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Introduction: Somatic hypermutation (SHM) of immunoglobulin variable (V)

regions by activation induced deaminase (AID) is essential for robust, long-

term humoral immunity against pathogen and vaccine antigens. AID mutates

cytosines preferentially within WRCH motifs (where W=A or T, R=A or G and

H=A, C or T). However, it has been consistently observed that the mutability of

WRCH motifs varies substantially, with large variations in mutation frequency

even between multiple occurrences of the same motif within a single V region.

This has led to the notion that the immediate sequence context of WRCH motifs

contributes to mutability. Recent studies have highlighted the potential role of

local DNA sequence features in promoting mutagenesis of AGCT, a commonly

mutated WRCH motif. Intriguingly, AGCT motifs closer to 5’ ends of V regions,

within the framework 1 (FW1) sub-region1, mutate less frequently, suggesting an

SHM-suppressing sequence context.

Methods: Here, we systematically examined the basis of AGCT positional biases

in human SHM datasets with DeepSHM, a machine-learning model designed to

predict SHM patterns. This was combined with integrated gradients, an

interpretability method, to interrogate the basis of DeepSHM predictions.

Results: DeepSHM predicted the observed positional differences in mutation

frequencies at AGCT motifs with high accuracy. For the conserved, lowly

mutating AGCT motifs in FW1, integrated gradients predicted a large negative

contribution of 5’C and 3’G flanking residues, suggesting that a CAGCTG context

in this location was suppressive for SHM. CAGCTG is the recognition motif for E-

box transcription factors, including E2A, which has been implicated in SHM.

Indeed, we found a strong, inverse relationship between E-box motif fidelity and

mutation frequency. Moreover, E2A was found to associate with the V region

locale in two human B cell lines. Finally, analysis of human SHM datasets revealed

that naturally occurring mutations in the 3’G flanking residues, which effectively

ablate the E-box motif, were associated with a significantly increased rate of

AGCT mutation.
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Discussion: Our results suggest an antagonistic relationship between mutation

frequency and the binding of E-box factors like E2A at specific AGCT motif

contexts and, therefore, highlight a new, suppressive mechanism regulating local

SHM patterns in human V regions.
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Introduction

Somatic hypermutation (SHM) of immunoglobulin (IG) genes

in B cells is essential for producing high-affinity antibodies against

antigens on pathogens and vaccines (1). SHM occurs within

germinal centers of secondary lymphoid tissue where iterative

cycles of mutation and antigen-mediated affinity selection result

in the clonal expansion of B cells expressing antibodies with higher

affinity towards the target antigen (2). Point mutations are

introduced into the variable (V) region of the IG heavy chain

(IGH) and light chain genes by the enzyme, activation-induced

deaminase (AID) (3, 4), which deaminates cytosine to uracil on

single-stranded DNA (ssDNA) in a transcription-dependent

manner (5–8). AID preferentially acts on WRCH hotspots (where

W=A/T, R=A/G and H=A/C/T) (9–11). The U:G mismatch can

result in a C>T transition mutation upon replication, while

induction of error-prone repair mechanisms such as base excision

repair can lead to C>G or C>A transversions (12, 13). Additionally,

mismatch repair pathways generate mutations at A/T residues

surrounding the U:G mismatch (12, 13). A striking and consistent

feature of SHM profiles is the differential mutability of WRCH

motifs wherein mutation frequencies of WRCH motifs vary

substantially, not only between different motifs but also between

multiple occurrences of identical motifs within a V region (14–18).

This has led to the idea that the sequence context of these motifs

plays a major role in determining their mutability (14–18). This idea

has recently received important experimental support from a study

which showed that the density of pyrimidine dimers (PyPy) in the 6

nt region upstream of AGCT motifs correlates with increased

mutability, perhaps because PyPy richness confers flexibility to

ssDNA that may facilitate AID targeting (19). Therefore, a major

effort in the field is to further understand the mechanisms

regulating differential mutability during SHM.

