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Children with severe inflammatory diseases are challenging to diagnose and

treat, and the etiology of disease often remains unexplained. Here we present

DIAPH1 deficiency as an unexpected genetic finding in a child with fatal

inflammatory bowel disease who also displayed complex neurological and

developmental phenotypes. Bi-allelic mutations of DIAPH1 were first described

in patients with a severe neurological phenotype including microcephaly,

intellectual disability, seizures, and blindness. Recent findings have expanded

the clinical phenotype of DIAPH1 deficiency to include severe susceptibility to

infections, placing this monogenic disease amongst the etiologies of inborn

errors of immunity. Immune phenotypes in DIAPH1 deficiency are largely driven

aberrant lymphocyte activation, particularly the failure to form an effective

immune synapse in T cells. We present the case of a child with a novel

homozygous deletion in DIAPH1, leading to a premature truncation in the

Lasso domain of the protein. Unlike other cases of DIAPH1 deficiency, this

patient did not have seizures or lung infections. Her major immune-related

clinical symptoms were inflammation and enteropathy, diarrhea and failure to

thrive. This patient did not show T or B cell lymphopenia but did have dramatically

reduced naïve CD4+ and CD8+ T cells, expanded CD4-CD8- T cells, and

elevated IgE. Similar to other cases of DIAPH1 deficiency, this patient had non-

hematological phenotypes including microcephaly, developmental delay, and

impaired vision. This patient’s symptSoms of immune dysregulation were not

successfully controlled and were ultimately fatal. This case expands the clinical

spectrum of DIAPH1 deficiency and reveals that autoimmune or inflammatory

enteropathy may be the most prominent immunological manifestation

of disease.
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Introduction

The protein DIAPH1 (Diaphanous homolog 1, also called

mDia1) is one of 15 human formins (1, 2). Formins are highly

conserved proteins that play a role in cytoskeletal remodeling by

promoting the assembly and elongation of actin filaments via their

conserved Formin Homology 2 (FH2) domains (1, 2).The first

report of human autosomal recessive DIAPH1 deficiency was in

2015 (3). Studying a single consanguineous kindred, the authors

used a combination of genome-wide linkage analysis and whole

exome sequencing (WES) to identify five children homozygous for

the DIAPH1 mutation Q778X who had undetectable DIAPH1

protein (3). These children were affected with microcephaly,

intellectual disability, seizures, short stature, and blindness.

Although infectious or immunological phenotypes were not

highlighted in this initial report of DIAPH1 deficiency, one of the

patients died at age 18 of a chest infection (causal pathogen not

reported), and another patient had a history of bronchiectasis (3).

Shortly thereafter, another paper described bi-allelic DIAPH1

mutations in four affected individuals from two unrelated

consanguineous families (4). The affected children in these

families had homozygous DIAPH1 mutations F923fs/F923fs and

R1049X/R1049X, respectively, and were diagnosed with postnatal

microcephaly, early-onset epilepsy, severe visual impairment, and

pulmonary symptoms including bronchiectasis and recurrent

respiratory infections (4). In the single patient homozygous for

the F923fs/F923fs mutation, these recurrent infections required

admission to the intensive care unit (4). Among the three

children with the R1049X/R1049X mutation, one died at age 13

of pneumonia (4). These findings suggested an important role for

DIAPH1 in immunity, and particularly in protection from severe

lung infections.

Recently, the role of DIAPH1 in T cell biology has been explored.

Formins, and in particular DIAPH1, are highly expressed in T cells

and are essential for Zap70-mediated phosphorylation of LAT

following TCR stimulation (5). Upon TCR ligation by anti-CD3/

anti-CD28, Zap70 is phosphorylated and Zap70 in turn

phosphorylates LAT. However, when T cells were treated with

formin-inhibiting drugs, Zap70, but not LAT, was phosphorylated

in response to anti-CD3/anti-CD28 (5). High-resolution imaging

revealed that localization of phosphorylated Zap70 to the immune

synapse (IS) and subsequent LAT phosphorylation are critically

dependent on formin-mediated actin polymerization (5). Due to its

role in TCR-dependent LAT phosphorylation, the immunological

aspects of DIAPH1 deficiency may phenocopy (completely or

partially) those of LAT-deficient patients. Patients with LAT

deficiency are affected by varied symptoms of immune deficiency

and dysregulation, including recurrent infections and severe

autoimmunity with infantile onset (6, 7). LAT deficiency is also

associated with abnormal lymphocyte frequency and function,

including progressive lymphopenia, reduced CD4+ and CD8+ T

cell numbers, expansion of CD4-CD8- double negative T cells, and

reduced activation and proliferation of T cells following anti-CD3/

anti-CD28 stimulation (6, 7). These data suggested that aside from its

critical roles in neurological development, human DIAPH1 was also

indispensable for T cell-mediated immune responses.
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Accordingly, a recent publication reported additional patients

