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Investigating potential novel
therapeutic targets and
biomarkers for ankylosing
spondylitis using plasma
protein screening
Wenkang You1†, Yanbin Lin2†, Mingzhong Liu1†, Zhangdian Lin1,
Rongjie Ye1, Canhong Zhang1 and Rongdong Zeng1*

1Department of Orthopaedics, Quanzhou First Hospital Affiliated to Fujian Medical University,
Quanzhou, China, 2School of Medicine, Xiamen University, Xiamen, Fujian, China
Background: Ankylosing spondylitis (AS) is a chronic inflammatory disease

affecting the spine and sacroiliac joints. Recent genetic studies suggest certain

plasma proteins may play a causal role in AS development. This study aims to

identify and characterize these proteins using Mendelian randomization (MR) and

colocalization analyses.

Methods: Plasma protein data were obtained from recent publications in Nature

Genetics, integrating data from five previous GWAS datasets, including 738 cis-

pQTLs for 734 plasma proteins. GWAS summary data for AS were sourced from

IGAS and other European cohorts. MR analyses were conducted using

“TwoSampleMR” to assess causal links between plasma protein levels and AS.

Colocalization analysis was performed with the coloc R package to identify shared

genetic variants. Sensitivity analyses and protein-protein interaction (PPI) network

analyses were conducted to validate findings and explore therapeutic targets. We

performed Phenome-wide association study (PheWAS) to examine the potential

side effects of drug protein on AS treatment.

Results: After FDR correction, eight significant proteins were identified: IL7R,

TYMP, IL12B, CCL8, TNFAIP6, IL18R1, IL23R, and ERAP1. Elevated levels of IL7R,

IL12B, CCL8, IL18R1, IL23R, and ERAP1 increased AS risk, whereas elevated TYMP

and TNFAIP6 levels decreased AS risk. Colocalization analysis indicated that

IL23R, IL7R, and TYMP likely share causal variants with AS. PPI network analysis

identified IL23R and IL7R as potential new therapeutic targets.

Conclusions: This study identified eight plasma proteins with significant

associations with AS risk, suggesting IL23R, IL7R, and TYMP as promising

therapeutic targets. Further research is needed to explore underlying

mechanisms and potential for drug repurposing.
KEYWORDS
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1 Introduction

Ankylosing spondylitis (AS) is a disabling chronic arthritis

resulting from a combination of factors. Genetic susceptibility does

not fully explain the etiology of AS, and the effect of the interplay of

genes, sex, microorganisms, mechanical stress, and additional lifestyle

and environmental factors on increased susceptibility to AS is

unclear, which adds to the complexity of treatment (1). Targeted

biologic therapies are the mainstay treatment for patients with AS

who are difficult to treat with nonsteroidal anti-inflammatory drugs

(2). In recent years, the successful introduction of monoclonal

antibodies against AS (interleukin [IL]-17A and tumor necrosis

factor-a [TNF-a]) has exemplified numerous vital pathological

pathways. Nonetheless, <50% of patients respond favorably to IL-

17A and TNF-a blockade. Currently, curative treatment for AS is

lacking, and many patients have to manage symptoms through

lifelong medication, which can induce adverse reactions (3).

Consequently, exploring novel diagnostic biomarkers and

therapeutic agents is crucial to provide more effective diagnostic

methods and therapeutic options for patients with AS, thereby

improving patient prognosis.

Human proteins are crucial in diverse biological processes and

represent the main drug targets. Nelson et al. (4)revealed that

protein drug targets linked to genetic association-supported

diseases are likely to be approved for marketing, with a possible

twofold increase. In recent years, Mendelian randomization (MR)

analyses have been extensively applied to develop and repurpose

drug targets (5). Genetic instrumental variable analysis involves the

use of single nucleotide polymorphisms (SNPs) from genome-wide

association studies (GWAS) as the genetic approach to estimate the
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causal relationship between the exposure and the outcome. In

contrast to observational studies, MR avoids the effects of

confounding factors. Progress in plasma high-throughput

genomic and proteomic technologies has allowed MR-based

strategies to facilitate the identification of candidate therapeutic

targets for diverse disorders (e.g., type 1 diabetes and breast cancer)

(6, 7). However, MR analyses that integrate GWAS with protein

quantitative trait locus (pQTL) data, an approach that could

provide important insights for early disease diagnosis and drug

target discovery, are lacking in AS research. Consequently, the

present study aimed to integrate large-scale GWAS with pQTL

data using MR analysis to investigate plasma proteins that could be

candidate biomarkers or therapeutic targets of AS.

