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Are peptidomimetics the
compounds of choice for
developing new modulators
of the JAK-STAT pathway?
Alessia Cugudda, Sara La Manna and Daniela Marasco*

Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
Protein-protein interactions (PPIs) play critical roles in a wide range of biological

processes including the dysregulation of cellular pathways leading to the loss of

cell function, which in turn leads to diseases. The dysfunction of several signaling

pathways is linked to the insurgence of pathological processes such as

inflammation, cancer development and neurodegeneration. Thus, there is an

urgent need for novel chemical modulators of dysregulated PPIs to drive

progress in targeted therapies. Several PPIs have been targeted by bioactive

compounds, and, often, to properly cover interacting protein regions and

improve the biological activities of modulators, a particular focus concerns the

employment of macrocycles as proteomimetics. Indeed, for their

physicochemical properties, they occupy an intermediate space between small

organic molecules and macromolecular proteins and are prominent in the drug

discovery process. Peptide macrocycles can modulate fundamental biological

mechanisms and here we will focus on peptidomimetics active on the Janus

kinase/signal transducers and activators of transcription (JAK-STAT) pathways.
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1 Introduction

The JAK-STAT pathway is pivotal in transmitting signals initiated by cytokines,

including interleukins (ILs), during immune responses, inflammation, and cancer

development (1, 2). Physiologically, cytokine stimulation leads to JAK-mediated

phosphorylation of specific tyrosine residues on STAT proteins, located in SH2 domains.

Phosphorylated STATs dimerize, translocate into the nucleus, and regulate gene

expression, tuning inflammatory and immune-related genes (3, 4). The dysregulation of

this pathway can occur through mutations in upstream oncogenes, cytokine receptors, JAK,

or STAT proteins and are commonly associated with cancer progression: its selective

upregulation in response to cytokines drives immune responses, inflammation, and

carcinogenesis (5, 6). Hence, JAK-STAT is a key target for therapeutics (7) and
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understanding the endogenous regulatory mechanism of this

pathway is essential for designing new drugs (8).

Small molecules inhibitors of JAK proteins (JAKi) have been

FDA-approved as: tofacitinib (Pfizer) for nail psoriasis (9),

ruxolitinib (Novartis) for primary myelofibrosis (PMF) (10),

fedratinib (Celgene) for myelofibrosis (11), filgitinib (Galapagos)

for rheumatoid arthritis (RA) (12), upadacitinib (AbbVie),

baricitinib (Eli Lilly) and abrocitinib (Pfizer) for atopic dermatitis

(AD) (13). Many studies concerning these drugs highlighted their

off-target effects, particularly in patients defined as ‘at risk’ (i.e. ≥65

years), affected by cardiovascular problems, smokers or at high risk

to develop cancer (14). To limit side effects, several attempts are

made in the routes of administration and to potentiate their local

effects. For example, JAKi for the treatment of asthma are inhaled

(15) others for AD have been formulated to act topically, as

delgocitinib (approved in Japan), which demonstrated more

effective in the treatment of AD in pediatrics (16).

In addition, a regulatory feedback of this pathway includes the

expression of Suppressor Of Cytokine Signaling (SOCS) proteins

(17) which share a common mechanism of action (MOA)

consisting in inhibiting JAK-STAT by competing with SH2 of

STATs for the binding to JAKs, through their own SH2. In

addition with this general MOA, SOCS1 and SOCS3 members

contain a Kinase Inhibitor Region (KIR), which directly inhibits the

kinase activity of JAKs acting as pseudo-substrate toward the kinase

catalytic site (18). In addition these two proteins differently interact

with JAK proteins: indeed from crystal structure studies while

SOCS1 forms a binary complex with JAK1 (19), SOCS3 interacts

simultaneously with JAK2 and the glycoprotein 130 (gp130) (20).