with bi-allelic DIAPH1 mutations, and these patients displayed

symptoms of combined immunodeficiency (CID) similar to those

reported in LAT deficiency, in addition to microcephaly, seizures,

cortical blindness, and developmental delay (8). Five Finnish

patients were homozygous for the DIAPH1 splice-donor variant

c.684 + 1G>A despite no known shared recent ancestry (8). These

patients had recurrent and severe infections suggestive of poor T

cell responses, such as persistent Molluscum contagiosum,

candidiasis, recurrent oral herpes lesions, and EBV viremia (8).

One patient also had persistent vaccine strain Rubella skin infection

and multifocal leukoencephalopathy positive for JC virus (8).

Several of these patients had low T cell counts, and especially low

CD4+ T cells, with CD4/CD8 ratios <1 (8). Patients had very low

naïve CD4+ and CD8+ T cells (8). In agreement with the

importance of formin-mediated actin polymerization at the

immune synapse, T cells from DIAPH1-deficient patients did not

properly position their microtubule-organizing center (MTOC) at

the immunological synapse following T cell stimulation (8), and

patients’ T cells had defective induction of activation markers CD69

and CD25, and poor proliferation in response to stimulation with

anti-CD3/CD28 coated beads (8). These recent data highlight the

importance of DIAPH1 to induction of cell-mediated immunity

and define DIAPH1 deficiency as a monogenic disease affecting

both neurodevelopment and lymphocyte function. We report the

case of an infant presenting with inflammatory enteropathy,

without any initial infections and without seizures, in whom we

found a novel bi-allelic DIAPH1 mutation.
Methods

Patients and healthy controls

This research study was approved by the Vanderbilt University

Medical Center Institutional Review Board (IRB). Written informed

consent was obtained for adult participants and parental consent

was obtained for the patient.
Whole exome sequencing

Genomic DNA was prepared from blood samples of the patient

and her parents and used for trio-design whole exome sequencing

(WES). Exome capture was performed using the Comprehensive

Exome kit (Twist Biosciences). Paired-end sequencing was

performed on a NovaSeq (Illumina) generating 150-base reads.

WES data quality control was performed, data was aligned to the

reference genome GRCH38/hg38, and variant calling was done

according to Genome Analysis Toolkit (GATK) best practices and

the BWA-MEM (9) alignment algorithm. Next, we used GATK

(10)/Picard tools to sort the resulting files, performed base quality

score recalibration, then used HaplotypeCaller (10) to call variants.

Variant annotation was done using ANNOVAR (11). Variants were

then filtered, to retain only variant with minor allele frequency

<0.01 in the gnomAD (12) database, and which fit the autosomal

recessive inheritance pattern for this family.
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Preparation of PBMC and Western blotting

Blood samples were diluted 1:1 with PBS + 2% FCS then added

to SepMate tubes (Stemcell Technologies 85450) containing 15 mL

Ficoll-Paque (Cytiva 17144002). The samples were then

centrifugated at 1200 x g for 10 minutes at room temperature,

and peripheral blood mononuclear cells (PBMC) were collected.

PBMC were lysed in 25mM Tris, 0.15M NaCl, 1mM EDTA, 1%

N40, 5% glycerol; pH 7.4 and protease inhibitor cocktail (Thermo

Fisher A32953) on ice for 5 min. Lysate was cleared by

centrifugation at 16,000 x g for 10 min then 30ug of cleared

lysate from each of three healthy controls (HC1-HC3) and the

patient were used for immunoblotting. Primary antibodies used

were anti-Diaphanous 1 (Thermo #A300-077A) and anti-GAPDH

(Invitrogen #AM4300) followed by appropriate HRP-conjugated

secondary antibodies. The membrane was developed using Pierce

ECL Western Blotting Substrate and imaged on an Amersham

Imager 680.
Results

Case description

This case concerns a 7-month-old female patient who presented

with chronic diarrhea, developmental delay and failure to thrive. On
Frontiers in Immunology 03
examination she was noted to have microcephaly (occipital frontal