The recruitment of AID to V regions and other IG and non-IG

targets has been linked to specific activating chromatin

modifications (20–29) and transcriptional and co-transcriptional

activities, notably, RNA polymerase II pausing (30–36), RNA

exosome-mediated processing of RNA: DNA hybrids (37, 38) and

convergent transcription (39). However, nascent transcriptional

profiling of multiple V regions and hundreds of non-IG AID

target loci at single-nucleotide resolution revealed no apparent
02
correlation between mutation frequency of specific WRCH motifs

and transcriptional strength or transcriptional features in its

neighborhood (40). Thus, although transcriptional activities and

chromatin marks are important for recruiting AID to its genomic

targets, the observed differential mutability characteristic of SHM

patterns cannot be explained solely by the transcriptional landscape

(40). This finding further supports the notion that, following AID

recruitment to V regions, the relative mutation frequency of WRCH

motifs likely depends on the sequence neighborhood of each motif.

The major cis-regulatory elements regulating SHM are the IG

enhancers which harbor binding sites for a plethora of transcription

factors (TFs) (41–45). Amongst these, the E-box-binding TF, E2A,

has been linked to SHM in multiple studies (42, 46–50). In

experiments of enhancer-driven SHM of reporter substrates,

elements with the E-box motif were found to have a particularly

large impact on SHM, and among the TFs predicted to bind, loss of

E2A was shown to cause a significant decrease in SHM (43). E2A,

AID and other TFs were reported to form a complex that could

associate with IGH (51, 52). It has also been shown that the presence

of a E2A-binding motif enhances SHM in nearby regions (53) and

may even facilitate AID recruitment (54).

To understand the mechanisms of differential mutability, our

group recently developed DeepSHM, a convolutional neural

network model trained to predict mutation frequencies of the

central nucleotide in a 5-mer, 9-mer, 15-mer or 21-mer motif

derived from human SHM data (18). The model achieved a high

cross-validated Pearson correlation of r=0.81 with the experimental

data (23). Moreover, model performance did not improve beyond a

15-mer context, that is, a 21-mer context did not significantly

improve the predictions (18). In addition to the advantage

brought forth by the expanded sequence context, compared to

previous work which used shorter window sizes of 5–7

nucleotides (55), this approach also allows for use of

interpretability techniques, which can be used to understand the

model’s reasoning behind its predictions and, therefore, gain

insights into potential biological mechanisms (18).

In this study, we extend the use of interpretability methods on

DeepSHM to investigate the basis for positional differences in

mutability of AGCT, one of the most frequently mutated WRCH

motifs in human V regions. We report that conserved AGCTs near

the 5’ end of V regions undergo significantly lower SHM than other
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AGCTs and that this suppression of mutability coincides with the

presence of an E2A-binding E-box motif. We find that E2A is

associated with V regions. The negative impact of E-box motifs was

independent of the positive effect of PyPy richness. Ablation of this

motif through naturally occurring mutations correlated with

significantly increased mutation frequency. Thus, our study

highlights a potential mechanism by which local sequence context

negatively regulates mutability and contributes to the discrete SHM

profiles of V regions.
Materials and methods

Sequence data

The 15-mer sequence dataset used to train DeepSHM was

generated as described in our previous publication (18) and is

available at https://gitlab.com/maccarthyslab/deepshm. Germline

IGHV reference sequences from the international ImMunoGeneTics

information system (IMGT) (56) were downloaded and split into k-

mers using a sliding window approach. Mutation frequencies for the

central nucleotide in each k-mer were calculated by comparing against

a B cell receptor (BCR) sequencing (BCR-seq) dataset from marginal

zone, memory, and plasma B cells from healthy volunteers, as

described in our previous study (57). To study intrinsic SHM

patterns and avoid confounding issues arising from clonal selection

in germinal centers, we used only non-productive sequences

(containing internal frameshifts or stop codons) and clonally

independent sequences (one sequence per clone, as assigned by

Change-O (58), which uses CDR3s to segment clones) (57).

For this study, only 15-mers containing an AGCT motif, with

either the G or the C as the central nucleotide, were used with

DeepSHM to predict mutation frequencies. The total 15-mer dataset

was processed to extract those containing AGCTs using custom

Python scripts. Our statistical analysis of synonymous mutations

(those that do not change the protein sequence) ablating the

CAGCTG motif was done with productive, clonally independent

sequences. All statistical tests were performed using SciPy (59).
DeepSHM

DeepSHM (https://gitlab.com/maccarthyslab/deepshm) is a

deep learning model that uses a convolutional neural network

architecture to predict mutation frequency or substitution rate of

the central nucleotide in a k-mer of size 5, 9, 15 or 21. We used the

15-mer mutation frequency model, which takes a DNA sequence of

15 nucleotides as input and outputs a predicted mutation frequency

value between 0 and 1. The 15-mer sequences were encoded into a 4

x 15 binary matrix, with rows corresponding to the 4 nucleotides

and columns to the 15 positions along the k-mer. In each column, a

1 was placed in the appropriate row to denote the base identity for

that position, while the remaining rows were 0s. This procedure,

called one-hot encoding, is a common method for converting

categorical data (A, G, C, T) into a machine-readable format (0s

and 1s).
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We downloaded the h5 fi le containing the model

