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Background: Despite the growing number of elderly kidney transplant (Ktx)

recipients, few studies have examined the effects of immunosuppression on

their lymphocyte profiles.

Methods: We evaluated the early conversion from mycophenolate sodium (MPS)

to everolimus (EVL) after rabbit antithymocyte globulin (rATG) 2mg/kg induction in

elderly kidney recipients. Three groups of KTx patients were compared: (a) Young

(n=20, 36 ± 7 y) receiving standard immunosuppression (Group A1) (prednisone,

tacrolimus, and MPS), (b) Elderly (n=35, 65 ± 3 y) receiving standard

immunosuppression (Group B1), and (c) Elderly (n=16, 65 ± 3 y) with early (mean

30 d) conversion from MPS to EVL (Group B2). Naive, memory, and regulatory

peripheral blood TCD4+ lymphocytes were quantified at 0, 30, and 365 d.

Results: Results are reported as [mean(p25–p75)]. Young recipients had higher

lymphocyte counts at baseline [2,100(1,630–2,400) vs. 1,310 (1,000–1,600)/mm3,

p<0.0001] maintained higher counts within 365 d [1,850(1,590–2,120) vs. 1,130

(460–1,325)/mm3, p=0.018 and vs. 1,410(805–1,895)/mm3, p=0.268]. Elderly

recipients showed a decrease in lymphocytes within 30 d [1,310(1,000–1,600)

vs. 910(700–1,198)/mm3, p=0.0012] with recovery within 365 d. The same pattern

was observed in total lymphocytes and TCD4+ counts. Rabbit antithymocyte

globulin induced a reduction in central memory T-cell percentages at 30 d in

both young recipients [6.2(3.77–10.8) vs. 5.32(2.49–7.28)% of CD4+, p=0.036] and

in elderly recipients [8.17(5.28–12.88) vs. 6.74(4.36–11)% of CD4+, p=0.05] on

standard immunosuppression, returning to baseline at 365 d in elderly recipients

but not in young recipients. Regulatory T CD39+ cells (Treg) percentages

decreased at 30 d in elderly recipients [2.1(1.23–3.51) vs. 1.69(0.8–2.66)% of

CD4+, p=0.0028] and in young recipients [1.29(0.45–1.85) vs. 0.84(0.18–1.82)%

of CD4+, p=0.0038], returning to baseline at 365 d in elderly recipients [2.1(1.23–

3.51) vs. 2.042(0.88–2.42)% of CD4+], but not in young recipients [1.29(0.45–1.85)
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vs. 0.86(0.7–1.34) % of CD4+]. The elderly everolimus conversion group did not

show significant changes in cell profile over time or compared to elderly recipients

with standard immunosuppression.

Conclusion: Aging favored the maintenance of Treg during the late transplantation

period despite ongoing immunosuppression. Lymphocyte depletion due to rATG

was more prominent in elderly recipients and affected memory subsets with a

temporary reduction in central memory T cells. However, conversion to everolimus

did not impact Treg profile. Reducing the dose of rATG in elderly recipients seems

necessary for the expected lymphocyte changes with EVL to occur.

Clinical trial registration: nEverOld Trial, identifier NTC01631058.
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Introduction

A current challenge in kidney transplantation is to improve the

short- and long-term outcomes for elderly recipients. The rates of

infection (1) and malignancy (2) after transplantation are

significantly higher among elderly recipients, while acute rejection

episodes are less frequently reported (3). Renal-transplanted elderly

patients exhibit higher rates of death-censored graft loss than non-

elderly recipients (4), although their mortality is reduced when

compared to those on dialysis (5).

Despite these clinical differences, and the likelihood of excessive

immunosuppression (IS) in the elderly, it has been the usual

practice to prescribe uniform IS regimens for all patients

regardless of their age. Most clinical trials evaluating the efficacy

and safety of new immunosuppression protocols focus on kidney

transplant recipients in their fourth decade of life (ranging from

42.6 years to 49.3 years) (6–9). Our recent research showed that

elderly recipients have reduced clearance of tacrolimus (TAC) (10)

and a stable level of everolimus (EVL) despite lower oral doses (11),

suggesting decreased metabolism of these drugs in the elderly

patients. The divergent clinical outcomes observed between

elderly and non-elderly transplant recipients highlight the need

for a better understanding and tailored immunosuppression

regiments for elderly recipients.

Recent guidelines recommend using biologic agents for induction

therapy, suggesting interleukin-2 receptor-specific antibodies

(IL2RA) for patients at low immunological risk, while rabbit anti-

thymocyte globulin (rATG) is typically reserved for those at higher

risk (12). However, despite these recommendations, there has been

an increased use of rATG over IL2RA in both elderly and non-elderly

recipients (13). This trend is driven by robust studies and meta-

analyses indicating that rATG is associated with lower 5-year

mortality (14) and acute rejection rates (15), with no differences in

overall mortality (16) or allograft survival (15).
02
Among elderly recipients of low immunological risk, rATG is

associated with lower acute rejection rates compared to IL2RA,

while long-term outcomes remain similar (13). Despite the

widespread use of rATG for induction therapy, its optimal dose,

particularly for elderly patients, is not well established. Most

transplant centers use a dose of 6 mg/kg, but lower doses may

limit the duration of T-cell depletion without significantly affecting

efficacy (17, 18). In elderly kidney transplant recipients receiving

induction therapy with rATG 6 mg/kg, the rates of 1-year biopsy-

proven acute rejection, infection and malignancy, and 3- year

death-censored graft survival rates are comparable to those

observed in non-elderly recipients (19).

