was approved by the

Institutional Review Boards of Ruijin Hospital, and the written

informed consent for specimen collection and research was

obtained following the Declaration of Helsinki (RJ-AML2014-65

& RJ-AML2016). RNA was extracted by AllPrep PowerFecal RNA

Kit, and RNA-seq libraries were prepared with TruSeq RNA Sample

Preparation Kit v2 (Illumina, San Diego, CA, USA). The quality of

the RNA was assessed using an RNA 6000 Bioanalyzer Nano Kit

(Agilent, Palo Alto, CA, USA). Sequencing was conducted on

Illumina’s NovaSeq 6000, with adapter-trimmed reads aligned

using STAR (v2.7.8) and quantified with HT-Seq (v0.13.5) against

GRCh38. Expression levels were normalized to TPM with a custom

script. In this manuscript, the cohort is designated as ‘RJAML.’ The

details of the examined loci are available for review in

Supplementary Table S7.
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Patient cohorts

The scRNA-seq data of AML BM cells from 16 patients were

acquired from GSE116256 (23) along with the bulk RNA-seq data

of these 16 patients. The HOVON cohort [n = 618; ref. (25)] was

obtained from Array Express (Dataset ID: E-MTAB-3444) and used

as the training set. Gene expression profiles and survival

information were extracted from the GSE146173 [n = 246; ref.

(26)], GSE37642 [n = 553; ref. (27)], GSE12417 [n = 240; ref. (28)]

cohorts from GEO. TCGA-LAML [n = 179; ref. (29)] and BeatAML

[n = 244; ref. (30)] cohorts were accessed through the GDC data

portal for the RNA-sequencing (RNA-seq) data, clinical

information, and processed mutational variants. It is noteworthy

that, only samples from newly diagnosed adult AML patients were

retained in all cohorts, and patients with incomplete survival

information in these cohorts were omitted.
Estimation of immune cell proportion

The CIBERSORTx (18) algorithm was employed to calculate

the relative abundance scores for non-leukemic immune cell types

based on the bulk RNA-seq data of AML BM. Specifically, gene

expression data from these cells was processed with CIBERSORTx

to create a signature matrix, with the minimum expression

parameter being tuned to 0.25 from the default settings.

Deconvolution was applied to TPM-normalized RNA-seq data

using S-mode batch correction in absolute mode and the relative

abundance scores were subsequently normalized to indicate the

proportion of each cell type.
Flow cytometry analysis

Twenty-four BM specimens from AML patients were randomly

selected from the aforementioned 157 RJAML samples. Specimens

were thawed and then washed with Dulbecco’s phosphate-buffered

saline (DPBS) containing 2% fetal bovine serum. Cells were stained

with multiple monoclonal antibodies including anti-human CD45-

PE, CD3-BV510, and CD8-APC-CY7 at 4°C for 30 minutes. Before

FCM analysis, samples were further washed to remove antibodies

resuspended in staining buffer. In the flow cytometry analysis, a

minimum of 10,000 cells were collected for each sample.
Differential gene expression analysis and
enrichment analysis

Differential expression analysis, comparing CD8+ THigh and

CD8+ TLow patients, were conducted using the raw count data with

the DESeq2 R package. We identified DEGs using a cutoff of |logFC|

>1 and FDR<0.05, finding 2925 DEGs. GO (Gene Ontology) and

KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses of

these DEGs were conducted using ‘ClusterProfiler’. Enrichment
Frontiers in Immunology 03
pathways from both GO and KEGG with p-values and q-values

below 0.05 were considered significant.
Construction of a prognostic signature
based on CD8+ T cells related genes

The normalized gene expression profiles of CD8+ T cells from

AML patients in the HOVON cohort were used to serve as the

training set. Univariate cox analysis of OS was performed to screen

for CD8+ T cells genes with potential prognostic value. Significant

candidate genes were refined using the least absolute shrinkage and

selection operator (LASSO) model, which was implemented by the

glmnet package, to identify a subset of pivotal genes for

constructing a predictive model. The LASSO model selected 15

key genes and their regression coefficients were utilized to calculate

the CTCG15 score for each sample. Patients were stratified into

high-risk and low-risk groups based on the median threshold

derived from the CTCG15 scores.
Statistical analyses

Statistical analyses were performed by R software (version

4.0.3). The Wilcoxon rank-sum test assessed differences between

two groups. The package “survival” and “survminer” were used to

determine the significance of survival analysis. We utilized Kaplan-

Meier plots and log-rank tests to evaluate the impact of the

signature on OS and event-free survival (EFS). The univariate

regression was utilized to select genes of prognostic value with the

“survival” package. A two-tailed P-value < 0.05 indicated

statistical significance.
Data availability statement

The original data collected in Ruijin Hospital is accessible in the

GEO database under accession number GSE201492.
Results

Validation of CIBERSORTx’s ability of
immune cell deconvolution by comparing
with scRNA-seq results