The downregulation of SOCS1 or SOCS3 has been observed in

several diseases: SOCS1, for its role in interferons (IFNs) (21, 22) and

interleukins (ILs) (23–25) signaling, in involved in inflammatory

diseases as rheumatoid arthritis and psoriasis (26, 27) and

atherosclerosis (28); while SOCS3 is involved in tumour

development and its deficiency, relevant in triple-negative breast

cancer (TNBC), is associated with a worse prognosis (29).
2 Peptidomimetics targeting
JAK-STAT

Recently, resurgence has taken place in developing proteomimetics

for therapeutic intervention: from the design of peptides mimicking the

functions of proteins involved in diseases to the improvements of their

drug-like features thanks to innovative synthetic and formulative

platforms (30, 31). Proteomimetics, often in macrocyclic format,

occupy an intermediate space between small organic molecules and

macromolecules and combine significant binding affinities and

selectivity, synthetic accessibility, low immunoreactivity and toxicities

(32–34). Macrocyclizations render peptides more stable with

increased membrane permeability, and stability in cellular

environments (32, 35, 36).

Few but important examples of bioactive proteomimetics have

been reported for several proteins of the JAK-STAT network paving

the way to novel therapeutics (37).
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IL-6 is a pro-inflammatory cytokine capable to activate several

JAKs. Its dysregulation is associated with autoinflammatory and

autoimmune diseases sepsis, irritable bowel syndrome (IBS),

atherosclerosis, thrombosis, rheumatoid arthritis, and type 1

diabetes (38–40); hence the identification of inhibitors represents

an interesting strategy to regulate its pathway (8). In this context,

the q-defensins are natural 18-mer macrocyclic peptides found in

certain primates, such as rhesus macaques, able to regulate the

production of cytokines, including IL-6, against various microbes

(41, 42). Structurally, q-defensins consist of a pair of antiparallel b-
sheets linked by three disulfide bonds arranged as a ladder along the

sheets to form an extremely stable structure (Figure 1A). The

Rhesus q-defensin-1 (RTD-1) suppresses the release of pro-

inflammatory cytokines, as TNF-a and IL-6 (43). The RTD-1

isoform regulates the release of soluble tumor necrosis factor

(sTNF) by inhibiting TNF-a-converting enzyme (TACE), which

is a zinc metalloprotease responsible for cytokine production

through proteolysis or “shedding” (43, 44). Aberrant TACE

activity leads to increased TNF-a levels in inflammatory diseases

and cancer progression (45–47). The macrocyclic structure of RTD

is crucial for TACE inhibition, conversely, its structural

modifications, as the absence of lactam bond head-to-tail RTD-1

(Figure 1B), cause the loss of inhibition (43). Hence one potential

application could be the development of synthetic macrocyclic

analogues of q-defensin to block IL-6 production and limit TNF-

dependent pathways in inflammatory diseases.

Within IL-17 family, there are six homodimers (A-F) and one

heterodimer, A/F, known to interact with five receptors (RA-E)

(48): in detail, IL-17A and F bind to the heterodimeric receptor

complex formed by IL-17RA and RC (49). Different IL-17 proteins

are linked to distinct biological activities i.e. IL-17A is associated

with chronic obstructive pulmonary disease (COPD), while IL-17F

in psoriasis and rheumatoid arthritis (50, 51).

To target these cytokines for therapeutic intervention selective

drugs are required (52) and macrocyclic peptides mimicking IL-

17A and F, have been reported. By using the in situ click screening

method, unique epitopes were identified: Phe40-Ser70 for IL-17F and

Ile27- Lys61 for IL-17A (53). From these, synthetic epitopes (SynEps)

bearing clickable N-terminal tail were designed and analyzed and

two of them, SynEp1 and SynEp2, resulted active against IL-17F

while SynEp3 against IL-17A. Synthetic variants of SynEp

compounds were generated through combinatorial approaches

and screened obtaining macrocyclic binders highly specific

(Figures 1C–E).

Activators of JAK/STAT can be used as antiviral: type I

interferons (IFN-a/b) are known to inhibit viral infection

(54, 55), but interferons-based therapies have several side effects

hence the need for new antiviral drugs (56). In patients with end-

stage dilated cardiomyopathy (DCM), gp130 and JAK-STAT

signaling are altered (57), studies conducted in left ventricular

(LV) myocardia pointed out reduced levels of JAK2

phosphorylation and gp130 (57). The restoration of JAK/STAT in

DCM is critical to prevent cardiomyocytes apoptosis and stimulates

the expression of cardioprotective genes such as superoxide

dismutase and vascular endothelial growth factor (58–61).