Maintenance immunosuppression with mTOR inhibitors

(mTORi) is emerging as a promising option for elderly transplant

recipients. The anti-proliferative effects of mTORi is related to

lower neoplasms incidence (20) and regression of myocardial

hypertrophy (21). These benefits are particularly relevant for

elderly recipients, who have higher rates of malignancies (2) and

cardiovascular events (22). Recent trials have shown that

EVL combined with a low dose of calcineurin inhibitor

(CNI) is equivalent to the standard mycophenolate and CNI

administration, in low immunological risk patients receiving

rATG or basiliximab induction therapy (6). Furthermore, clinical

trials with de novo EVL and reduced CNI exposure showed a

significant lower incidence of cytomegalovirus (CMV) infection

or disease compared to standard immunosuppression, even in the

context of rATG induction and without pharmacological CMV

prophylaxis (23, 24).

The lymphocyte profile in peripheral blood is important for

predicting allograft outcomes. A higher frequency of peripheral

blood regulatory T cells (CD4+CD25+FoxP3+) has been linked to

stable graft function and immune tolerance (25), with lower acute

rejection incidence (26), and positively correlated with higher

glomerular filtration rates (26). Similarly, high numbers of
frontiersin.org
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regulatory B cells (CD19+CD24HiCD38Hi) have been associated

with stable graft function (27) and operational tolerance (28).

Immunosuppression directly affects both the quantitative and

functional lymphocyte profiles of kidney transplant recipients.

Induction therapy with rATG (29, 30) and maintenance

immunosuppression with mTORi (31–33) tend to promote an

immunomodulatory shift. In contrast, IL2RA and CNIs can lead to

more profound immunosuppression, adversely impacting the

survival and function of immunoregulatory cells (34). The

influence of immunosuppression on the peripheral lymphocyte

profile in elderly kidney transplant recipients has not been

systematically evaluated.

The best immunosuppression for elderly kidney transplant

recipients has not yet been precisely defined (35). Based on on

previous observations, we hypothesized that using a lower-dose rATG

induction and mTORi-based maintenance immunosuppression might

better support immunoregulatory lymphocyte populations typically

seen in the elderly. This approach could potentially reduce overall

immunosuppression, avoiding occurrence of infections and

malignancies associated with more intense immunosuppressive

regimens. Our group conduced a prospective randomized clinical

trial evaluating rATG induction with low-dose TAC and mTORi

maintenance in the elderly population (36) (Clinical Trials

Identifier: NTC01631058).

In this study, we evaluate rATG and mTORi effects on

T-lymphocyte populations in elderly kidney transplant recipients.
Materials and methods

Study design and population

This study is a sub-analysis of patients included in the nEverOld

trial (36) (Clinical Trials Identifier: NTC01631058) focusing on the

characterization of peripheral lymphocyte profiles.

The nEverOld trial is an open-label, single-center, prospective,

randomized, controlled trial designed to evaluate the efficacy and

safety profile of low-dose rATG induction and early conversion to

EVL in elderly kidney transplantation recipients compared to a

standard of tacrolimus (TAC) and mycophenolate sodium (MPS).

We investigated the quantitative effects of rATG induction and

EVL conversion on peripheral blood T-lymphocyte subpopulations

by comparing three groups: (a) young kidney transplantation

recipients with standard immunosuppression (Group A1) (n=20),

(b) elderly kidney transplantation recipients with standard

immunosuppression (Group B1) (n=19), and (c) elderly kidney

transplantation recipients undergoing MPS to EVL conversion

(Group B2) (n=16) along with low TAC.

Patients from June 2012 to December 2017 were included. All

elderly patients (≥60 years) and undergoing their first kidney

transplant, from deceased or living donors, were invited to

participate in the study. Concurrently, a control group of younger

patients, who received their kidney transplants consecutively after

the elderly patients, was included for comparison.

According to the nEverOld trial design, elderly recipients were

randomized at enrollment in a 1:1 ratio to either EVL conversion
Frontiers in Immunology 03
(Group B2) or standard immunosuppression (Group B1). For

comparison, the elderly recipients in the EVL conversion group

(Group B2) were also analyzed as if they were in the standard

immunosuppression group (Group B1) before conversion.

Patients were excluded if their panel reactivity antibody was

higher than 30%. All patients received induction therapy with

methylprednisolone 500 mg and a single dose of rATG of 2.0 mg/

kg. During the first month, all patients were given initial maintenance

immunosuppression consisting of prednisone 0.5 mg/kg/d, tapered to

5 mg/d by the end of the first month, TAC 0.2 mg/kg/d b.i.d. adjusted

to achieve a blood trough level between 8 ng/mL and 12 ng/mL, and a

fixed dose of MPS at 720 mg b.i.d. After 30 d post-transplantation,

young and elderly standard recipients (Group A1 and Group B1)

continued with prednisone 5 mg/d, MPS 720 mg b.i.d., and TAC

adjusted to maintain a trough blood level of 5–8 ng/mL. Patients in

the elderly everolimus conversion group (Group B2) had EVL added

to the MPS/TAC regimen at a dose of 1 mg b.i.d., with MPS reduced

to 360 mg b.i.d. and TAC dose adjusted to achieve a blood trough

level of 2–4 ng/mL. After 7 d, MPS was completely withdrawn, and

EVL blood trough level was set to 3–8 ng/mL.