(model_15_mf.h5) and used it with Python to predict mutation

frequencies for AGCT 15-mers in our dataset.
Integrated gradients

Integrated gradients is an attribution method that measures the

impact of individual inputs towards the output prediction of a deep

learning model (60). It relies on a baseline value to compute a path

integral of the model’s gradients with respect to its inputs, from the

baseline to the input value. Since our input data is binary, we used a

zero-matrix as our baseline with 50 steps taken from baseline to

input. All 15 nucleotides in the 15-mer are considered as input

features in the prediction of the mutation frequency of the central

nucleotide, hence integrated gradients calculates a score for each

base according to its impact on the output prediction.

The following GitHub repository was used to compute the

integrated gradients scores for each of the DeepSHM predictions:

https://github.com/hiranumn/IntegratedGradients. The repository

was cloned and imported into the python script where the

DeepSHM predictions were being run and used to compute

integrated gradients scores for each input in each prediction. We

generated sequence logo plots to visualize the frequency of

nucleotides occurring at each position across 15-mers in each

subregion using Logomaker (61), which is available at the following

GitHub repository: https://github.com/jbkinney/logomaker.
MOODS

MOODS (https://github.com/jhkorhonen/MOODS) is a

position-weight matrix (PWM) matching algorithm that takes

sequences and a counts matrix as inputs and outputs match

scores for a segment of the sequences (62). The counts matrix is a

4×n matrix where the rows correspond to nucleotides (A, G, C, or

T) and the columns correspond to positions along the TF binding

motif, with the number of counts for each nucleotide in each

position empirically obtained using SELEX and available on the

JASPAR database (63). MOODS uses log-likelihood scoring to

convert the counts matrix to a PWM, which it then compares

against the sequence to generate a match score, only reporting

scores at positions that exceed a P value cutoff of 0.001. We used

MOODS to gauge the fidelity of our 15-mer sequences to binding

motifs for the E-box TFs, E2A (https://jaspar2020.genereg.net/

matrix/MA0522.2/) and TFAP4 (https://testjaspar.uio.no/matrix/

MA1570.1/).
ChIP-seq data

The E2A ChIP-seq data in Ramos cells was taken from a previous

study (45) and is available at https://www.ncbi.nlm.nih.gov/

bioproject/587064. The E2A ChIP-seq data in GM12878 cells was

taken from ENCODE (64) and is available at https://

www.encodeproject.org/experiments/ENCSR000BQT/. Both
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datasets were subject to the same analysis pipeline - a local alignment

to hg38 of both case and control datasets using bowtie2 (65), sorting

and indexing the resulting bam file using samtools (66). The callpeaks

function of MACS2 (67) was run on the aligned bam files using the

default q-value cutoff of 0.05 to call peaks. These peaks were then

subject to motif enrichment analysis using the findMotifsGenome.pl

function of the HOMER suite (68), using the hg38 genome and

default size setting of 200 bp. The RPKM calculation was conducted

using deeptools bamCoverage (69) with the bin size parameter set to

500 bp.
Results

DeepSHM recapitulates the observed
positional differences in AGCT mutability

V regions can be structurally divided into antigen-binding

complementarity-determining regions (CDR1–3) and intervening

structural framework regions (FW1–3). AGCT is one of the most

highly mutated WRCH motifs in V regions (70). The fact that

AGCT is palindromic increases the probability that AID will

deaminate cytosines on both the forward and the reverse strands

(70). All human IGHV genes (at least the *01 IMGT alleles), except

for three from the IGHV2 family, have one or more AGCT motifs

near the 5’ end located in FW1 (57).
Frontiers in Immunology 04
Our previous analysis of IGHV3–23*01 non-productive