circumference 37cm), impaired vision due to cortical blindness,

hypotonia and developmental delay. The patient had no history of

seizures. She was born at term and had no history suggestive of birth

asphyxia. At the time of presentation, infectious explanations for

her severe diarrhea (~30 stools/day) were sought. CMV testing was

negative and a stool BioFire GI Panel (BioMerieux) for 22 intestinal

pathogens was also negative (Supplementary Data). Tests for tissue

transglutaminase antibodies (TTGA) and anti-deamidated gliadin

peptides (GDP) were negative. Endoscopy of the upper and lower

GI tract was performed. Duodenal villi appeared blunted, and

patchy nodularity was noted. Duodenal mucosal biopsy was

performed and revealed sparse infiltration by lymphocytes and

eosinophils (Figure 1A). A sigmoid mucosal biopsy showed mild

colitis, with lymphocytic and neutrophilic infiltration in the lamina

propria (Figure 1B). A note was also made of few apoptotic bodies in

the crypts (Figure 1C) and crypt abscess (Figure 1D). These

histopathology results, combined with negative results for various

causes of infectious enteropathy, suggested very early onset

inflammatory bowel disease. The patient was treated with steroids

and tacrolimus, and her chronic diarrhea and enteropathy lessened

but did not completely resolve. The patient had one episode of

Candida sepsis at age 10 months. She was briefly hospitalized with

fever and diarrhea (culture negative) at age 19 months. She had no

history of lower respiratory tract infections, ear infections, or

seizures. Unfortunately, the child expired at 22 months of age,
FIGURE 1

Histopathology of intestinal biopsy samples suggests inflammation and enteropathy. (A) Duodenal mucosal biopsy was performed and revealed
sparse infiltration by lymphocytes, and eosinophils, indicated by arrows. (B) Sigmoid mucosal biopsy showed mild colitis, with lymphocytic and
neutrophilic infiltration, indicated by arrows, in the lamina propria. (C) Apoptotic bodies, indicated by arrows, were noted in the crypts. (D) Apoptotic
bodies, indicated by arrows, were noted in the crypt abscess.
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when she presented with acute diarrhea with underlying chronic

malnutrition (weight 5.3 kg) (Figure 2A). The patient’s parents had

no history of similar symptoms and the patient had no siblings.
Immunological and genetic investigations

Immunophenotyping by flow cytometry was performed when the

patient was 11 months of age (Table 1) and revealed low lymphocyte

count, and low total T cells attributable to a reduced CD4+ T cell

compartment. Within both CD4+ and CD8+ T cells, naïve cells were

markedly decreased and central memory cells were expanded, relative

to the age-matched healthy control range. CD4-CD8- T cells were

also present at an increased frequency, and IgE level was elevated,

relative to the reference ranges (Table 1). In addition, recent thymic

emigrants were very low to undetectable at <1 cell/µL. This patient’s

clinical presentation and immunophenotyping results prompted a

search for an underlying inborn error of immunity.

Due to 3rd degree parental consanguinity (Figure 2B), an

autosomal recessive gene defect was suspected. Trio-design WES

analysis revealed a single nucleotide deletion at Chr5:141573742,

c.2081delC, causing frameshift mutation P703Hfs*65 in DIAPH1.

This variant was not present in the gnomAD v3.1.1 database (2).

The P703Hfs*65 mutation was homozygous in the patient and

heterozygous in each parent (Figure 2B). This mutation is predicted

to truncate DIAPH1 in the Lasso domain of the protein (Figure 2C),
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similar to the previously-reported Q778X mutation (3).

Immunoblotting using patient PBMC showed no detectable

DIAPH1 protein, in contrast to PBMC from three healthy

controls (Figure 2D). Collectively, these data identify a novel

mutation in DIAPH1 that causes severe monogenic disease in the

biallelic state, and these findings also suggest that DIAPH1

deficiency may cause a wide variety of immunological phenotypes

including severe inflammation.
Discussion

Less than ten years ago, rare bi-allelic mutations in DIAPH1

were shown to cause an autosomal recessive disease called Seizures,

Cortical blindness, and Microcephaly Syndrome (SCBMS) (3).