The study was approved by institutional board of ethics in

research (CAPPesq no. 44943215.0.0000.0068). All individuals

provided informed consent prior to enrollment.
Times for blood sample collection and
cell preparation

Blood samples were collected from all groups at day 0, 30, and

365 after transplantation. The elderly everolimus conversion group

(Group B2) also collected an additional sample 30 d after EVL

conversion, referred to as day 60. Since the elderly groups were

under the same immunosuppression regimen from baseline up to

30 d post-transplantation, they were analyzed together for these

time points. At day 60 and day 365 post-transplantation, samples

were analyzed according to their respective groups.

Peripheral blood mononuclear cells (PBMCs) were separated

using Ficoll density gradient centrifugation and cryopreserved for

further analysis.

In the original study design, we planned to analyze the effect of

everolimus on elderly patients 30 d after conversion. Samples were

collected at 0 d, 30 d, and 60 d, and the PBMCs were cryopreserved

for subsequent analysis. However, an interim analysis of data from

50% of the included patients showed that the anticipated differences

with everolimus use in the elderly could be more evident in the late

post-transplant. As a result, we decided to extend the sample

collection period to up to 1 year post-transplant. Unfortunately,

few patients were available for this extended collection period,

leading to a limited number of samples at 365 d.
Flow cytometry identification of
T- lymphocyte sub-populations

PBMCs were stained with titrated mouse anti-human

monoclonal antibodies. Anti-CD4-fluorescein isothiocyanate
frontiersin.org
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(FITC) (OKT4), anti-CCR7 (CD197)-Phycoerythrin (PE) (3D12),

anti-CD45RA-PE-Cy7 (HI100), anti-CD25-PE (BC96), anti-

CD127-PE-Cy7 (RDR5), anti-FoxP3-Peridinin Chlorophyll

Protein Complex (PerCp)-Cy5.5 (PCH101), and anti-CD39-

allophycocyanin (APC) (A1) antibodies were from eBiosciences

(San Diego, CA, USA). Anti-CD3-APC-Cy7 (SK7), anti-CD8-

AmCyan (SK1), and BD Multitest™ CD3/CD8/CD45/CD4 [anti-

CD3-FITC (SK7), anti-CD8-PE (SK1), anti-CD45-PerCP (2D1

(HLe-1), and anti-CD4-APC (SK3)] were from BD Biosciences

(Heidelberg, Germany). For intra-cellular staining of FoxP3, cells

were washed, fixed, and permeabilized with FoxP3 staining buffer

from eBioscience (San Diego, CA, USA) immediately after surface

staining. At least 0.5×105 events in the lymphocyte region were

acquired. Fluorescence minus one (FMO) controls were set up for

CD127, FoxP3, CD39, CCR7 (CD197), and CD45RA markers.

Flow cytometry was performed in a FACSCanto-II (BD

Biosciences) cytometer. FlowJo 9.1 software (TreeStarInc, San

Carlos, CA, USA) was used for analysis. After exclusion of cell
Frontiers in Immunology 04
doublets and debris, sequential gating of PBMC was performed in

the lymphocyte region. The gating strategies used to define T-cell

subsets are shown in Figure 1. The lymphocyte subsets evaluated

were T (CD45+CD3+), TCD8 (CD45+CD3+CD8+), and TCD4

(CD45+CD3+CD4+), and the subpopulations TCD4 naive

(CD3+CD4+CCR7+CD45RA+) (T naive), TCD4 central memory

(TCM) (CD3+CD4+CCR7+CD45RA−), TCD4 effector memory

(TEM) (CD3+CD4+CCR7−CD45RA−), TCD4 terminally

differentiated effector memory (TEMRA) (CD3+CD4+CCR7
−CD45RA+), regulatory TCD4 (Treg) (CD3+CD4+CD25hiCD127
−FoxP3+), and regulatory TCD4+CD39+ (CD39Treg).

Absolute counts of lymphocyte subsets were calculated using

percentages obtained from flow cytometry and lymphocyte counts

from standard blood counts performed on fresh blood before

PBMC separation. The subset percentages analyzed were referred

to as total lymphocyte counts for T, TCD4, TCD8, to TCD4 cells for

T naive, TCM, TEM, and TEMRA and to TCD4CD25hi cells for

Treg and CD39+Treg.
FIGURE 1

Flow cytometry characterization of peripheral blood T- cell subsets. Fluorescence minus one (FMO) controls were set up for CD127, FoxP3, CD39, CCR7
(CD197), and CD45RA. TCM, T central memory; TEM, T effector memory; TEMRA, terminally differentiated effector memory; Treg, regulatory T cells.
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Statistical analyses

The Kolmogorov–Smirnov or Shapiro–Wilk tests were used to

assess the normality of continuous variables. For comparisons of

normally distributed continuous variables, Student’s t-test was used,

while the Mann–Whitney U-test was applied for non-normally

distributed variables. In paired sample analyses, the paired

Student’s t-test was employed for normally distributed variables,

and the Wilcoxon test was used for non-normally distributed

variables. Nominal variables were compared using the chi-square

or Fisher’s exact test. Data are presented as medians and interquartile

ranges [median (p25–p75)]. A p-value ≤0.05 was considered

statistically significant.