sequences showed higher mutability of AGCTs in the CDRs and

a particularly low mutability of the 5’ AGCT in FW1 (14). To

examine this differential mutability of AGCT motifs across all

IGHV genes, we used DeepSHM to predict mutation frequencies

of the central nucleotides in the AGCT 15-mers in our dataset and

compared the results with the observed data using a correlation

analysis. We achieved a Pearson correlation of r=0.92 for those with

a central G site (Figure 1A) and r=0.86 for those with a central C

(Figure 1B). These high correlations suggested that the neural

network had identified sequence features that distinguish low

from high mutation frequencies for AGCT sites. To confirm that

the positional differences in AGCT mutability previously observed

for IGHV3–23*01 applied to other IGHV alleles, we examined our

dataset of 16,870 15-mers across 65 IGHV alleles and their

associated mutation frequencies (57). We separated the AGCT

15-mers in our dataset by IMGT subregion and plotted the

observed and predicted mutation frequencies for those with

central Cs (Figure 1C) and central Gs (Figure 1D). We observed a

statistically significant difference in mutation frequency between the

AGCT motifs in FW1 and all other subregions for both observed

and predicted datasets centered on the G (t-test, P<10–30)

(Figure 1C) and C (t-test, P<10–20) (Figure 1D).

We conclude that that AGCTs in FW1 are significantly less

mutated than those in other V subregions and that DeepSHM can

recapitulate these observed positional differences in AGCT mutability.
A B

DC

FIGURE 1

DeepSHM model performance on AGCT 15-mers. (A, B) Correlation scatter plots between observed and DeepSHM-predicted mutation frequencies.
15-mers centered on G (AGCT) (A) or C (AGCT) (B). Each dot represents a 15-mer, the black line is the x=y diagonal and the red line indicates the
best fit with intercept and coefficient computed using a linear regression. The r value is the Pearson correlation coefficient, and the P value is
computed using a Wald test. (C, D) Violin plots showing the distributions of observed (white) and DeepSHM-predicted (blue) mutation frequencies
for AGCT 15-mers within CDR and FW regions centered on G (AGCT) (C) and C (AGCT) (D). The white dots represent the median, the black boxes
show the interquartile range, and the whiskers encapsulate points that fall between 1.5 times the inter-quartile range.
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Integrated gradients reveals a sequence
context associated with decreased
mutability of FW1 AGCT motifs

To interrogate the specific sequence features associated with high

or low mutation frequency predictions, we used an interpretability

method, integrated gradients (22). Integrated gradients analyses involve

computing the derivative of the output (mutation frequency

prediction) with respect to the input (15-mer sequence) to ascribe

importance to input features based on their impact on the output

prediction. Specifically, a higher integrated gradients score would imply

that a small change in input had a more positive contribution towards

the output prediction. Conversely, lower integrated gradients scores

indicate that changes in input features contributed negatively to the

predicted output.

We generated integrated gradients scores for each nucleotide

within the AGCT 15-mers for its prediction of (i.e. contribution

towards) the mutation frequency of the central G or C within the

hotspot. We plotted the range of scores for each position as boxplots

which were further categorized based on the location of the 15-mers

within FW and CDR subregions (Figures 2A–J).

As a positive control, we observed that nucleotides within the

AGCT hotspot across all central G 15-mers (Figures 2A–E) and

85% of central C 15-mers (Figures 2F–J) had a positive integrated

gradients score, meaning that the presence of these nucleotides

increased the mutability prediction of the central G or C. We then
Frontiers in Immunology 05
examined the integrated gradients scores for FW1 AGCTs

(Figures 2A, F) as they are significantly less mutated than AGCTs

in other V sub-regions (Figure 1C). We found that 78% of the lowly

mutating FW1 AGCTs were flanked by a 5’-C and 3’-G nucleotide,

both of which have large negative integrated gradient scores

(Figure 2F). This suggests that an extended CAGCTG motif

context decreases the mutability prediction for the central G and

C nucleotides within these lowly mutating FW1 AGCTs, implying

that CAGCTG motifs may be less frequently targeted by AID.