More recently, investigations of additional patients with bi-allelic

DIAPH1 mutations have shown that the phenotype of this rare

monogenic disease features prominent and potentially fatal

immune deficiency and dysregulation, in addition to the

previously recognized SCBMS phenotypes. Including this report,

DIAPH1 biallelic mutations have now been identified in 17 patients

from 9 families (3, 4, 8) (Table 2). The spectrum of phenotypes

caused by DIAPH1 deficiency may expand further as additional

cases come to light. The present case describes a child with the

features of SCBMS but who also had prominent, early-onset

diarrhea with autoimmune or inflammatory enteropathy. In this
B

C
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FIGURE 2

A novel DIAPH1 mutation ablating protein expression in a patient with enteropathy, microcephaly and cortical blindness. (A) Schematic overview of
the time course regarding symptom presentation and treatment. (B) Pedigree of the patient’s family. Double bar indicates parental consanguinity. A
novel homozygous DIAPH1 mutation c.2081delC, causing frameshift mutation P703fs*65 in the DIAPH1/mDia1 protein, was identified using trio-
design whole exome sequencing. (C) Schematic of the DIAPH1 protein, showing the location of variants causing an autosomal recessive disease that
includes both Seizures, Cortical blindness, and Microcephaly Syndrome (SCBMS) and variable immune deficiency and dysregulation. GBD denotes
GTPase binding domain, DID denotes Dia inhibitory domain, CC denotes coiled-coil domain, FH1 denotes formin homology domain 1, FH2 denotes
formin homology domain 2, DAD denotes Dia autoregulatory domain. Amino acid locations are indicated below. (D) Western blot using protein
lysate prepared from peripheral blood mononuclear cells (PBMC) of three healthy controls (HC1-HC3) and the patient.
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case, immune dysregulation was accompanied by mildly reduced

total T cells, markedly reduced CD4+ T cells, and CD4+ and CD8+

T cell subsets heavily skewed toward memory cells (Table 1). These

immunological phenotypes have been reported in some other cases

of DIAPH1 deficiency (8), suggesting that these cellular phenotypes,

in combination with clinical presentation, may be useful for the

diagnosis of DIAPH1 deficiency. This patient also had a marked
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expansion of CD4-CD8- double negative T cells, a phenotype not

previously reported in DIAPH1-deficient patients but present in

LAT deficiency (6, 7). Unlike other reported cases of DIAPH1

deficiency, this child did not have seizures nor respiratory infections

and had only one major infection with Candida. These results

indicate that signs of immune dysregulation, such as inflammatory

bowel disease, may be the most prominent symptom in infants with

DIAPH1 deficiency. Since the microcephaly, visual impairment and

developmental delay are present only postnatally, and vary in pace

of progression, immune dysregulation may be the initial symptom

in some patients.

All DIAPH1-deficient patients reported to date have

homozygous mutations that result in aberrant splicing or

premature truncation of the DIAPH1 protein, and the majority of

these mutations have been experimentally shown to abolish

DIAPH1 expression (3, 4, 8). Further research is needed to

understand the functional significance of other DIAPH1

mutations, which may preserve protein expression but impair its

function. Interestingly, a heterozygous premature truncation of

DIAPH1 was first reported to cause fully-penetrant autosomal

dominant sensorineural deafness and macrothrombocytopenia

(also called DFNA1) in a large Costa Rican kindred (13). Other

kindreds with DIAPH1 gain-of-function mutations have been

described, and the molecular mechanism of disease in this setting

is attributed to a mutation affecting the autoregulatory domain (14,

15). The fact that different DIAPH1 truncations can have vastly

different biological consequences suggests there is still much to

learn about the role of this and other formins in human physiology,

and immunology in particular.

Diagnosis of all DIAPH1-deficient patients reported to date has

relied on genetic testing (3, 4, 8). When reported, the prenatal and

perinatal histories of these patients are characterized by normal

prenatal ultrasounds, normal delivery, and normal growth

parameters at birth (3, 4, 8). These results indicate that standard

prenatal screening (without genetic testing) will not be sufficient to

detect DIAPH1 deficiency. In some families, known parental

consanguinity and the presence of symptoms in older children

may prompt genetic counselling and/or prenatal genetic testing.

However, the enrichment of the DIAPH1 splicing variant

c.684 + 1G>A in Finland (8) presents unique challenges, as most

children in the Finnish families did not have affected siblings, and

none were born to consanguineous parents.

Treatment of DIAPH1-deficient patients is very challenging.