We established the precise control of AS by discovering

potential drug targets from plasma proteins. Figure 1 shows the

study design. First, MR analysis of two samples was performed, and

eight potential drug proteins were screened after FDR correction.

The plasma protein data were extracted from plasma proteomics-

related publications, whereas the AS data were obtained from the

GWAS data of the International Genetics of Ankylosing Spondylitis

Consortium (IGAS) (8). Secondly, we performed colocalization

analysis to verify the robustness of the genetic associations

between plasma proteins and AS. Third, the relationship between

the identified proteins was analyzed using the protein-protein

interaction (PPI) network to identify potential therapeutic targets.

Fourth, a sensitivity analysis, including Replication and meta-

analysis, was conducted to ensure the accuracy and directionality

of the identified associations. Finally, we assessed the potential

adverse effects of identified drug proteins on other phenotypes

using phenome-wide Mendelian randomization analysis.
FIGURE 1

A flowchart for Mendelian randomization (MR) identification of pathogenic plasma proteins in ankylosing spondylitis (AS).
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2 Methods

2.1 Exposure data acquisition

First, plasma protein data were obtained from recent

publications in Nature Genetics (9), which integrated data from

five previous GWAS datasets (10–14), to analyze 738 cis-pQTLs for

734 plasma proteins obtained using the following criteria

(Supplementary Table S1):

i) Located outside of the major histocompatibility complex

region (chr6, 26–34 Mb).

ii) Exhibiting noteworthy genome-wide associations (p-value <

5*10−8).

iii) Functioning as a cis-acting pQTL.

iv) Displaying autonomous association with linkage

disequilibrium (LD) clumping (r2 <0.001).

Additionally, the F-statistic for each instrumental variable was

determined using the formula: F = R2×(N − 2)/(1 − R2), where R2 is

calculated as 2×EAF×(1 − EAF)×b2. This calculation helps to

prevent biases due to weak instruments, and an F-statistic above

10 is deemed adequate to overcome such biases (15). SNPs with

palindromic structures were systematically removed from

the analysis.
2.2 Sources of outcome data

We obtained a GWAS summary dataset from the IGAS for the

preliminary analysis of AS, which included 19,688 patients and

15,145 controls. GWAS summary data for Ankylosing spondylitis

was also obtained from multiple independent cohort studies, all of

European ancestry. No overlapping participating studies were

shared between the GWASs for plasma protein levels and

Ankylosing spondylitis.
2.3 MR analysis

Our analysis complies with the STROBE-MR guidelines, and we

have included the comparative report as Supplementary Table S6.

We performed Mendelian randomization studies to assess the

causal links between plasma protein levels and Ankylosing

spondylitis. In MR, genetic variants are used as proxies for risk

factors. Therefore, the instrumental variables (IVs) chosen must

meet three essential criteria to ensure valid causal inference: (1) the

genetic variants must be directly linked to the exposure; (2) the

genetic variants should not be linked to any confounders that could

affect the relationship between the exposure and the outcome; (3)

the genetic variants should affect the outcome only through the

exposure and not via any other pathways.

Plasma proteins and AS were utilized as the exposure and

outcome, respectively. MR analysis was conducted using

“TwoSampleMR” (https://github.com/MRCIEU/TwoSampleMR).