For better understanding, the workflow of this study was

illustrated in Figure 1A. Firstly, our goal was to verify the

accuracy of CIBERSORTx in measuring CD8+ T cell levels in

RNA-seq data. We found that CIBERSORTx’s results correlate

positively with scRNA-seq data, two RNA-seq scoring methods

(Cytolytic Score and Activated CD8+ T Score), and flow cytometry.

Secondly, we developed a prognostic model with 15 CD8+ T cell-

related genes (CTCG15). After identifying 2925 DEGs in CD8+ T
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cell expression groups, we used the HOVON cohort to refine these

genes. The CTCG15 score was then created using univariate and

Lasso Cox regression analyses. Finally, we validated the predictive

power of CTCG15 score across multiple cohorts, confirming its

ability to forecast patient survival and identify prognostic genetic
Frontiers in Immunology 04
markers. It also improves the predictive accuracy of the ELN2022

scoring system.

We analyzed the scRNA-seq data from GSE116256 (23) and

classified the immune cells into 7 types: CD8+ T cells, natural killer

(NK) cells, naive T cells, B cells, plasma cells, monocytes, and
FIGURE 1

Validating the accuracy of CIBERSORTx to deconvolute the immune cells in acute myeloid leukemia (AML) bulk RNA-seq. (A) A flowchart for study
design. (B) Uniform Manifold Approximation and Projection (UMAP) clustering map of bone marrow (BM) immune cells from 16 AML patients in
GSE116256 shows the distribution of 7 cellular clusters, representing 7 types of immune cells. (C) Bar plot displaying the frequencies of seven types
of immune cells from (B) separately in 16 AML patients in GSE116256. (D) Pearson correlation between observed abundance from scRNA-seq and
predicted abundance from bulk RNA-seq for each of the four patients separately in GSE116256. The bulk RNA-seq profile utilized patient-specific
reference signatures derived from the scRNA-seq data of each respective patient. (E) The Pearson correlation was performed between observed and
predicted abundance for four patients combined from (D).
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conventional dendritic cells (cDCs) (Figure 1B). The proportion of

immune cells for each AML patient was calculated and shown in

Figure 1C. We then employed CIBERSORTx (18) to deconvolute

the bulk RNA-seq data of four patients in GSE116256 using

matched patients-specific reference signatures derived from

scRNA-seq data (31). For each patient, we performed Pearson

correlation analysis between the predicted abundances from bulk

RNA-seq data with CIBERSORTx and the observed abundances

from scRNA-seq. Positive correlations were found between

CIBERSORTx and scRNA-seq results in both individual

(Figure 1D) and combined data of four AML patients (Figure 1E),

which demonstrated the reliable performance of CIBERSORTx to

deconvolute immune cells.
Further validation of CIBERSORTx’s
accuracy for CD8+ T cell analysis via
additional algorithms and flow
cytometry results

We employed other methods at both transcriptomic and

proteomic levels to validate CIBERSORTx. To begin with, the

predicted abundance of CD8+ T cells from the bulk RNA-seq

data in the RJAML cohort was analyzed and quantified by the

CIBERSORTx (18) (Figure 2A). It was stratified into three

categories based on quartiles for subsequent analysis: High,

Intermediate , and Low. In the analysis results from

CIBERSORTx, the abundance of CD8+ T cells in the High group

was significantly greater than that in the Low group (Figure 2B).

This observation was further validated by two independent

methods: the Activated CD8+ T Score (31) (Figure 2C) and the

Cytolytic Score (32) (Figure 2D), which consistently demonstrated a

significantly higher proportion of CD8+ T cells in the High group

compared to the Low group. Next, twelve RJAML specimens were

randomly selected from both the CTCGHigh group and the

CTCGLow group for flow cytometry analysis, aiming to calculate

the percentages of CD8+ T cells among non-leukemic immune cells.