To explore this idea further, we directly compared integrated

gradients scores of the 5’ and 3’ nucleotides flanking AGCTs across

all 15-mers. We found that for CAGCTG-containing 15-mers, the

integrated gradients scores were almost always negative for the 5’-C

(98%) and consistently negative for the 3’-G (100%), supporting the

notion that the CAGCTG context has a predominantly negative

influence on mutagenesis of AGCT (Figure 3). Additionally, of all

AGCT flanking nucleotide combinations, the 5’-C and 3’-G

combinations were overwhelmingly within the FW1 region and

were significantly less mutated than AGCTs with other flanking

nucleotide combinations (Mann-Whitney test, P<10–30) (Figure 4).

We note that although most of the FW1 AGCT motifs were flanked

by 5’-C and 3’-G nucleotides, even those flanked by other nucleotide

combinations tended to have lower mutation frequencies (blue dots

in Figure 4). This suggests that the position of the AGCT within the

V region may also have some influence on its mutability. In

addition, a fraction of CAGCTG motifs in FW2 undergo higher
A

B

D

E

F

G

I

H

J

C

FIGURE 2

Integrated gradients scores for each nucleotide in AGCT 15-mers across V subregions shown as boxplots. The left column consists of sequences
with a central G (A–E) and the right column consists of sequences with a central C (F–J). Rows correspond to the indicated V subregion and the
sequence logo below each boxplot corresponds to the nucleotide frequency at each position. The boxes represent the inter-quartile region of the
distribution of integrated gradient scores for each nucleotide, with the black line through the box showing the median score and the whiskers
representing 1.5 times the inter-quartile range. Outlier points are shows as dots. Note that nucleotides in the central AGCT hotspot (boxed) tend to
have the largest scores in the 15-mer and that the 5’ and 3’ flanking nucleotides for the FW1 AGCT (F) have the lowest scores in the 15-mer.
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mutation frequency than those in FW1 (Figure 4), suggesting the

presence of additional mechanisms, possibly involving differences

in the larger sequence context of these motifs, that influence

differential mutability, which we address in the following section.
Frontiers in Immunology 06
We conclude that the weakly mutated AGCTs in FW1 are

predominantly flanked by 5’C and 3’G nucleotides, implying that the

CAGCTG sequence context correlates with reduced SHM of

AGCT motifs.
FIGURE 4

Swarm plot depicting mutation frequencies for the central G and C residues within AGCT 15-mers categorized based on the identity of the 5’ and 3’
nucleotides flanking AGCT. The color coding highlights the location of the 15-mer in CDRs or FWs. Each AGCT is represented by two dots - one for
the central C and one for the central G. AGCT motifs flanked by 5’-C and 3’-G, corresponding to the CAGCTG motif (first category on the left), has a
significantly lower mutation frequency (P<10–30) than any other pair as computed by a Mann-Whitney U Test.
FIGURE 3

Integrated gradients scores for the 5’ and 3’ flanking nucleotides of AGCT motifs across all human V regions shown as a scatter plot. Each dot/cross
corresponds to a 15-mer. 15-mers in which the central AGCTs are flanked by 5’-C and 3’-G (CAGCTG motifs) are indicated with a cross (x).
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CAGCTG is an E-box binding motif and
E2A associates with V regions

CAGCTG corresponds to the CANNTG E-box binding motif of

the basic helix-loop-helix TF family, which includes E2A (50). To

predict binding probabilities of E2A to AGCT 15-mers, we used

MOODS, a TF-binding prediction package which utilizes counts

matrices obtained from empirical SELEX data, wherein higher

MOODS scores reflect a stronger sequence match to a particular

TF binding motif (62).

We found significant negative Pearson correlations of r=-0.64

and r=-0.65 between the MOODS binding scores for E2A motifs

and the mutation frequencies of the central Gs (Figure 5A) and

central Cs (Figure 5B) in the AGCT sites, respectively. Similar

analysis for TFAP4, another E-box TF commonly expressed in B

cells, showed weaker correlations (Supplementary Figure 1). The

predicted MOODS scores for the AGCT 15-mers fell roughly into

three discrete tiers. Tier 1, having the highest MOODS scores but

generally lower mutation frequencies, and consisting almost

entirely of CAGCTG-containing 15-mers (Figures 5A, B). Tier 2,

having intermediate MOODS scores with a wide range of mutation

frequencies. Importantly, although this tier consists of a mixture of

CAGCTG and non-CAGCTG 15-mers, the former showed a

tendency to be less mutated than the latter (Figures 5A, B).