If there was only one pQTL for a given protein, the Wald ratio

was used. If at least two genetic tools could be applied, inverse
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variance-weighted MR (IVW-MR) was used and subsequently

analyzed for heterogeneity (16). In the preliminary analysis, we

applied the false discovery rate (FDR) correction for multiple

testing to select potentially effective causal proteins. A sensitivity

analysis was performed to verify the accuracy of the data. For

proteins to which at least two genetic tools could be applied, we

performed heterogeneity analysis. Steiger filtering was also

performed to verify the association direction of AS with the

plasma proteins.
2.4 Colocalization analysis

Colocalization is an additional analysis that strengthens the

results of genetic studies by seeking evidence of the same genetic

variants being associated with both the exposure and the outcome.

This helps to confirm that the results are due to a causal relationship

with the genetic variant, rather than due to linkage disequilibrium

(LD) or other confounding factors. We conducted colocalization

analysis using the coloc R package (17). Colocalization analysis

provides five hypotheses: H0, the genetic variant is not associated

with either trait; H1, associated only with one trait; H2, associated

only with the other trait; H3, associated with both traits but with

different causal variants; and H4, associated with both traits and

with the same causal variant. We focused on proteins with a

combined posterior probability of association PPH4 of 0.90 or

greater (18).
2.5 Protein-protein and protein-drug
association analysis

We utilized a protein–protein interaction (PPI) network to

assess relevant plasma protein targets that were significantly

related to AS susceptibility. We constructed a functional protein

interaction network (https://cn.string-db.org) from the STRING

database. Typically, the minimal interaction score required for

STRING was 0.4. Identifying protein targeting pathways is

important for the discovery of efficient drug compounds that can

change target or downstream protein activity to terminate disease

development. Consequently, the dgidb database (https://dgidb.org/)

was utilized to explore the relationships of AS protein targets with

corresponding genes.
2.6 Phenome-wide MR

We used summary statistics of diseases from the UK Biobank

cohort to perform phenome-wide Mendelian randomization analysis

to investigate the potential side effects of these five candidate drug

genes. To ensure the accuracy and scalability of the analysis, the UK

Biobank disease GWAS employed the generalized mixed model

(SAIGE V.0.29) method to address the issue of unbalanced case-

control ratios (19). Based on statistical power considerations, we

selected 783 traits (diseases) with at least 500 cases for phenotypic MR

analysis. Subsequently, we conducted MR analysis using the IVW or
frontiersin.org

https://github.com/MRCIEU/TwoSampleMR
https://cn.string-db.org
https://dgidb.org/
https://doi.org/10.3389/fimmu.2024.1406041
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


You et al. 10.3389/fimmu.2024.1406041
Wald ratio method with the same parameters. If the FDR-corrected

p-value was less than 0.05, the causal effect was considered statistically

significant. The summary statistics for disease-associated SNPs were

obtained from SAIGE GWAS (available for download at https://

www.leelabsg.org/resources) (19).
2.7 Replication and meta-analysis

We repeated the MR analysis in another AS cohort, which

included 1,462 cases of European ancestry and 164,682 controls of

European ances t ry , ident i fy ing 16 ,380 ,022 SNPs to

comprehensively evaluate the robustness of the candidate proteins

identified by the above criteria. The GWAS data used for replication

analysis of AS was obtained from the Finnish database and included

in the IEU GWAS repository (https://gwas.mrcieu.ac.uk/datasets/

finn-b-M13_ANKYLOSPON/) with the GWAS ID finn-b-

M13_ANKYLOSPON. The criteria for replication analysis were

that the AS SNP had the same direction of effect and reached p<0.05

in the meta-analysis of the combined results of the two replication

GWAS. The meta-analysis was conducted using the R package

“meta” (version 7.0-0).
3 Results

3.1 Identification of significant proteins
associated with ankylosing spondylitis

After FDR correction, we identified eight significant proteins

(Table 1, Figure 2), including interleukin 7 receptor (IL7R),

thymidine phosphorylase (TYMP), interleukin 12B (IL12B), C-C

motif chemokine ligand 8 (CCL8), TNF alpha-induced protein 6

(TNFAIP6), interleukin 18 receptor 1 (IL18R1), interleukin 23

receptor (IL23R), and endoplasmic reticulum aminopeptidase

1 (ERAP1).