Erythropoietin (Epo) and Thrombopoietin (Tpo) proteins activate
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JAK-STAT similarly to other cytokines through the binding to the

corresponding receptors, EpoR and TpoR (Figure 2A) (62). In this

way, Epo regulates bone marrow erythropoiesis and Tpo platelet

production (63, 64) hence, the development of Epo and Tpo

mimetic peptides (EMP and TMP) is valuable in diseases as

erythrocyte and platelet disorders (65).

In general, an interesting approach to obtain cytokines mimetics

is based on the design of Single-chain Tandem Macrocyclic Peptides

(STaMPtides) which are constituted by two disulfide-cyclic peptides

linked by peptide linkers (usually (Pro-Ala)n) (Figure 2B).

Interestingly STaMPtides mimicking Epo and Tpo have been

developed (66): two moieties of a mimetic of Epo, named EMP35

(67), were linked through 8- or 22-mer–Pro-Ala (PA) linkers,

respectively. Both STaMPtides were able to activate the cascade

EpoR/JAK2 and to induce the phosphorylation of JAK2 protein

acting as strong mimetics of Epo (66). A similar approach was

followed to design TMP-based STaMPtides: a mimetic of Tpo (68)

was dimerized with an 8-mer PA linker to form TMP-PA8. Its

activity was compared with that of recombinant human Tpo (rhTpo)

using a phosphokinase array, in both cases the analysis of cell lysates

revealed the activation of JAK2 protein (66).

An opposite therapeutic approach consists in engineering

inhibitors of JAK-STAT pathway assuming as structural template

natural endogenous regulators as SOCS proteins and hence the

design and optimization of SOCS mimetics (69).

Concerning SOCS1, many studies demonstrated that the linear

peptide covering the KIR domain inhibits/reduces: i) the activation of
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STAT by cytokines Th1 and 17 in leukocytes, ii) the activation and

migration of vascular cells and macrophages in vitro (70), iii) the

expression of cytokines with pro-inflammatory properties in

atherosclerotic plaques (71), iv) the renal inflammation, oxidative

stress and fibrosis (72), v) the chronic intraocular inflammatory

disease (as uveitis) (73) (equine recurrent uveitis (ERU) (74, 75),

vi) the abdominal aortic aneurysm (AAA) (76), and vii) the severity

of skin lesions, autoantibody production and kidney disease in lupus-

associated pathologies (77). In detail it demonstrated a protective role

in glomerular changes in MsPGN rat models by reducing

macrophage infiltration and inhibiting macrophage polarizing to

the M1 phenotype (78). A SOCS1-KIR linear peptidomimetic,

named PS5, was developed in our research group (79): in

keratinocytes and explants of type-1 skin disorders demonstrated

greater efficacy with respect to KIR (80)reduced the migration and

proliferation (“wound healing”) of VSMCs with important

antioxidant properties in vitro and in vivo (28). More recently, a

lactame macrocyclization led to novel compounds named

internal cyclic PS5 analogues (icPS5 and icPS5(Nal1), which bears

the substitution Phe/Nal1, 1-Naphthyl-L-alanine) which inhibited

JAK-mediated tyrosine phosphorylation of STAT1 and reduced

cytokine-induced proinflammatory gene expression, oxidative stress

generation and cell migration: in this context the Nal1 containing

cycle exhibited long-time anti-migratory effects which are very

important to limit plaque formation (81). More recently within

icPS5 sequence, SAR investigations were carried out by performing

crucial amino acids substitutions and/or modifications affecting the
A B

C D E

FIGURE 1

Upper panel: mimetics of q-defensins (A) RTD-1, (B) acyclic RTD-1. Lower panel: mimetics of IL-17 SynEp (C) LF1, (D) LF2 mimicking IL17F and (E)
LA3 mimicking IL17A.
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ring size: these studies confirmed the feasibility of this class of SOCS1

peptidomimetics, as specific inhibitors of JAK2 (82).