Interestingly, the FW2 CAGCTG 15-mers observed to be highly

mutating in Figure 4 fall into this tier and contain central Gs (green

crosses in Figure 5A). This indicates lower fidelity to the E2A motif

than the lowly mutating FW1 CAGCTGs and may explain, in part,
Frontiers in Immunology 07
the higher mutation frequency due to diminished E2A binding. Tier

3, which harbored the lowest MOODS scores and generally higher

mutation frequencies, consisted mostly of non-CAGCTG 15-mers

(Figures 5A, B). These results suggest that the binding probability of

E2A to an AGCT-centered 15-mer negatively correlates with

mutation frequency of that AGCT.

Next, we determined the distribution of all potential E2A sites

across all human IGHV genes. We segmented germline sequences for

the 220 alleles obtained from the IMGT database into six subregions

and counted the number of occurrences of CAGCTG (Figure 6A)

and the more general CANNTG (Figure 6B) E-box motifs. CAGCTG

motifs were mostly distributed in the FW1 region, with the IGHV2

family notably lacking them (Figure 6A). The IGHV4 family has the

highest density of CANNTG motifs while most of IGHV2 family

have E-box motifs in the FW3 region (Figure 6B). Overall, each of the

220 alleles had at least one E-box motif, with most of them in FW1

and/or the leader-intron-leader (L-intron-L) sequence which

immediately precedes FW1 (Figure 6B).

To determine whether E2A associates with IGHV regions, we

analyzed E2A ChIP-seq datasets derived from Ramos (45) and

GM12878 (64) B cell lines. After aligning these data to the hg38

reference genome using bowtie2 (65), we used MACS2 (67) to call

peaks and then conducted a motif enrichment analysis using

HOMER (68). We saw that for both Ramos (Supplementary

Table 1) and GM12878 (Supplementary Table 2) cell lines, the

CAGCTG motif corresponding to the E2A TF binding motif was

highly enriched and among the top two most significant results. We

calculated the reads per kilobase million (RPKM) values of 500bp
A B

FIGURE 5

Scatter plots depicting the correlation between observed mutation frequencies and E2A MOODS scores for AGCT 15-mers. (A, B) analysis of 15mers
centered at the central G (A) or central C (B). Each point represents a 15-mer and is colored by IMGT subregion, with CAGCTG 15-mers indicated
with a cross (x). The red lines indicate the best fit with intercept and coefficient computed using a linear regression. The r value is the Pearson
correlation coefficient, and the P value is computed using a Wald test. The three tiers (Tier 1–3) that the MOODs scores fall into are labeled.
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bins in both the E2A ChIP-seq and the IgG control ChIP-seq

alignments and plotted their correlations. In both Ramos

(Figure 7A) and GM12878 (Figure 7B) cells, the bins containing

the rearranged V region (IGHV4–34 in Ramos (71) and IGHV3–21

in GM12878) (72)) were enriched for E2A binding, as was the bin

containing the IGH Em enhancer, which serves as a positive control

for E2A binding (43). However, bins containing a negative control
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region, TRBV20–1, a commonly used T-cell receptor V gene (73),

showed no enrichment for E2A binding in either cell line

(Figures 7A, B). Thus, E2A can directly associate with V regions.

Altogether, these results suggest that E2A association with

CAGCTG motifs in FW1 suppress AID targeting to these AGCTs,

thereby providing a plausible explanation for the strong negative

correlation between this motif context and mutation frequency.
A B

FIGURE 7

(A, B) Scatter plots depicting correlations between IgG control and E2A ChIP-seq shown as reads per kilobase million (RPKM) values in 500 bp
genomic bins for Ramos (A) and GM12878 (B) cells. Bins containing the rearranged IGHV, Em enhancer and TRBV20–1 are highlighted in blue,
orange and green, respectively. The black line represents the y=x diagonal.
A B

FIGURE 6

Heatmap depicting the number of (A) CAGCTG and (B) CANNTG E-box motifs in human germline IGHV genes (y axis) classified into subregions (x
axis) based on the IMGT nomenclature. Each cell corresponds to a distinct IGHV sub-region and is colored by the number of E-box motifs (between
0 and 3) in that sub-region as shown in the key on the right. Each row corresponds to a unique IGHV allele. The dashed horizontal lines represent
boundaries between the seven IGHV families (IGHV1–7).
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E-box and PyPy dimers contribute
independently to AGCT mutability