Specifically, elevated IL7R (OR = 1.04, 95% CI: 1.01–1.06, P =

7.12e−03), IL12B (OR = 1.08, 95% CI: 1.05–1.11, P = 3.28e−06),

CCL8 (OR = 1.03, 95% CI: 1.01–1.04, P = 1.39e−02), IL18R1 (OR =

1.01, 95% CI: 1.00–1.03, P = 4.21e−02), IL23R (OR = 1.26, 95% CI:
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1.20–1.31, P = 1.01e−23), and ERAP1 (OR = 1.07, 95% CI: 1.06–

1.08, P = 1.94e−31) increased AS risk. However, elevated TYMP

(OR = 0.91, 95% CI: 0.86–0.95, P = 1.83e−03) and TNFAIP6 (OR =

0.98, 95% CI: 0.96–0.99, P = 4.21e−02) decreased AS risk. In

addition, no heterogeneity was detected in the analyzed plasma

proteins, such as the heterogeneity test for CCL 8 (pval = 0.979).The

detailed main MR analysis results are shown in Supplementary

Table S2. The Steiger filtering method utilizes a statistical test to

pinpoint the stronger bidirectional effects. The findings indicated

that the eight proteins identified in the primary analysis did not

corroborate the presence of reverse causal effects (Table 1).
3.2 Colocalization analysis of the eight
significant proteins

We conducted colocalization analyses for the eight candidate

proteins to further determine the likelihood of shared causal genetic

variants associated with AS and pQTL. The results indicate that

IL23R, IL7R, and TYMP are likely to share causal variants in this

region (PPH4 > 0.90), making them the strongest candidate

proteins for AS (Figure 3, Supplementary Table S3). On the other

hand, ERAP1, IL18R1, CCL8, TNFAIP6, and IL12B are less likely to

share causal variants with AS in this region (PPH4 < 0.90). The

colocalization and genes track plots for these five proteins are

shown in Supplementary Figure S1. Notably, although the PPH4

values for ERAP1 and IL18R1 are less than 0.9, their PPH3 values

are close to 1. Thus, we believe that these two genes are associated

with protein levels in this region and AS, but the evidence supports

separate causal variants.
3.3 Relationships between candidate drug
targets and AS

The PPI networks illustrate the interactions of three prioritized

proteins (IL23R, IL7R,and TYMP) with two current AS drug targets

(TNF-a and IL17), as shown in Supplementary Figure S2.

Specifically, IL23R and IL7R are associated with TNF-a, which is

targeted by infliximab and adalimumab. Additionally, the PPI
TABLE 1 Mendelian randomization analysis of plasma protein and ankylosing spondylitis after FDR correction.

Protein SNP Method OR (95% CI) P value PVE F Steiger_pval PPH4

IL7R rs11957503 Wald ratio 1.04 (1.01, 1.06) 7.12e-03 8.69% 94.74 3.474e-16 0.976

TYMP rs131798 Wald ratio 0.91 (0.86, 0.95) 1.83e-03 1.42% 46.24 4.193e-05 0.932

IL12B rs4921484 Wald ratio 1.08 (1.05, 1.11) 3.28e-06 4.13% 142.08 6.844e-15 0.108

CCL8 rs3138036 IVW 1.03 (1.01, 1.04) 1.39e-02 11.57% 61.20 1.646e-11 0.197

TNFAIP6 rs289828 Wald ratio 0.98 (0.96, 0.99) 4.21e-02 13.93% 534.45 4.725e-75 0.435

IL18R1 rs1420106 Wald ratio 1.01 (1.00, 1.03) 4.21e-02 27.46% 1249.64 1.648e-170 0.036