On the other hand, our research group was the first to develop

SOCS3 peptidomimetics following a structure-based approach quite

similar to that of SOCS1: a long peptide, called KIRESS, exhibited a

good affinity for JAK2 and an efficient suppression of IL-22 signaling

in keratinocytes, in athymic nudemice with squamous cell carcinoma

(SCC) (83) as well as in primary tumour growth and pulmonary

metastasis in triple negative breast cancer (TNBC) models (84).

Similarly, into primary cultured cells, KIRESS reduced the Neural

stem cells (NSCs) proliferation via blocking the cell cycle progression

from the G0/G1 to S phase and attenuated astrocytic differentiation

(85). In parallel, to explore different SOCS3 protein regions involved

in JAK2 recognition, several chimeric peptides connecting non-

contiguous protein regions, with a strongly aromatic fragment,

were investigated: the derived mimetic, named KIRCONG chim,

revealed able to recognize JAK2 exhibiting a low micromolar value of

dissociation constant with good anti-inflammatory properties in

VSMC and RAW264.7 macrophages (86). Its further development

was limited by poor water solubility which has been recently

overcame by the introduction of polyethylene glycol (PEG) moiety

as spacer instead of the two b-Alanines of KIRCONG chim

impressively suppressed NV (87).

With the aim to improve drug-like features of KIRCONG chim,

we also investigated in the recent past (88) and currently
Frontiers in Immunology 04
(unpublished data) novel cyclic analogues bearing different

chemical linkages among SOCS3 regions. In detail, head-to-tail

macrocycles of KIRCONG chim endowed with, amide (Figure 2C),

hydrocarbon (Figure 2D) and disulphide (Figure 2E) bonds

demonstrated reduced affinity toward JAK2 and very limited

water solubility (88). We are currently applying the so-called

CLIPS (Chemical Linkage of Peptides on Scaffolds) strategy (89)

in different local stretches of the KIRCONG chim sequence

(Figure 2F). CLIPS is a versatile strategy and involves the

cyclization of linear peptides via reaction of thiol-functionalities

of the cysteines with a small rigid entity (unpublished data), but

despite the easiness of cyclization, determines a reduction of water

solubility with respect to its linear counterpart. Hence a fine tuning

among affinity, stability and aqueous solubility should be taken into

account in the development of novel SOCS mimetics.
3 Discussion

The proteomimetic approaches have predominantly focused on

the folding features of protein interacting regions at PPIs

interfaces, sometimes evolving toward unnatural structures with

unprecedented features, as helical foldamers (90). More recently,

proteomimetics have been developed for their use as biomimetic

agents, selective binders or catalysts with promising applications in
A B

C D

E F

FIGURE 2

Upper panel: activation of cytokine receptors by (A) their endogenous ligands and (B) STaMPtide mimetics; Lower panel: different cyclization of
peptide sequences: (C) amide, (D) hydrocarbon and (E) disulphide and (F) by introduction of non-native scaffolds.
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chemical, biological, medical, and material fields. In this context the

number of biocompatible reactions used for the construction of

proteomimetics is continuously in growth, as well as computational

design algorithms (91). The cyclization of small molecules, peptides

and macromolecules is a fundamental strategy to design precise 3D

shapes tailored to chemical function and a major challenge, in

current drug development efforts, is the generation of macrocycles

targeting PPIs. To address this issue many, innovative design and

synthetic strategies are in development including combinatorial, to

diversify macrocyclic scaffolds (33) and screening formats (36). The

JAK/STAT signaling pathway is characterized by extensive crosstalk

of its components and is an important case study: it is endowed with

many PPIs where an individual protein engages specific interactions

(69). Both the activation and inhibition of JAK/STAT by external

agents, in different pathological contexts, demonstrated therapeutic

values. Herein we reported several examples to illustrate the

importance of proteomimetic approach to selectively regulate this

immune response signaling: in it mimetics of cytokines, acting at

different pathway levels, amplify signaling cascades, leading to

robust cellular responses in cell growth and differentiation

regeneration and tissue repair. Conversely mimetics of negative

regulators as SOCS1 and 3 are currently demonstrating growing

therapeutic interest in inflammatory-related disorders and

cancer, respectively.
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