We additionally sought to compare the role of E2A binding with

another sequence-level determinant of AGCT mutability proposed in

a recent study (19), namely, the presence of PyPy dimers. In this

study, a higher frequency of PyPy dimers in the 6 nucleotides 5’ to the

AGCT was associated with increased mutation frequency of the

central C residue (19). Therefore, we counted the number of PyPy

dimers in the 6 nt region immediately upstream of AGCT motifs in

our k-mer dataset and fit a linear regression model predicting

mutation frequency, including an indicator variable for the presence

of the E-boxmotif. This binary E-box indicator variable had a Pearson

correlation of r=-0.61 with the mutation frequency, while the integer

PyPy count had a correlation of 0.51 (Table 1). Importantly, therefore,

both variables individually correlate with mutation frequency in

directions consistent with our expectations, that is, positive for

PyPy counts, which increases mutation frequency, and negative for

the presence of an E-box, which reduces mutation frequency.

Given this trend, we expected a linear model with both variables

to have a higher performance than a model with either individual

variable, as measured by R2, which directly reflects the proportion of

variance in the output variable (mutation frequency) explained by

the input variables (E-box motif, PyPy richness, or both). The

combined regression model achieved an R2 of 0.45 meaning that

45% of the variance in mutation frequency is explained by the

presence of E-box and PyPy motifs (Table 1). The regression model

with only the PyPy counts variable achieved an R2 of 0.25 while the

model with only the E-box indicator variable achieved a higher, and

closer to the combined, R2 value of 0.39 (Table 1). Of note, the

coefficients generated by the model had signs appropriate to the

direction of correlation with mutation frequency, that is, positive

for PyPy counts and negative for the E-box indicator (Table 1).

These results lead to the conclusion that both mechanisms,

decreasing mutation frequency of FW1 AGCTs, plausibly through

E2A binding, and increasing mutation frequency of AGCTs through

increased AID binding to flexible PyPy-rich DNA can contribute

independently to the observed mutability. Importantly, however, the

R2 values observed from these analyses also imply that additional

mechanisms are necessary to fully explain AGCT mutability.

Ablation of the CAGCTG motif is
associated with a significant increase in
mutation frequency

To better understand the relationship between the E-box motif

and the mutability of the central nucleotides, we examined
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mutations of the CAGCTG hotspot in FW1. We hypothesized

that if this motif context negatively contributes to SHM, then

naturally occurring mutations that ablate this context would be

expected to increase mutation frequency of the AGCT within it.

Due to the paucity of non-productive sequences in our dataset,

we examined synonymous mutations (i.e. those that do not cause

changes in protein sequence) in productive BCR sequences to

preclude any effect of affinity selection. Specifically, we focused on

the G residues at positions 3 (G3) and 6 (G6) of CAGCTG.

Importantly, the FW1 CAGCTG motif occurs at position 7–12 of

the V segment and is always in frame, such that mutations at G3 and

G6 are in the third position of their respective codons. Thus, G3>A3

mutations are synonymous since CAG and CAA are degenerate

codons for glutamine. Similarly, G6>H6 mutations (where H = A/C/

T) are also synonymous since CTG, CTA, CTC and CTT are

degenerate codons for leucine. Importantly, G6>H6 mutations

(CAGCTH) would ablate the E-box motif. Thus, we compared

mutation frequency at the central AGCT in clonal groups having an

unmutated CAGCTG in FW1 or a CAGCTH in the same position.

To prevent double counting of mutations occurring during

clonal expansion, we selected a sequence at random from each

clonal group (57). Our sequence data consisted of 642,367 clonal

groups, of which 504,333 had a sequence identity in position 7–12

of the V segment, corresponding to one of the four motifs of

interest: unmutated CAGCTG (G3/G6), single mutant CAACTG

(A3/G6), single mutant CAGCTH (G3/H6) and double mutant

CAACTH (A3/H6). We counted the number of occurrences of

each (Table 2) and used these numbers to calculate mutation

frequencies for sites 3 and 6 (Supplementary Table 3). We

observed that the mutation frequency of G3 increases from 9.6%

when G6 is unmutated to 21.5% when G6 is mutated, a highly

significant difference (Fisher test, P<10–16) (Figure 8). Thus, the

presence of an intact CAGCTG motif is strongly associated with

lower mutation of the AGCT within it.