IL23R rs11581607 Wald ratio 1.26 (1.20, 1.31) 1.01e-23 2.17% 73.17 0.016 0.998

ERAP1 rs17482078 Wald ratio 1.07 (1.06, 1.08) 1.94e-31 30.77% 1467.41 7.682e-144 <0.001
OR, odds ratio; per standard deviation increase in plasma protein levels. PVE, proportion of variance explained; IVW, inverse variance weighted.
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network shows that IL23R and IL7R are associated with IL17, a

target of ixekizumab (Supplementary Figure S3). This indicates the

potential relevance of IL23R and IL7R as new therapeutic targets for

AS, supported by their interactions with existing drug targets. We

searched the DGIdb database (https://dgidb.org/) for current drugs

targeting potential disease-causing proteins. Three potential

disease-modifying drugs were identified: tipiracil hydrochloride

targeting Thymidine Phosphorylase (TYMP), ruxolitinib targeting

Interleukin 7 Receptor (IL7R), and celecoxib targeting Interleukin

23 Receptor (IL23R). All these medications are approved,

highlighting their potential for repurposing in AS treatment

(Supplementary Table S5).
3.4 Phenome-wide MR analysis of
candidate drug-target proteins

To assess the potential beneficial or harmful effects of these

three AS-related candidate proteins on other phenotypes, we

conducted a phenome-wide association study. A comprehensive

MR screening of 783 diseases or traits was performed using data

from the UK Biobank. Overall, we identified 86 phenotypes that

may have a causal relationship with the candidate proteins (P <

0.05), as shown in Supplementary Table S4. After FDR correction,

there was almost no statistical evidence of adverse side effects for

these candidate drug proteins, suggesting that their development

appears to be safe (Figure 4).
3.5 Replication and meta-analysis

In the replication analysis, we used the original protein SNPs

(Supplementary Table S1) as exposure instruments and AS data

from the Finnish database as the outcome for MR analysis. The

main analysis methods remain the Wald ratio or IVW.

Additionally, we conducted a meta-analysis combining results

from the replication cohort and the original results. Our criteria
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for replication analysis are: the direction of effect of the targeted

protein on disease risk must be consistent (i.e., the sign of beta in

both MR analyses should be the same), and the meta-analysis of the

two replication GWAS results should reach p<0.05. In the

replication cohort, we found that the MR results for IL23R were

still significant (OR=1.81, 95% CI (1.19, 2.76), P=0.005), but it

should be noted that IL7R and TYMP did not show statistically

significant evidence in the replication cohort. The meta-analysis

results indicate that although the combined p-values for IL7R and

IL23R were significantly attenuated when discovery and replication

results were combined, the MR results for the three candidate

proteins remained significant. Specifically, IL23R (OR=1.42, 95%

CI: 1.01–1.99, P-meta=0.044), IL7R (OR=1.04, 95% CI: 1.02–1.06,

P-meta=0.00044), and TYMP (OR=0.91, 95% CI: 0.86–0.95, P-

meta=8.52e-5). Additionally, the replication results for these three

target proteins were consistent with the findings regarding disease

risk. The detailed results are shown in Figure 5.
3.6 Comparison with the study by
Zhao et al.

The proteomics data used by Zhao et al. (20)came from the UK

Biobank-PPP database, and the AS genetic association study data

came from the R9 version of the Finnish database. Their study did

not include a replication cohort. Given that the protein pQTL data

and outcomes used in Zhao et al.’s study are different from those

used in our study, we conducted a comparative analysis of their

results. Figure 6 illustrates a comparison of protein MR effect

estimates between our study and Zhao et al.’s study, categorizing

proteins into three groups: proteins identified in both studies

(Both), proteins identified only in our study (Our Only), and

proteins identified only in Zhao et al.’s study (Zhao Only). We

highlighted the p-values of the candidate proteins (IL23R, TYMP,

and IL7R) in both studies. The figure clearly shows that TYMP and

IL7R have more significant p-values in our study compared to Zhao

et al.’s study. In their study, the MR effect of TYMP was available

but not significant in the UK Biobank, which explains the absence of

these two proteins in Zhao et al.’s results. As for IL23R, its absence

in Zhao et al.’s study is due to the lack of measurement of this

protein in the UK Biobank. Therefore, our research serves as an

extension and enhancement of Zhao et al.’s findings.
4 Discussion

The development of new therapeutic agents for ankylosing

spondylitis is challenging. One of the main reasons for this

difficulty is the incomplete understanding of the pathophysiology

of AS. The human proteome is the primary therapeutic target, and

protein drug targets possess significant clinical value. Therefore, an

integrative analysis was conducted to identify novel anti-AS

therapeutic targets to evaluate the causative proteins of AS based

on prior GWAS (21).