All analyses were performed with SPSS-20 (IBM-Corp.,

Armonk, NY, USA) and GraphPad Prism 6 software (GraphPad

Software Inc., La Jolla, CA, USA).
Results

Table 1 presents the demographics and transplant characteristics

of the different groups. Table 2 provides details on TAC and EVL

trough blood levels.

In the young control group (Group A1), the median daily dose of

mycophenolate sodium was 1,440 mg at 30 d and 90 d and 1,080 mg

at 365 d. In the elderly group with standard immunosuppression

(Group B1), the median daily dose was 1,440 mg at both 30 and 90 d

and 900 mg at 365 d. Consequently, the proportion of patients

deviating from the protocol-specified dose at 30, 90, and 365 d was

10%, 25%, and 71% in Group A1, and 21%, 38.8%, and 64.3% in

Group B1, respectively.

Recipients in the young standard immunosuppression group

(Group A1) were approximately 30 years younger than those in

both the elderly groups, standard immunosuppression (Group B1)

(36 ± 7 y vs. 65 ± 3y, p < 0.05) and everolimus conversion

(Group B2) (36 ± 7 y vs. 65 ± 3 y, p<0.05). The mean ages of the

elderly recipients in groups B1 and B2 were similar. There were no

differences between the groups in terms of gender, rates of systemic

arterial hypertension (SAH) and diabetes mellitus (DM), time on

dialysis, number of human leukocyte antigen (HLA)-A, HLA-B,

and HLA-DR mismatches, percentages of panel reactivity

antibodies, expanded criteria donors, and cold ischemia time.

However, elderly recipients received grafts from deceased donors

more frequently than their younger counterparts (100% vs. 45%,

p<0.05 for B1; 87.5% vs. 45%, p<0.005 for B2) (Table 2).
Quantification of total lymphocyte and
T subsets

Tables 3, 4 show absolute lymphocyte counts over times.

Recipients in the young standard immunosuppression group

(Group A1) had higher total lymphocyte absolute counts than

elderly on standard immunosuppression (Group B1) at days 0, 30,

and 365. Following induction therapy with a single rATG dose (2 mg/
Frontiers in Immunology 05
kg) elderly recipients in Group B1 experienced a reduction in total

lymphocyte counts at 30 d (p=0.0012), but counts returned to pre-

transplantation levels by the end of the first year. In the elderly

everolimus conversion group (Group B2), total lymphocyte counts

recovered to pre-transplantation values 30 d after conversion to EVL

and remained stable at 365 d, showing no significant difference

compared to the young standard immunosuppression group (Group

A1) (Table 3; Figure 2). Throughout the study period, the young

standard immunosuppression group (Group A1) consistently

exhibited higher absolute counts of total T, TCD4, and TCD8

lymphocytes compared to the elderly standard immunosuppression

group (Group B1). However, the elderly everolimus conversion group

(Group B2) showed an increase in total T lymphocyte counts, mainly

due to an increase in TCD8 counts (p=0.0625), at 365 days (Table 3;

Supplementary Figure S1).
TABLE 1 Recipient demographics according to studied groups.

Characteristics
Group

A1 (n=20)
Group

B1 (n=19)
Group

B2 (n=16)

Age (years) 36 ± 7 65 ± 3a 65 ± 3b

Male gender n(%) 8 (40) 10 (52.6) 10 (62.5)

Comorbidity n(%)

SAH 18 (90) 19 (100) 16 (100)

DM 4 (20) 11 (57.9) 6 (37.5)

Underlying renal
disease n(%)

Diabetic
nephropathy

3 (15) 10 (52.6) 4 (25)

Vascular
nephropathy

1 (5) 5 (26.3) 4 (25)

Glomerulonephritis 3 (15) 1 (5.3) 1 (6.2)

ADPKD 1 (5) 1 (5.3) 1 (6.2)

Others 12 (60) 2 (10.5) 6 (37.5)

HD n(%) 19 (95) 16 (84.2) 16 (100)

Time of RRT (months) 30.5 (14–39.25) 38 (21–54) 33.5
(20.75–49.75)

PRA 0 (0–0) 26 (10.5–43) 18
(5.75–39.25)

HLA-mismatches 4 (3–4.75) 2 (2–4) 3 (2–3.75)

Deceased donor n(%) 9 (45) 19 (100)a 14 (87.5)b

Expanded criteria donor
n(%)

2 (22.2) 11 (57.9) 6 (42.9)

Cold ischemia
time (hours)

24 (22–33.5) 26 (21–28) 24 (21.5–27.5)
Group A1, young standard immunosuppression; Group B1, elderly standard
immunosuppression; Group B2, elderly everolimus conversion; n, number; SAH, systemic
arterial hypertension; DM, diabetes mellitus; ADPKD, autosomal dominant polycystic kidney
disease HD, hemodialysis; RRT, renal replacement therapy, PRA, panel reactivity antibody;
HLA, human leukocyte antigen.
a,bp<0.05 for Group A1 vs. Group B1 and Group A1 vs. EC groups, respectively.
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Quantification of TCD4
lymphocyte subsets

At baseline, we observed only a few differences between the

young and elderly groups on standard immunosuppression (Group

A1 and Group B1). The young group had higher percentages of T-

naive cells (p=0.0619) (Table 4). However, the absolute numbers of

T-lymphocyte subsets (TCD4, TCD8, Tnaive, TEM, and TEMRA)

were lower in the elderly group (p = 0.017, p = 0.001, p = 0.049, p =

0.033, p = 0.012, respectively) with the exception of central memory

T cells (TCM) (p = 0.177) and Tregs (p = 0.712), which showed no

significant differences (Table 3; Supplementary Figure S1).