The FCM results indicate that the proportion of CD8+ T cells in the

CD8+ T High group defined by CIBERSORTx is significantly higher

than that in the Low group (Figure 2E), which is consistent with the

results of CIBERSORTx in Figure 2B. Pearson correlation revealed a

significant positive correlation between the predicted CD8+ T cell

abundance from bulk RNA-seq deconvolution and the CD8+ T cell

percentages from flow cytometry (Figure 2F). Figure 2G displays

five representative flow cytometry plots for each group, and their

tendencies align with the results obtained from CIBERSORTx.

Overall, the capability of CIBERSORTx in evaluating CD8+ TILs

has been further validated with the methods above.
Development of a 15-gene prognostic
signature derived from CD8+ T cell related
genes in AML

To identify genes associated with CD8+ T cell, we performed

differential analysis between the CD8 TILs High and Low groups with
Frontiers in Immunology 05
the DESeq2 package (32) and found a total of 2925 DEGs (with |logFC|

>1 and FDR<0.05) (Supplementary Table S1, Figure 3A). We

performed GO and KEGG enrichment analysis (Supplementary

Tables S2, S3) to further elucidate the biological functions and to

identify signaling pathways linked to these DEGs. The top 15 GO

(Figure 3B) and KEGG (Figure 3C) terms associated with the DEGs

cover various immune responses and immune cell activation pathways,

which underline that DEGs are associated with immune reactions.

1651 CD8+ T cell genes were retained after we intersected 2925

DEGs with genes in the training cohort HOVON (25) (Figure 3D).

Using univariate cox regression and LASSO regression, we yielded

an optimal 15-gene CD8+ T cell signature (the CTCG15 score) as

shown in Figure 3E. These fifteen genes involved are PLIN2,MSLN,

MYH10, RXFP1, OLFML2A, ST6GALNAC4,WASIR2,MRC1, CA3,

SHANK3, C8orf88, IL2RA, ITGA2B, PRUNE2 and SEMA4F.

Kaplan–Meier analysis revealed a significant association between

high CTCG15 risk scores and reduced OS in the training cohort

HOVON, suggesting its ability to effectively predict prognosis for

AML patients (Figure 3F).
Extensive assessment of the predictive
ability of CTCG15 in multiple
external cohorts

After the development of CTCG15, we explored its correlation

with OS and EFS in 1619 AML patients across six cohorts and two

technology platforms. We first validated the CTCG15 score with the

RNA-seq data of 157 de novo AML patients from the RJAML

cohort. Consistent with our observations from the HOVON dataset,

patients exhibiting high CTCG15 scores (CTCG15High) showed

notably worse OS (Figure 4A) and EFS (Figure 4B) than those

with low CTCG15 scores (CTCG15Low). When applied to other

RNA-seq datasets including TCGA (n = 179) (29), BeatAML (n =

244) (30), and GSE146173 (n = 246) (26), the CTCG15 all remained

strongly associated with clinical outcomes (Figures 4C–E).

Similarly, the significant difference of OS between CTCG15High

and CTCG15Low groups was also observed in the GSE37642 (n =

553) (27) (Figures 4F, G) and GSE12417 (n = 240) (28) (Figures 4H,

I), with both datasets being analyzed using the GPL96 and GPL570

platforms. In multivariate survival analysis with Cox proportional

hazards (CPH) models, the CTCG15 score demonstrated ability to

constitute a novel independent prognostic indicator in the TCGA,

BeatAML, and RJAML cohorts, apart from the established outcome

markers like patient age, white blood cell (WBC) count, ELN2022,

and the presence of NPM1 and FLT3-ITD mutations

(Supplementary Table S4).
CTCG15 captured specific genetic
abnormalities related to AML prognosis

For a more thorough understanding of the mutational

landscape linked to the CTCG15 score, we investigated the

recurrently mutated somatic driver genes within the combined

dataset comprising the BeatAML, RJAML and TCGA cohorts
frontiersin.org
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(Figure 5A). Four molecular markers showed significant frequency

variations between the CTCG15High group and CTCG15Low group

(Figure 5B). The CTCG15High group exhibited higher frequencies of

SRSF2 and RUNX1 mutations, which are also markers of the

ELN2022 (8) Adverse Risk group. Conversely, patients with low

CTCG15 score more commonly presented mutations in the CEBPA

(including CEBPA bZIP mutation and other types) and SMC1A

genes. In ELN2022 risk classification, bZIP in-frame mutated

CEBPA is presented in the Favorable Risk group. Notably, the
Frontiers in Immunology 06
presence of the CEBPA mutation indicates a relatively favorable