The “causality” detected through MR could be genetic

confounding, or horizontal pleiotropy because of LD (9). Thus,
FIGURE 2

Volcano plot of MR analysis of 734 plasma proteins for AS risk. OR,
odds ratio, per standard deviation increase in plasma protein levels.
Dashed horizontal line represented P-fdr =0.05;PVE, proportion of
variance explained.
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only cis-pQTL were used as instruments to limit horizontal

pleiotropy bias because they directly affect the translation and

transcription of the gene of interest. In this study, we analyzed

the potential pathogenic relationship between plasma proteins and

the risk of AS and identified potential therapeutic targets among

plasma proteins for AS. After adjusting for FDR, the plasma

proteins ERAP1, IL12B, IL18R1, IL23R, IL7R, CCL8, TNFAIP6,

and TYMP showed a causal relationship with the risk of AS. The

Steiger filtering method were used to validate the directionality of

the causal relationships (22). These methods showed no evidence of

reverse causation for the proteins identified in the primary analysis.

This reinforces the finding that IL23R, IL7R, and TYMP are likely

contributors to the pathogenesis of AS, suggesting that these

proteins play a causative role in the disease’s development rather

than being a consequence of it. The PPI networks revealed that

IL23R and IL7R interact with current AS drug targets TNF-a and

IL17, indicating their potential as new therapeutic targets.

Additionally, database searches identified three approved drugs—

tipiracil hydrochloride, ruxolitinib, and celecoxib—targeting
Frontiers in Immunology 06
TYMP, IL7R, and IL23R, respectively, suggesting their potential

for repurposing in AS treatment (23). In the replication analysis

section, we attempted to replicate the study results using FinnGen

AS GWAS as the outcome. We found that the MR result for IL23R

remained significant in the replication analysis. As for IL23R and

TYMP, although the direction of the MR results was consistent with

the discovery results, they did not reach significance in the

replication cohort. This may be due to the smaller sample size of

the replication cohort, which reduces statistical power. In addition,

our MR PheWAS results indicate that developing these potential

drug proteins appears to be safe, as there is little statistical evidence

to suggest that they will produce harmful side effects (24).

IL23R is implicated in the IL-23/IL-17 axis, which plays a

crucial role in the pathogenesis of AS. Studies have shown that

IL-23 stimulates the expansion and maintenance of Th17 cells,

leading to increased levels of IL-17, a proinflammatory cytokine

involved in AS (25, 26). Genetic variants in IL23R have been

associated with AS susceptibility, highlighting it as a potential

therapeutic target. IL7R is essential for T-cell development and
FIGURE 3

Colocalization and Gene Track Plots for IL7R, IL23R, and TYMP. (A, C, E) display the colocalization plots for IL7R, IL23R, and TYMP. (B, D, F) present
the corresponding gene track plots for these proteins, illustrating the -log10(P-value) along the chromosomal position. The gene locations and
structures are shown below the association signals.
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homeostasis. Variants in IL7R have been linked to multiple

autoimmune diseases, including AS. The IL-7 receptor is involved

in the survival and proliferation of T cells, which are critical in the

inflammatory processes underlying AS (27). Targeting IL7R could
Frontiers in Immunology 07
modulate immune responses and potentially ameliorate AS

symptoms. Of the eight AS-related proteins identified in the

present study, ERAP1, IL12B, and IL23R were shown to be

related to AS via numerous animal experiments and clinical
FIGURE 4

Phenome-wide Association Study (PheWAS) of IL17R, IL23R, and TYMP. This scatter plot displays the -log10 (P,adjust_fdr) for the associations
between IL17R, IL23R, and TYMP gene levels and various phenotypes across different categories. Each point represents a specific phenotype within a
category, with colors indicating the corresponding protein. The horizontal line represents the significance threshold.
FIGURE 5