At baseline, there was a trend towards higher percentages

of TCM, TEM, and TEMRA in the elderly on standard
Frontiers in Immunology 06
immunosuppression (Group B1) and higher percentages of T-

naive in the young on standard immunosuppression (Group A1)

(Table 4; Figure 3).

Following induction therapy with rATG and immunosuppression,

there was a reduction in the percentages of central memory T cells at 30

d post-transplantation (p=0.0498 and p=0.0359, respectively). By 365

d, the percentage of central memory T cells had returned to baseline

values in the elderly with standard immunosuppression but not in the

young. Thirty days after EVL conversion, there were no changes in the

percentage of central memory T cells, and no differences were observed

compared to elderly with standard immunosuppression (Group B1), at

365 d (Figure 3C; Table 4).

At 365 d, there was a trend towards a reduction in the percentages

of terminally differentiated effector memory T cells across all groups.
TABLE 2 Number of available samples and immunosuppressant drugs blood levels according to time after transplantation.

0d 30d 60d 365d TAC30d TAC60d TAC365d EVL60d EVL365d

Group A1 20 17 0 7 11.2 ± 2.7 – 6.5 ± 2 – –

Group B1 analysis 34 33 0 5 – – – – –

Group B1 19 18 0 5 10.7 ± 4.3 – 7.4 ± 2.1 – –

Group B2 15* 15* 14 5 9.4 ± 2.1 4.7 ± 1.6 3.3 ± 1.5 5.8 ± 4 5.4 ± 2.2
f

Group A1, young standard immunosuppression; Group B1, elderly standard immunosuppression; Group B2, elderly everolimus conversion; d, days; TAC, tacrolimus; EVL, everolimus. Group
B1 analysis refers to all elderly patients before conversion.
*Patients of Group B2 group included in Group B1 in the initial analysis. TAC and EVL blood levels are expressed in ng/mL.
TABLE 3 Absolute numbers (cells/mm3) of lymphocyte subpopulations according to studied groups and observation time.

Lymphocyte
subset

Group A1 Group B1 Group B2

Pre-
transplantation Day 30 Day 365

Pre-
transplantation Day 30 Day 365 Day 60 Day 365

Total
Lymphocytes

2,100
(1,630–2,400)

1,960
(1,270–2,970)

1,850
(1,590–2,120)

1,310
(1,000–1,600)a

910
(700–1,198)b,*

1,130
(460-1,325)c

1,030
(800–1,230)

1,410
(805–1,895)

T
1,334
(848.4–1,633)

1,202
(707–1,619)

1,333
(941.7–1,507)

695.5
(509.8–952)a

471.9
(182.4–754.7)b,*

344.7
(293–884.2)c

599.5
(271.3–802.6)

799.5
(539.4–1,177)

TCD8
391.1
(298.4–494.9)

443.3
(251.8–747.3)

426.5
(376.8–731.9)

206.3
(145.7–332.1)a

160.2
(82.55–246.3)b

145.4
(122.8–369)c

173.9
(106–320.6)

363.8
(211.7–461.7)

TCD4
748.7
(588.6–983.4)

706.5
(340.8–833.3)

743.1
(453.9–958.2)

463.5
(277.6–631.2)a

245.3
(87.06–475.3)b,*

194
(143.3–473.2)c

345.2
(123.5–549.6)

400.5
(293.2–683.9)

T naive
116.9
(53.76–293.3)

189.6
(19.44–298.7)

204
(63.89–343)

71.47
(32.11–137.9)a

50.06
(14.87–130.9)b

37.89
(26.43–134.6)

75.19
(13.76–124.7)

132.1
(51.86–153.6)

TCM
61.01
(19.77–87.24)

26.18
(13.01–48.87)

57.1
(26.57–80.98)

36.02
(22.73–65.39)

17.7
(5.61–36.34)*

51.46
(27–87.59)

18.04
(3.28–27.01)

47.55
(24.36–107.7)

TEM
252.5
(172.9–353.4)

162.2
(89.91–214.4)*

274.3
(188.8–398.6)‡

181.4
(99.22–245.4)a

97.85
(39.91–156.6)b,*

155.5
(77.08–199.5)c

88.08
(51.26–161.5)

177.3
(145.8–356.1)

TEMRA
274.5
(82.54–322.3)

159.8
(73.19–386.2)

81.61
(62.88–212.6)

114.5
(63.2–179.2)a

83.7
(15.15–141.3)b

12.9
(12.39–42.57)c

103.3
(35.24–235.4)†

27.06
(21.97–130.8)

Treg
17.72
(13.49–33.5)

12.44
(7.31–19.62)