Several reports indicate that seizures in these patients are refractory

to anti-epileptic therapies (3, 4, 8). Several DIAPH1-deficient

patients have had uncontrolled EBV infections. One patient had

EBV viremia at age 19, and subsequently developed diffuse large B-

cell lymphoma (8). Another patient died of EBV-positive B-cell

lymphoma at age 3 years (8). These findings underscore the

importance of monitoring DIAPH1-deficient patients for EBV-

related malignancy. Fewer than 20 patients with autosomal

recessive DIAPH1 deficiency have been reported (3, 4, 8). As the

number of patients diagnosed with this monogenic disease grows, it

is likely that the spectrum of clinical phenotypes, and especially
frontiersin.o
TABLE 1 Immunophenotyping results of the patient with age-matched
reference ranges.

Measurement Patient
(aged 11 months)

Age-matched
reference range

Absolute
lymphocyte count

1898/µL 4000-10500/µL

CD3+ T cells 42% (L)
716/µL

56-87%

CD4+ T cells 13% (L)
227/µL

25-86%

Naïve CD45RA+CCR7+
(% of CD4)

1.4% (L)
3/µL

77-96%

Central memory
CD45RA-CCR7+ (%
of CD4)

51% (H)
117/µL

7-22%

Effector memory
CD45RA-CCR7- (%
of CD4)

42% (H)
97/µL

0.008-4%

Terminally differentiated
CD45RA+CCR7- (%
of CD4)

2.3%
5/µL

0.0001-2.7%

CD8+ T cells 22%
374/µL

7-58%

Naïve CD45RA+CCR7+
(% of CD8)

0.5% (L)
2/µL

16-100%

Central memory
CD45RA-CCR7+ (%
of CD8)

29.9% (H)
112/µL

2-6%

Effector memory
CD45RA-CCR7- (%
of CD8)

23.4%
88/µL

1-100%

Terminally differentiated
CD45RA+CCR7- (%
of CD8)

42%
158/µL

4-92%

CD4-CD8- double
negative T cells

15% (H)
110/µL

0.4-2%

CD19+ B cells 4%
68/µL

3-77%

CD56+ NK cells 12%
204/µL

1-64%

IgG 622 mg/dl 172- 1069 mg/dl

IgE 346 IU/mL (H) 1.4-52 IU/mL

IgA 83 mg/dl 11- 106 mg/dl

IgM 85 mg/dl 41-173 mg/dl
Values in bold font indicate results outside the reference range; L, low; H, high.
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immunological phenotypes, will also expand. These findings,

together with recent publications, suggest that DIAPH1 deficiency

should be re-defined as a monogenic cause of both SCBMS and

primary immunodeficiency with immune dysregulation.
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TABLE 2 Clinical manifestations of DIAPH1 deficiency in patients reported to date, including this manuscript.

Phenotype Prevalence in
Q778X/Q778X
patients (3)
(Pakistan)

Prevalence in
F923fs/F923fs
patients (4, 8)
(Oman)

Prevalence in
R1049X/R1049X
patients (4)
(UAE)

Prevalence in
c.684 + 1G>A/
c.684 + 1G>A
patients
(8) (Finland)

Present case
P703fs/
P703fs
(India)

Microcephaly 5/5 3/3 3/3 5/5 yes

Visual impairment 5/5 3/3 3/3 5/5 yes

Developmental delay 4/5 (youngest patient
not assessed)

3/3 3/3 5/5 yes

Low height and weight
for age

5/5 1/1 2/3 (not reported in
youngest patient)

2/5 yes

Seizures 5/5 3/3 3/3 5/5 no

Lung phenotypes 2/5 (bronchiectasis
requiring surgery; fatal
lung infection)

2/3 (recurrent
pulmonary infections)

1/3 (bronchiectasis, fatal
lung infection)

3/5 (recurrent
infections; bronchiolitis)

no

Other infections None reported 2/3 (multiple including
otitis media, Candida,
mycobacteria, Molluscum
contagiosum, EBV,
VZV, HSV)

None reported 5/5 (multiple including
otitis media, Molluscum
contagiosum, Candida,
Staph hemolyticus, Strep
pneumonia, EBV, CMV,
RSV, JCV)

Candida sepsis

Enteropathy and diarrhea None reported None reported None reported 1/5 yes
While microcephaly, visual impairment, and developmental delay are common to all patients in the literature, immunological and infectious phenotypes show inter-individual variability.
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