Replication and Meta-Analysis of Three Candidate Proteins. Meta-analysis of IL7R (A), IL23R (B), and TYMP (C) using data from FinnGen cohorts.
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studies, with ERAP1 suggested to be the second most potent gene

related to AS (28, 29). This further establishes the reliability of our

study of ERAP 1 as a drug target for treatment of AS. ERAP1 and

HLA-B27 contribute to 70% of familial genetic factors for AS (30).

ERAP1 polymorphisms have been shown to affect AS susceptibility

in HLA-B27+ people (31). Thus, ERAP1 can exert synergistic effects

on factors such as HLA-B27 and is related to abnormal peptide

processing and incorrect antigen presentation, leading to AS

susceptibility. According to one case−control association study,

protective genetic variants are related to a decrease in ERAP1 and

ERAP2 function and inhibition of cell surface major

histocompatibility complex I expression (8). ERAP1 and ERAP2

variants can affect associated peptide numbers to decrease the

accelerated HLA-B27 folding rate, thus aggravating ER stress

while accelerating AS progression (32). Mei et al. (33) reported

that AS patients had higher serum IL-17 and IL-23 levels than did

normal participants. IL-23, an IL-12-associated cytokine, may

promote T helper (Th)17 cell growth and differentiation (34).

Th17 cells are involved in the pathogenesis of AS (35) and are

also implicated in psoriasis, inflammatory arthritis, and Crohn’s

disease (36–38). IL-12B is likely related to the pathogenesis of AS

because of its effects on IL-23R+CD4+ T cells and preferential

stimulation of the above cells to release IL-17 predominantly (39).

The present systematic study based on MR studies precisely

addresses the inability of previous animal experiments to infer

causality. Moreover, we identified novel AS-associated proteins

(TYMP, CCL8, and TNFAIP6). TNFAIP6, also known as TSG 6,

is a class of proteins induced by TNF-a that is secreted during acute
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inflammatory responses and is associated with inflammation and

tissue remodeling (40). Previous studies have reported that

TNFAIP6 has anti-inflammatory effects in an experimental mouse

model of arthritis (41), but further evidence to support this

observation is lacking. Moreover, the present study suggested that

TNFAIP6 may have similar anti-inflammatory protective effects on

AS via MR, providing a strong reference for the TNFAIP family as

the causative genes for AS. CCL8 is a monocyte chemokine that can

interact with CCR1, CCR2B, and CCR3; it also regulates tumor

occurrence, antiviral infections, and inflammatory immunity in the

host (42). Consistent with the present findings, one study suggested

that CCL8 is upregulated in the serum of patients with AS and may

be a useful biomarker for predicting active inflammation in the

sacroiliac joints of patients with AS (43). TYMP catalyzes reversible

thymidine phosphorylation and is suggested to have a critical effect

on angiogenesis, tumor growth, migration, and invasion (44). A

recent study showed that TNF-a strongly stimulates TYMP

expression in fibroblast-like synoviocytes. Thus, we hypothesize

that TNF-a may affect AS by inducing TYMP expression.

Previously, Zhao et al. (20)studied drug targets for ankylosing

spondylitis using the UK Biobank-PPP database. Given that the

pQTL data used by Zhao et al. differs from the data source in our

study, we conducted a comparative analysis of their findings. The

results indicate that the target proteins we identified are entirely

different from theirs. For instance, the absence of IL23R protein

measurement in the UK Biobank led to its omission in Zhao et al.’s

study, thereby extending the data coverage scope in our research.