17.57
(8.91–30.73)

25.05
(10.41–30.17)

8.554
(4.41–15.23)*

9.46
(3.57–14.8)

9.13
(3.25–17.8)

14.41
(7.37–46.18)

CD39Treg
12.9
(3.24-18.06)

3.89
(1.81–8.59)*

5.83
(1.19–8.58)***

9.434
(4.99–18.06)

4.305
(1.99–8.01)*

3.27
(2.1–7.73)

2.2
(0.97–5.88)**

1.98
(1.35–5.48)
Group A1, young standard immunosuppression; Group B1, elderly standard immunosuppression; Group B2, elderly everolimus conversion; TCM, T central memory; TEM, T effector memory;
TEMRA, terminally differentiated effector memory; Treg, regulatory T cells.
a,b,c p<0.05 for Group A1 vs. Group B1 pre-transplantation, day 30 and day 365 samples, respectively.
*,**,*** p<0.05 for pre-transplantation vs. day 30, pre-transplantation vs. day 60 and pre-transplantation vs. day 365 samples of the same group, respectively.
†,‡ p< 0.05 for day 30 vs. day 60 and day 30 vs. day 365 samples of the same group, respectively.
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At 365 d, the young group (Group A1) exhibited a higher percentage

of terminally differentiated effector memory T cells compared to the

elderly group with standard immunosuppression (Group B1) (p =

0.048). EVL conversion did not affect the percentages of terminally

differentiated effector memory T cells in the elderly groups

(Figure 3D; Table 4).

Throughout the study period, we did not observe significant

changes in the percentages of T-naive and effector memory T cells

in any of the groups (Figures 3A, B). Interestingly, EVL initiation

had an opposite effect on the percentages of effector memory and

central memory T cells, inducing an increase in the percentage of

effector memory T cells and a decrease in percentages of central

memory T cells (Figures 3B, C; Table 4).
Regulatory T cells

At baseline, elderly recipients (Group B1) had significant higher

percentage of CD39Treg lymphocytes than young recipients

(Group A1) (p = 0.015). Following induction with rATG, there

was a significant decrease in the percentage of these cells in both

groups (Group B1: p = 0.0028, Group A1: p = 0.0038). By 365 d,

CD39Treg cells had recovered to the baseline values in the elderly

with standard immunosuppression (Group B1) but not in young

(Group A1) (p = 0.0156).

However, conversion to EVL did not allow the recovery of

CD39Treg to baseline levels by 365 d, in contrast to the elderly with

standard immunosuppression (Group B1) (Figure 4B; Table 4).
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These differences were less pronounced when only Treg cells were

analyzed (Figure 4A; Table 4).
Clinical data

In the study, there were seven Banff borderline changes

observed: four in Group A1 and three in Group B1. Among

Group A1, there was one case of humoral rejection. Each group

experienced one case of cellular rejection: Group A1, Group B1, and

Group B2. Additionally, there were four cases of renal graft loss

within the first year: one in the Group A1 control group and three in

Group B2, with one graft loss due to death in the elderly group.

Regarding infectious complications, BK virus infections were noted

in three Group A1, three Group B1, and six Group B2 patients,

while CMV infections occurred in three, two, and zero

patients, respectively.
Discussion

We analyzed the impact of two different immunosuppression

regimens on T-lymphocyte subsets in elderly kidney transplant

recipients and compared the results with a younger control group

under a standard regimen.

Our data showed that a single very low dose (2 mg/kg single

dose) of rATG induction therapy combined with standard

immunosuppression in elderly recipients resulted in early

reduction in the total T lymphocytes, which only recovered
TABLE 4 Percentages of lymphocyte subpopulations according to studied groups and observation time.

Lymphocyte
subset

Group A1 Group B1 Group B2

Pre-
transplantation Day 30 Day 365

Pre-
transplantation Day 30 Day 365 Day 60 Day 365

T
69.95
(61.7–77.4)

72.1
(44.15–75.95)

71.1
(58.8–79.8)

59.35
(42.8–70.5)a

58.9
(30.6–71.85)

66.1
(44.75–68.8)

62.55
(44.8–68.8)

59.8
(55.65–71.35)

TCD8
20.23
(17.07–29)

22.29
(17.01–34.63)

26.29
(23.46–33.1)***

17.6
(13.46–23.61)

18.3
(10.49–23.3)b

27
(17.02–32.92)

17.52
(11.03–26.01)

26.31
(21.02–31)

TCD4
36.49
(31.46–45.5)

26.84
(20.43–37.06)

42.49
(22.3–42.95)

32.62
(24.9–41.2)

29.44
(15.3–40.33)

30.04
(20.81–32.42)

33.55
(17.83–43.17)

25.82
(24.92–39.18)

T naive
21.4
(7.72–36.85)

27.2
(16.6–41.7)

27.6
(10.6–41.7)

18.55
(6.9–32.83)

23.1
(12.15–30.8)

22.1
(13.35–31.65)

25.2
(12.08–32.98)

22.5
(15.5–32.6)

TCM
6.2
(3.77–10.8)

5.32
(2.49–7.28)*

8.62
(4.95–13.5)

8.17
(5.28–12.88)

6.74
(4.36–11)*

21.2
(10.94–27.95)c

5.47
(3.14–7.95)**

11.1
(8.05–18)