Altogether, our results support the notion that FW1 AGCT

motifs occurring in the context of the E-box binding motif,

CAGCTG, lead to dampened SHM in these locales.
Discussion

In this study, we use interpretable deep learning to provide

evidence for the role of DNA sequence context in negatively

modulating SHM at AGCT motifs located at the 5’ end of most

human IGHV genes, except those of the VH2 family. Our work

suggests that the occurrence of this AGCT in the context of a

CAGCTG E-box motif correlates strongly with reduced SHM.

Together with the fact that E2A can associate with VH4–34 and
TABLE 1 Pearson r and R2 for correlations and model performance
against mutation frequency.

Variable Pearson r R2

PyPy Counts 0.51 0.25

E-box indicator -0.61 0.39

PyPy + E-box N/A 0.45
TABLE 2 Counts of synonymous mutations at sites 3 and 6 of the
CAGCTG motif across clones.

Site 6/Site 3 Unmutated (G3) Mutated (A3)

Unmutated (G6) 426962 45537

Mutated (H6) 24988 6846
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VH3–21, we propose that SHM may be dampened at these motifs,

at least in part, by the association of E-box-binding TFs. The

decrease in AID mediated mutations could occur through a

variety of mechanisms including changes in transcription

elongation or pausing, or a decrease in the recruitment of AID or

its associated cofactors. In effect, this would constitute a new,

suppressive mechanism contributing to the differential mutability

of AGCT motifs in specific contexts. Our work, therefore, provides

a conceptual framework to guide further studies aimed at

identifying similar mechanisms regulating local SHM probabilities

at other WRCH motifs, including other AGCT motif contexts,

perhaps involving different TFs or combinations thereof.

How might E2A binding to CAGCTG suppress SHM? E2A

binds ssDNA in vitro and has a higher affinity for CAGCTG than

for the canonical dsDNA binding site, CAGGTG (74). Additionally,

mutations in the middle nucleotides of the CANNTGmotif reduced

E2A binding to ssDNA substantially, but not to dsDNA (74). These

results, along with our analyses, suggest a competitive binding

model for the significantly weaker mutability of the FW1 AGCT

motifs wherein E2A binding to ssDNA may prevent AID from

accessing exposed CAGCTG motifs. Since the CAGCTG E-box TF

binding motif is palindromic, E2A could potentially access both

strands, for instance, under conditions of transcription-induced

negative supercoiling where both template and non-template

strands can acquire transient ssDNA states (75). If so, E2A could

restrict AID from accessing CAGCTG-containing ssDNA on either

strand. Since the processing of SHM-induced mismatches in the V

region can result in DNA double-strand breaks (76), we expect that

such a mechanism would also impact on the formation of

these lesions.

Collectively, these findings raise two hypotheses that merit

further investigation. Firstly, other E-box-binding TFs expressed in

B cells may associate with CAGCTG in FW1 and contribute to
Frontiers in Immunology 10
suppressing SHM. Secondly, AID accessibility at other WRCHmotifs

may be subject to similar negative regulation mediated by the

competitive binding of different TFs. Such analyses are also

necessary at non-IG SHM target loci implicated in B

lymphomagenesis, such as MYC and BCL6, to ask whether similar

mechanisms regulate differential mutability during off-target SHM.

Our analysis of PyPy richness revealed a positive correlation of

this feature with AGCT mutability, in agreement with the in vitro

findings of Wang et al. (19). Our results also suggest that PyPy-

richness and E-box motifs can work independently in determining

the mutability of AGCT motifs. Thus, we conclude that SHM

enhancement via increased ssDNA flexibility conferred by PyPy

motifs and SHM suppression via E2A binding at E-box motifs

constitute two distinct mechanisms to achieve differential

mutability of AGCT motifs. Importantly, however, it is evident

from our data that these features, either singly or in combination,

cannot fully explain AGCT mutability, implying that additional as-

yet-unknown mechanisms exist that contribute to differential

mutability, such as the influence of position, as in the case of

some lowly mutating FW1 AGCTs that do not lie in a CAGCTG

context (Figure 4).

In conclusion, our study reveals the complexity underlying local

AID targeting and argues that the eventual discrete SHM profiles

result from multiple mechanisms that either strengthen or dampen

SHM. As exemplified by our study, deep learning tools will be an

important resource for mining mutational datasets to gain further

insights into these mechanisms.
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