clinical outcome, while SRSF2 mutation and RUNX1 mutation an

adverse outcome, as demonstrated by univariate analysis

(Figures 5C–E). In a combined cohort included TCGA cohort,

BeatAML cohort and RJAML cohort, a multivariate CPH regression

analysis revealed that the CTCG15 score was independent of well-

known clinical parameters, ELN2022 classification and the

above mentioned three genetic abnormalities (Supplementary

Table S5).
FIGURE 2

Assessment of predictive performance of CIBERSORTx in CD8 tumor infiltrating lymphocytes (TILs) from bulk RNA-seq data in RJAML cohort.
(A) The predicted abundance of CD8+ T cells in RJAML with CIBERSORTx, and the three groups (High, Intermediate and Low) categorized based on
quartiles. (B–D) The abundance of CD8+ T cells between CD8+ THigh and CD8+ TLow groups calculated by CIBERSORTx, the Activated CD8+ T Score
and the Cytolytic Score. (E) The comparison of CD8+ T cell proportions detected by flow cytometry (FCM) of 24 patients randomly selected from
CD8+ THigh and CD8+ TLow groups in RJAML (12 from the CD8+ THigh group and 12 from CD8+ TLow group). (F) Pearson correlation between the
CD8+ T proportion from CIBERSORTx and FCM of the 24 patients. (G) Ten representative CD8+ T cells FCM plots are shown in CD8+ THigh

and CD8+ TLow groups.
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The CTCG15 can serve as a valuable
complement to the ELN2022
risk classification

The 2022 ELN risk classification, which is predicated on genetic

abnormalities, is widely accepted for the risk assessment of pediatric

and adult patients with AML (8). Given the strong association

between CTCG15 score and the prognosis of AML patients, we

integrated the CTCG15 signature into the ELN2022 scheme with
Frontiers in Immunology 07
the intention to refine the AML patients risk classification from the

immunological perspective. Among all patients categorized within

the ELN2022 framework, the incorporation of the CTCG15 score

led to a reclassification for approximately half of the patients.

Within the ELN2022-Favorable group, 33.3% of patients were

reassigned to the Intermediate category of the ELN2022

+CTCG15. In the ELN2022-Intermediate group, 45.5% of patients

were shifted to the Adverse category of the ELN2022+CTCG15.

Furthermore, in the ELN2022-Adverse group, 42.4% of patients
FIGURE 3

Identification of CD8+ T cell-related genes in AML and construction of 15-gene prognostic signature. (A) Volcano plot showing differentially
expressed genes (DEGs) between groups with high and low CD8+ T cell levels, determined using the threshold of |log2(fold change)| ≥ 1 and FDR <
0.05. (B, C) Bubble chart displaying GO and KEGG analysis results for CD8+ T cell-related genes. (D) A Venn diagram identifying the overlap between
DEGs and HOVON dataset. (E) Distribution of LASSO coefficients for prognosis-related genes. (F) Kaplan-Meier curves depicting the difference of
overall survival (OS) between CTCG15High and CTCG15Low groups in the HOVON cohort.
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were reclassified to the Intermediate category of the ELN2022

+CTCG15 (Figure 6A). The restructured risk stratification

method improves the classification of patients with AML into

distinct risk groups from the perspective of immunological factors

(Figures 6B, C). The revised risk scheme exhibits an elevated Harrell

C-index in the combined cohorts, signifying an enhancement in the

model’s predictive accuracy and reliability for assessing patient

prognosis (Figure 6D). This refinement has the potential to make

an effective tool for tailoring individualized treatment plans and

predicting patient outcomes.
Frontiers in Immunology 08
Discussion

To our understanding, leukemogenesis is driven by the genomic

and epigenetic abnormalities. However, the tumor microenvironment,

especially the CD8+ T in the BM, plays a critical role in adaptive

immune reactions, and further affect the efficacy of immunotherapy

(3, 33, 34). In this investigation, we tried to elucidate the impacts of

BM CD8+ T cells in AML.