TEM
34.05
(24.53–51.7)

25
(21.35–42.05)

44.2
(28.5–63)

41.55
(29.95–51.33)

33.5
(28.85–44.5)b

50.6
(44.55–54)

30.3
(26.55–48.83)

50.1
(45.3–57.1)

TEMRA
32.8
(21.43–43.38)

36.2
(22–44.5)

15.7
(9.05–30.2)

24.85
(21.13–37.48)

28.3
(22.5–41.55)

7.22
(5.55–11.4)c

29.65
(25.45–44)

13
(6.02–19.15)

Treg
2.2
(1.8–3.79

1.82
(1.5–2.28)*

2.15
(2.09–4.28)

3.99
(2.62–5.54)a

2.96
(2.37–4.4)b,*

3.05
(2.68–3.38)

3.14
(1.81–5.26)

4.25
(3.27–8.58)

CD39Treg
1.29
(0.45–1.85)

0.84
(0.18–1.82)*

0.86
(0.70–1.34)***

2.1
(1.23–3.51)a

1.69
(0.8–2.66)b,*

2.042
(0.88–2.42)

1.02
(0.56–1.74)**

0.83
(0.41–1.09)
Group A1, young standard immunosuppression; Group B1, elderly standard immunosuppression; Group B2, elderly everolimus conversion; TCM, T central memory; TEM, T effector memory;
TEMRA, Terminally differentiated effector memory; Treg, regulatory T cells.
a,b,c p<0.05 for Group A1 vs. Group B1 pre-transplantation, day 30 and day 365 samples, respectively.
*,**,*** p<0.05 for pre-transplantation vs. day 30, pre-transplantation vs. day 60 and pre-transplantation vs. day 365 samples of the same group, respectively.
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within 1 year of transplantation, regardless of MPS maintenance or

everolimus conversion. Additionally, analysis of TCD4+

lymphocyte subsets in the elderly indicated significant early

reductions in TCM and Treg cell population percentages, which

also recovered after 1 year with TAC/MPS maintenance
Frontiers in Immunology 08
immunosuppression. These reduction effects on TCM and Treg

cells were not observed in the young adult group or in the elderly

everolimus conversion group. Both groups showed an early

reduction in the percentages of TCM and Treg cells, which was

sustained throughout the 1-year follow-up period.
FIGURE 2

Total lymphocyte absolute counts over 365 days observation time for young standard immunosuppression (Group A1) (•), elderly standard
immunosuppression (Group B1), (▪) and elderly everolimus conversion (Group B2) (▴) groups. *p<0.05 for comparison between Group A1 vs. Group
B1 groups in a given time point. Horizontal bar p<0.05 for comparison between day 30 and pre-transplantation samples of Group B1.
FIGURE 3

Percentages of T CD4+naïve (A), T CD4+ effector memory (B), T CD4+central memory (C) and T CD4+ TCD4 terminally differentiated effector
memory (D) lymphocytes over 365 days observation time for young standard immunosuppression (Group A1) (•), elderly standard
immunosuppression (Group B1) (▪) and elderly everolimus conversion (Group B2) (▴) groups. *p<0.05 for comparison between Group A1 vs. Group
B1 groups in a given time point after transplantation. Dotted, solid, and dashed horizontal bars p<0.05 for comparisons between a given time point
and the pre-transplantation samples of Group A1, Group B1, and Group B2, respectively.
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Elderly recipients with standard immunosuppression

consistently had lower total lymphocyte counts compared to the

younger controls throughout the observation period. This finding

aligns with our previous research, which identified this as an age-

dependent effect, particularly pronounced among end-stage renal

disease patients (37).

Early after transplantation with rATG induction at a single 2

mg/kg dose, the total lymphocyte counts significantly decreased

among elderly recipients but not among the young controls. At the

end of 1-year follow-up, both elderly and young recipients with

standard immunosuppression had their total lymphocyte counts

return to baseline. Although the intensity and duration of rATG-

related lymphocyte depletion are dose dependent (38), several

factors may contribute to the lower capacity for T-cell

reconstitution in elderly recipients. These factors include a

reduced rate of thymic output (39–41), lower proliferative

capability of depletion-resistant cells (42), and a higher rate of

apoptosis of T cells in elderly recipients.

Given that the rATG dose used in this study was much lower

than a conventional dose, we suggest that even a low dose rATG

induction combined with standard immunosuppression has a

significant, yet transient, impact on T- lymphocyte counts in

elderly individuals.

The T- lymphocyte subset analysis of elderly recipients with

standard immunosuppression showed significant early reductions

of TCD4 and TCM cell populations, which recovered 1 year after

transplantation. These effects were anticipated, considering that

antibodies against surface antigens of TCD4 lymphocytes

predominate in rATG preparations (43), leading to significant

changes in the composition of this T- lymphocyte subsets after

rATG therapy (29, 44–46).

Contrarily, the observed changes in TCD4 cells subsets in this

study do not align with the reported relative resistance of memory

cells to rATG depletion (29, 45, 46). Additionally, the percentages

and frequencies of memory cells are predictors of the risk of the

kidney allograft failure (47). However, to the best of our knowledge,

studies directly addressing possible differential effects of rATG or
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maintenance immunosuppression on lymphocyte subsets according

to the age of the recipients are not available. Notably, most studies

on the effects of rATG on TCD4 lymphocytes refers to a 6-mg/kg

dose in both clinical (29, 44, 46) and in vitro observations (30).