Additionally, the MR analysis results for TYMP in Zhao et al.’s
FIGURE 6

Comparison of p-values between our study and Zhao et al.’s study. The plot categorizes proteins into three groups: identified in both studies (Both),
only in our study (Our Only), and only in Zhao et al.’s study (Zhao Only). Highlighted are the p-values of candidate proteins IL23R, TYMP, and IL7R.
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study indicated potential significance (P=0.0037), suggesting a

potential causal role of this protein in the risk of AS. However,

after p-value correction, TYMP was not selected as a candidate drug

protein in their study. Furthermore, our discovery of drug-target

candidate proteins (IL23R, TYMP, and IL7R) passed rigorous

screening, with co-localization analysis strongly supporting their

shared causal variants with AS in the region (PPH4 > 0.90).

Moreover, our MR-PheWAS results showed almost no statistical

evidence of adverse side effects for these candidate drug proteins,

indicating that their development seems to be safe. Overall, these

findings demonstrate the feasibility and practicality of our

candidate proteins in drug development. We believe that the

screening of these targeted proteins and the analysis of adverse

effects can provide valuable references for research teams

developing new targeted drugs for AS.

However, this study has certain limitations. First, since the

instrumental variables included in this study mainly consist of a

single cis-acting SNP and lack trans-pQTLs, it is not possible to

determine the sensitivity test results at this level, which affects

pleiotropy and heterogeneity analyses. Nevertheless, the F-statistics

for our selected SNPs were all greater than 10, indicating minimal

weak instrument bias. Second, the coloc method assumes single

causal variants, which may not be accurate, and we are unable to

assess AS progression genes (as GWAS identifies AS susceptibility

genes). Therefore, our focus is on finding targets for disease

prevention rather than treatment. Third, this study’s exposure

and outcome data came from groups with European heritage. To

translate these findings into practical applications, more study on

non-European ancestries is needed in order to apply the

conclusions to other locations, including Asia, Africa, and the

Americas. Fourth, the results of the PPI study are suggestive

rather than definitive, despite the fact that we were able to

identify certain connections between pathogenic proteins and

therapeutic targets of existing MS medications. It is need to do

further research involving people who are healthy and patients with

AS to confirm these correlations.
5 Conclusions

Our study identified eight plasma proteins significantly

associated with ankylosing spondylitis risk using Mendelian

randomization and colocalization analyses. We provided robust

evidence for the causal roles of IL23R, IL7R, and TYMP,

highlighting them as promising therapeutic targets. Phenome-

wide MR analysis also evaluated potential side effects of these

targets. Despite limitations, our findings enhance understanding

of the genetic architecture of AS and support future research to

validate these targets for clinical application.
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SUPPLEMENTARY FIGURE S1

Colocalization and Gene Track Plots for Five Proteins. (A, C, E, G, I) display the
colocalization plots for IL12B, ERAP1, IL18R1, CCL8, and TNFAIP6,
respectively, showing the -log10(P-value) from the GWAS (x-axis) against

the -log10(P-value) from the pQTL analysis (y-axis), with colors representing

the linkage disequilibrium (LD) r² values. (B, D, F, H, J) present the
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corresponding gene track plots for these proteins, illustrating the -log10(P-
value) along the chromosomal position, indicating genetic variants associated

with AS and the candidate proteins. The gene locations and structures are

shown below the association signals.

SUPPLEMENTARY FIGURE S2

Protein-protein interaction networks showing the interactions between three

prioritized proteins (IL23R, IL7R, and TYMP) and two current AS drug targets
(TNF and IL17).
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SUPPLEMENTARY FIGURE S3

Protein-Protein Interaction (PPI) Networks of AS Medications, Drug Targets,
and Potential Targets. This diagram illustrates the interactions between

current ankylosing spondylitis (AS) medications, their drug targets, and

potential new therapeutic targets. AS medications (infliximab, adalimumab,
golimumab, and ixekizumab) are shown to target TNF-a and IL17. The

potential targets identified are IL23R and IL7R, which are connected to the
existing drug targets through co-expression (red lines) and text mining

evidence (green lines).
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