To quantify the abundance of CD8 TILs in AML, we chose

CIBERSORTx (18) among various computational methods (35).
FIGURE 4

The CTCG15 score is strongly linked with OS and event free survival (EFS) across various independent AML cohorts in different analysis platforms.
Kaplan–Meier curves depicting the difference of OS (A) and EFS (B) between CTCG15High and CTCG15Low groups in the RJAML cohort. Kaplan-Meier
estimates of OS according to the CTCG15 score in the RNA-seq–based cohorts: TCGA (C), BeatAML (D), and GSE146173 (E). Kaplan–Meier
estimates of OS based on the CTCG15 score in the GSE37642 (F, G) and GSE12417 (H, I) cohorts, quantified on GPL96 and GPL570
microarray platforms.
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Several studies have reported its accuracy in calculating the levels of

immune cells in AML (21, 31). Zeng et al. reported in their study

that 73% of the cell type estimates generated by CIBERSORTx with

S-mode batch correction did not deviate by more than 5% from the

scRNA-seq results (31). To validate the accuracy of the

CIBERSORTx algorithm, we firstly investigated the discrepancy

between the deconvoluted cell type abundance and true cell type

abundance from scRNA-seq data. A significant positive association

between predicted and observed relative abundance is

demonstrated by the Pearson correlation. We further employed

two supplementary algorithms (36, 37) to certify the stratification

effectiveness. The results aligned coherently with the outcomes

produced by the CIBERSORTx evaluation. At the protein level,

we adopted the flow cytometry technique (21) to corroborate the

proportions of CD8+ T cells in BM across both CD8+ THigh and

CD8+ TLow groups and the results were consistent with our findings

at RNA-level. Concurrently, we employed Pearson correlation to

validate their association. The results above strongly supported the

reliability of CIBERSORTx as a computational tool to estimate

CD8+ T cell abundance in bulk RNA-seq.

After calculating the abundance of CD8 TILs using

CIBERSORTx in the RJAML cohort, we identified DEGs

associated with CD8+ T cells for the subsequent analysis. A total

of 2925 DEGs that showed significant enrichment in immune
Frontiers in Immunology 09
activation-related responses and pathways were identified by GO

and KEGG enrichment analysis. Using univariate CPH regression

and LASSO algorithms, we derived an optimal 15-gene signature

(the CTCG15 score) based on CD8 TILs-associated genes. The

CTCG15 score was validated using RNA-seq and microarray data

from six datasets in total. These datasets encompass a diverse range

of ethnicities, including Asians, Africans, and Caucasians, with

RJAML dataset specifically being sourced from Ruijin Hospital in

Shanghai, China. With multiple validation across different datasets

and various populations, the CTCG15 score has demonstrated

excellent predictive ability and can be applied to extensive cohorts.

CTCG15 consists of fifteen CD8+ T cell marker genes, including

PLIN2, MSLN, MYH10, RXFP1, OLFML2A, ST6GALNAC4, WASIR2,

MRC1, CA3, SHANK3, C8orf88, IL2RA, ITGA2B, PRUNE2 and

SEMA4F. Most of these genes have shown associations with the

prognosis of AML or the activity of CD8+ T cells, which is in

accordance with our results. Among the 15 genes used to construct

the prognostic model, higher expression of PLIN2, MSLN andMYH10

are associated with favorable prognosis. Research has revealed that the

upregulation of lipid droplets associated genes (PLIN2) is associated

with the enhanced cytotoxic T lymphocytes activity (38). Mesothelin

(MSLN) is a new cell surface indicator of the disease and a prospective

therapeutic target for AML (39). Recent studies have shown that

mesothelin is a key therapeutic target in pediatric AML, and two
FIGURE 5

CTCG15 identified distinct genetic abnormalities associated with AML prognosis. (A) Somatic mutations and clinical information are presented in a
heatmap featuring CTCG15High and CTCG15Low patient groups. (B) The forest plot displays gene mutations with significantly different frequencies
between CTCG15High and CTCG15Low groups. Kaplan–Meier estimates OS based on the status of CEBPA (C), SRSF2 (D) and RUNX1 (E).
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MSLN/CD3-targeting bispecific antibodies have achieved complete

remission in mouse models (40). Genes negatively correlated with

CTCG15 are associated with T cell activation.

As for the remaining 12 genes whose expression is negatively

associated with prognostic, IL2RA and MRC1 have been extensively

studied and are closely related to immune cells. In AML, IL2RA’s

overexpression correlates with poor treatment response and adverse

outcomes (41, 42), and it ranks as a crucial gene in survival

prediction analyses (43). Recently, studies have revealed CD206,

encoded by the MRC1 gene, is an independent adverse prognostic

indicator for AML patients (44). Among the other 10 genes

positively correlated with CTCG15, each exhibits a profound

association with diverse facets of neoplastic initiation and

subsequent progression. SEMA4F (45) and C8orf88 (46) are

significant contributor to prostate cancer progression. Research

has indicated that carbonic anhydrases(CA) play an indispensable

role in ensuring leukemic cell viability within an oxygen-deprived

environment (47). ST6GALNAC4 (48), OLFML2A (49) and RXFP1

(50) exhibit a notable association with the initiation and

progression of various neoplastic entities. The influential role of

most genes that positively correlated with CTCG15 in

tumorigenesis and tumor development may contribute to the

shorter OS observed in CTCG15High.
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The goal of establishing an AML prognostic signature is to enhance

the effectiveness of both diagnosis and treatment, as well as to provide a

more accurate prognosis. Somatic mutations and chromosomal

abnormalities drive the onset and development of AML (51, 52).