Elderly recipients with standard immunosuppression showed

significant early reductions of Treg cell populations. These

reductions in absolute counts and percentages of CD39Treg cell

population contrast with in vitro reports, indicating that rATG

therapy favors Treg expansion (30). Similarly, in vivo data have

shown preserved Treg cell functional activity even when associated

with standard maintenance immunosuppression based on

calcineurin inhibitors (29, 44, 46, 48). Although substantial

evidence indicates that inhibition of mTOR signaling pathway

with rapamycin effectively expands Tregs in vitro (49, 50), and

that rapamycin, either in combination with mycophenolate and

corticosteroids (32, 33), or as monotherapy (51), promotes the

survival and expansion of cells with regulatory function in clinical

settings, these effects were not observed in the elderly patients in

this study.

In this study, early TAC levels were 11.2 ± 2.7 ng/mL in young

controls and 10.7 ± 4.3 ng/mL in elderly recipients, with lower levels

during follow-up, 6.5 ± 2 ng/mL and 74 ± 2.1 ng/mL, respectively.

These levels were much higher than those in the everolimus

conversion group, which had a TAC level of 3.3 ± 1.5 ng/mL.

Since Treg generation, survival, and function are IL-2 dependent

(52), we speculate that concomitant use of calcineurin inhibitor may

account for the observed impairment in the expected Treg

expansion. Additionally, the later reduction in target levels of

tacrolimus resulted in an increase in Treg counts in

elderly recipients.

Our study compares de novo standard tacrolimus-based

immunosuppression with everolimus-based immunosuppression

combined with low-dose tacrolimus. In the conversion group, the

target TAC blood levels were maintained at 4 ng/mL throughout the

study period. Both sirolimus and EVL can compete with TAC for the

binding to the FKBP12 (53). Tacrolimus has been reported to interfere

with the actions of mTOR inhibitors (mTORis), as seen in clinical
FIGURE 4

Percentages of regulatory (A) and CD39+regulatory (B) T cells over 365 days observation time for young standard immunosuppression (Group A1) (•),
elderly standard immunosuppression (Group B1) (▪), and elderly everolimus conversion (Group B2) (▴) groups. *p<0.05 for comparison between
Group A1 vs. Group B1 groups in a given time point after transplantation. Dotted, solid, and dashed horizontal bars p<0.05 for comparisons between
a given time point and the baseline percentages of Group A1, Group B1, and Group B2, respectively.
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settings such as BK virus replication. While sirolimus inhibits BKV

proliferation in vitro, tacrolimus, at blood concentrations between 5 ng/

mL and 10 ng/mL, reverses this effect (54).

Based on these observations, we hypothesize that maintaining

tacrolimus levels in the everolimus-based immunosuppression

regimen may have inhibited the beneficial effects of everolimus on

Treg expansion. Additionally, the lack of benefit from mTOR

inhibitors in promoting Treg expansion among elderly recipients

might be related to immune senescence. Most studies assessing the

effects of mTOR inhibitors on Treg immunobiology have involved

younger individuals (32, 33, 51).

Our study is limited by a small sample size, which reduces

statistical power. This limitation also affects the generalizability of

our findings and can amplify random variations, making it challenging

to distinguish true effects from noise. However, to the best of our

knowledge, no previous studies have provided this information about

immune cells in this specific group of kidney transplant recipients.

Given the limited number of clinical events, such as graft loss,

rejections, and deaths, we were unable to evaluate the specific

impact of lymphocyte subpopulations on clinical outcomes.

Additionally, the cytometry gating strategy used did not include

CD8 labeling, preventing analysis of TCD8+ lymphocyte

populations. Although we evaluated a broad range of lymphocyte

phenotypes, we did not conduct cell functional assays, which could

have provided valuable insights, especially considering that elderly

recipients generally have lower rates of immune activation and

kidney transplant rejection.

In conclusion, low dose of rATG affected memory subsets in

elderly recipients. Everolimus- based immunosuppression did not

show a favorable effect in the Treg profile. Aging favored Treg

maintenance during the later stages of transplantation, independent

of the type of maintenance immunosuppression.
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Glossary

APC allophycocyanin
Frontiers in Immunol
CD39Treg regulatory TCD4+CD39+
CMV cytomegalovirus
CNI calcineurin inhibitor
d days
DM diabetes mellitus
Group B2 elderly everolimus conversion
Group B1 elderly standard immunosuppression
EVL everolimus
FITC fluorescein isothiocyanate
FMO fluorescence minus one
HLA human leukocyte antigen
IL2RA interleukin-2 receptor specific antibodies
IS immunosuppression
Ktx kidney transplant
MPS mycophenolate sodium
mTORi mTOR inhibitors
PBMC peripheral blood mononuclear cells
PE phycoerythrin
PerCp peridinin chlorophyll protein complex
rATG rabbit antithymocyte globulin
SAH systemic arterial hypertension
TAC tacrolimus
TCM TCD4 central memory
TEM TCD4 effector memory
TEMRA TCD4 terminally differentiated effector memory
Treg regulatory TCD4
y years
Group A1 Young standard immunosuppression group.
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