Therefore, we investigated the gene abnormalities related to AML

between CTCG15High and CTCG15Low. We found four mutations with

significantly different frequencies between the CTCG15High and

CTCG15Low subgroups. As mentioned, the CTCG15High group is

associated with poor prognosis in AML across multiple validation

datasets. The occurrence of SRSF2 and RUNX1 alterations is higher in

this group, aligning with the conclusions of 2022 ELN risk classification

(8) and other studies (53–55). Conversely, the CTCG15Low group

exhibits a higher incidence of CEBPA and SMC1A alterations.We have

demonstrated that patients with CEBPA mutation (including CEBPA

bZIPmutation and other types) have a prolonged survival. Studies have

confirmed that mutations in the bZIP domain of CEBPA are associated

with a favorable prognosis for patients (8, 56). In the TCGA and

BeatAML datasets, the mutation details for CEBPA were not provided.

However, bZIP mutations account for 90.9% of all CEBPA mutations

in RJAML. In results, we observed that patients with CEBPAmutations

have a better prognosis than those without mutations, which may be

due to the high proportion of bZIP mutations in the combined cohort.

However, the situation is somewhat complicated for SMC1A. Structural
FIGURE 6

Refine the 2022 European LeukemiaNet (ELN2022) classification by integrating CTCG15. (A) Patients in different risk status are recategorized from
the original ELN2022 schema categories (Favorable, Intermediate, and Adverse) to the ELN2022 integrated with CTCG15. (B, C) Kaplan–Meier
estimates of OS based on the risk categories of AML patients in the ELN2022 (B) and ELN2022+CTCG15 (C) within the combined cohort (RJAML,
TCGA-LAML and BeatAML). (D) The Harrell C-index assesses performance of risk classification of ELN2022 alone and the ELN2022
integrated CTCG15.
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maintenance of chromosomes protein 1A (SMC1A) is a core unit of

the cohesin complex regulating chromosome segregation during

meiosis and mitosis (57), which has not been reported with

association of prognosis in AML (58, 59). Our results show that

alterations in SMC1A are more prevalent in the CTCG15Low group,

and the underlying mechanism of this observation needs to be

further investigated.

To further validate the clinical applicability of CTCG15, we

integrated it with the ELN2022 risk classification, leading to more

effective patient stratification and increased precision in prognostic

accuracy. Several prognostic scores such as LSC17 (60), GENE4 (61),

and AFG16 (62) have estimated the outcomes for AML patients

recently. Compared to these, our model aims to improve ELN2022’s

stratification and prediction ability by incorporating insights from the

CD8 TILs in tumor microenvironment. Patients who were

reclassified in the three groups were closely associated with CD8

TIL. It has been reported that the function of CD8+ T cells is

associated to the gene expression in leukemia cells (14, 15). In

patients with favorable-risk AML, the proliferation and stemness of

leukemic stem and progenitor cells are driven by a limited number of

intrinsic molecular abnormalities. Additionally, bone marrow-

infiltrating CD8 T cells play a key role in regulating these leukemic

stem and progenitor cells (14). However, more aggressive AML is

propagated mainly by cell-intrinsic mechanisms and develops

independent of immune cells (14). These factors may contribute to

the reallocations in ELN2022+CTCG15. Multiple studies have

demonstrated that the extent of CD8+ T cell infiltration in tumors

is closely correlated with patients prognosis and the efficacy of

chemotherapy (63–65). These findings coincide with our discovery

that ELN2022+CTCG15 improved predictive performance.

To conclude, our study validated the accuracy of CIBERSORTx

to estimate the CD8 TILs abundance from the bulk RNA-seq data.

We defined fifteen DEGs associated with CD8 TIL abundance and

constructed the CTCG15 prognostic model. The CTCG15 score can

predict the survival of AML patients, capture gene abnormalities in

AML, and significantly enhance the predictive precision of ELN2022.

Our research highlights the capability of CTCG15 score to serve as a

valuable tool to refine risk stratification in AML and to indicate

patient selection for the potential immunotherapy.
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